Aufgabe H17T1A1 (8 Punkte)

Sei K ein endlicher Körper. Zeigen Sie, dass das Produkt aller Elemente $\neq 0$ in K gleich -1 ist.

Lösung:

Sei $S = \{\alpha \in K^{\times} \mid \alpha \neq \alpha^{-1}\}$. Wir zeigen, dass die Menge S in lauter zweielementige Teilmengen aufgeteilt werden kann, deren Elemente sich jeweils zu 1 multiplizieren. Dazu überprüfen wir, dass durch $\alpha \sim \beta \Leftrightarrow \beta \in \{\alpha, \alpha^{-1}\}$ eine Äquivalenzrelation auf S definiert ist.

Die Reflexivität ist erfüllt, denn für jedes $\alpha \in S$ gilt $\alpha \in \{\alpha, \alpha^{-1}\}$. Aus $\alpha \sim \beta$ folgt $\beta = \alpha$ oder $\beta = \alpha^{-1}$, also auch $\alpha = \beta$ oder $\alpha = \beta^{-1}$ und somit $\beta \sim \alpha$. Also ist die Relation \sim auch symmetrisch. Zum Nachweis der Transitivität seien $\alpha, \beta, \gamma \in S$ mit $\alpha \sim \beta$ und $\beta \sim \gamma$ vorgegeben. Ist $\alpha = \beta$ oder $\beta = \gamma$, dann folgt $\alpha \sim \gamma$ unmittelbar. Ansonsten gilt $\beta = \alpha^{-1}$ und $\gamma = \beta^{-1}$, also $\gamma = (\alpha^{-1})^{-1} = \alpha$ uns somit ebenfalls $\alpha \sim \gamma$. Insgesamt ist \sim also tatsächlich eine Äquivalenzrelation auf S.

Für jedes $\alpha \in S$ die Äquivalenzklasse $[\alpha]$ gegeben durch $[\alpha] = \{\alpha, \alpha^{-1}\}$ und zweielementig. Bezeichnen wir mit $R \subseteq S$ ein Repräsentantensystem von \sim , dann kann S als disjunkte Vereinigung $S = \bigcup_{\alpha \in R} [\alpha]$ dargestellt werden, und wir erhalten

$$\prod_{\gamma \in S} \gamma \quad = \quad \prod_{\alpha \in R} \prod_{\gamma \in [\alpha]} \gamma \quad = \quad \prod_{\alpha \in R} \prod_{\gamma \in \{\alpha, \alpha^{-1}\}} \gamma \quad = \quad \prod_{\alpha \in R} (\alpha \cdot \alpha^{-1}) \quad = \quad \prod_{\alpha \in R} 1_K \quad = \quad 1_K.$$

Nun sehen wir uns noch die Elemente in $K^{\times} \setminus S$ an. Ein Element $\alpha \in K^{\times}$ liegt genau dann in $K^{\times} \setminus S$, wenn $\alpha = \alpha^{-1} \Leftrightarrow \alpha^2 - 1_K = 0_K$ gilt, wenn also α eine Nullstelle von $f = x^2 - 1_K \in K[x]$ ist. Offenbar sind $\pm 1_K$ beides Nullstellen von f. Betrachten wir nun zunächst den Fall $\operatorname{char}(K) \neq 2$. Als Polynom vom Grad 2 über einem Körper hat f höchstens zwei Nullstellen, also ist $K^{\times} \setminus S$ in diesem Fall zweielementig, und es ist $K^{\times} \setminus S = \{\pm 1_K\}$. Wir erhalten

$$\prod_{\gamma \in K^{\times}} \gamma = \left(\prod_{\gamma \in S} \gamma\right) \cdot 1_K \cdot (-1_K) = 1_K \cdot 1_K \cdot (-1_K) = -1_K.$$

Im Fall char(K) = 2 gilt $-1_K = 1_K$, $2_K = 1_K + 1_K = 0_K$ und $f = x^2 - 1_K = x^2 - 2_K x + 1_K = (x - 1_K)^2$. Dies zeigt, dass 1_K in diesem Fall die einzige Nullstelle von f ist, also $K^{\times} \setminus S = \{1_K\}$ gilt. Auch dieses Mal erhalten wir

$$\prod_{\gamma \in K^\times} \gamma \quad = \quad \left(\prod_{\gamma \in S} \gamma\right) \cdot 1_K \quad = \quad 1_K \cdot 1_K \quad = \quad 1_K \quad = \quad -1_K.$$