Aufgabe H16T3A2 (4+4+4 Punkte)

Sei $p \geq 3$ eine ungerade Primzahl und \mathbb{F}_{p^2} der Körper mit p^2 Elementen. Beweisen Sie:

- (a) Die Abbildung $f: \mathbb{F}_{p^2} \to \mathbb{F}_{p^2}$, die durch $f(a) = a^p$ gegeben ist, ist ein Isomorphismus von Ringen.
- (b) Durch die Vorschrift $g(a) = a + a^p$ ist eine Abbildung $g : \mathbb{F}_{p^2} \to \mathbb{F}_p$ gegeben, und diese ist ein surjektiver Gruppenhomomorphismus.
- (c) Durch die Vorschrift $h(a)=a^{p+1}$ ist eine Abbildung $h:\mathbb{F}_{p^2}^{\times}\to\mathbb{F}_p^{\times}$ gegeben, und diese ist ein surjektiver Gruppenhomomorphismus.

Lösung:

zu (a) Da \mathbb{F}_{p^2} ein Körper der Charakteristik p ist, gilt $(a+b)^p = a^p + b^p$ für alle $a, b \in \mathbb{F}_{p^2}$. Daraus folgt f(a+b) = f(a) + f(p) für alle $a, b \in \mathbb{F}_{p^2}$. Außerdem gilt offenbar $f(\bar{1}) = \bar{1}^p = \bar{1}$ und $f(ab) = (ab)^p = a^p b^p = f(a) f(b)$ für alle $a, b \in \mathbb{F}_{p^2}$. Damit ist gezeigt, dass es sich bei f um einen Ringhomomorphismus handelt. Alle Elemente a des Körpers \mathbb{F}_{p^2} sind bekanntlich Nullstellen des Polynoms $x^{p^2} - x \in \mathbb{F}_p[x]$, es gilt also $a^{p^2} = a$ für alle $a \in \mathbb{F}_{p^2}$. Daraus folgt $f(f(a)) = f(a^p) = (a^p)^p = a^{p^2} = a$ für alle $a \in \mathbb{F}_{p^2}$. Die Abbildung f ist also ihre eigene Umkehrabbildung und somit bijektiv.

zu (b) Die Elemente des Körpers \mathbb{F}_p sind genau die Nullstellen des Polynoms $x^p - x \in \mathbb{F}_p[x]$. Ein Element $c \in \mathbb{F}_{p^2}$ ist also genau dann in \mathbb{F}_p enthalten, wenn $c^p = c$ gilt. Nun gilt für alle $a \in \mathbb{F}_{p^2}$ die Gleichung $g(a)^p = (a+a^p)^p = a^p + (a^p)^p = a^p + a^{p^2} = a^p + a = g(a)$. Dies zeigt, dass durch g tatsächlich eine Abbildung von \mathbb{F}_{p^2} nach \mathbb{F}_p definiert ist. Für jedes $a \in \mathbb{F}_p$ gilt $g(a) = a + a^p = a + a = \bar{2}a$. Da p eine ungerade Primzahl ist, handelt es sich bei $\bar{2} \in \mathbb{F}_p$ um ein invertierbares Element. Mit a durchläuft somit auch $\bar{2}a$ alle Elemente von \mathbb{F}_p . Damit ist die Surjektivität von h nachgewiesen. Schließlich gilt für alle $a, b \in \mathbb{F}_{p^2}$ noch

$$g(a+b) = (a+b) + (a+b)^p = a+b+a^p+b^p = (a+a^p) + (b+b^p) = g(a) + g(b).$$

Dies zeigt, dass g ein Gruppenhomomorphismus zwischen $(\mathbb{F}_{p^2},+)$ und $(\mathbb{F}_p,+)$ ist.

zu (c) Offenbar ist h ein Gruppenhomomorphismus, denn für alle $a,b\in\mathbb{F}_{p^2}^{\times}$ gilt $h(ab)=(ab)^{p+1}=a^{p+1}b^{p+1}=h(a)h(b)$. Für jedes $a\in\mathbb{F}_{p^2}$ liegt h(a) wegen $h(a)^p=(a^{p+1})^p=a^{p^2+p}=a^{p^2}\cdot a^p=a\cdot a^p=a^{p+1}=h(a)$ in \mathbb{F}_p^{\times} , also ist h eine Abbildung von $\mathbb{F}_{p^2}^{\times}$ nach \mathbb{F}_p^{\times} . Es bleibt zu zeigen, dass h surjektiv ist.

Als multiplikative Gruppe eines endlichen Körpers in $\mathbb{F}_{p^2}^{\times}$ zyklisch, es gibt also ein Element c in dieser Gruppe mit $\operatorname{ord}(c) = |\mathbb{F}_{p^2}^{\times}| = p^2 - 1$. Es ist dann $h(c) = c^{p+1}$ ein Element in \mathbb{F}_p^{\times} der Ordnung $\frac{p^2 - 1}{p + 1} = p - 1$. Wegen $|\mathbb{F}_p^{\times}| = p - 1$ ist h(c) also ein Erzeuger von \mathbb{F}_p^{\times} . Da das Bild von h einen Erzeuger von \mathbb{F}_p^{\times} enthält und zugleich eine Untergruppe von \mathbb{F}_p^{\times} ist, muss es mit \mathbb{F}_p^{\times} übereinstimmen. Dies zeigt, dass h surjektiv ist.