Aufgabe H13T1A5 (16 Punkte)

Es sei $f = x^3 + x - 1 \in \mathbb{Q}[x]$; weiter sei $\alpha \in \mathbb{C}$ eine Wurzel von f.

- (a) Zeigen Sie: f ist irreduzibel.
- (b) Geben Sie den Grad $[L:\mathbb{Q}]$ des Zerfällungskörpers L von f über \mathbb{Q} an.
- (c) Geben Sie den Isomorphietyp der Galoisgruppe $Gal(L|\mathbb{Q})$ an.
- (d) Geben Sie $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{Q}$ an mit

$$\alpha^4 - 2\alpha^3 = \lambda_1 \cdot 1 + \lambda_2 \cdot \alpha + \lambda_3 \cdot \alpha^2.$$

Lösung:

zu (a) Wegen $\operatorname{grad}(f) = 3$ genügt es zu zeigen, dass f in \mathbb{Q} keine Nullstelle besitzt. Da f normiert ist und in $\mathbb{Z}[x]$ liegt, muss jede Nullstelle ganzzahlig und ein Teiler des konstanten Terms -1 sein. Die einzigen beiden Teiler von -1 sind ± 1 . Da aber $f(-1) = (-1)^3 + (-1) - 1 = -3 \neq 0$ und $f(1) = 1^3 + 1 - 1 = 1$ gilt, besitzt f keine rationale Nullstelle.

zu (b) Als reelles Polynom vom Grad 3 besitzt f (mindestens) eine reelle Nullstelle, die wir mit α bezeichnen. Auf Grund der Irreduzibilität von f gilt $[\mathbb{Q}(\alpha):\mathbb{Q}]=\mathrm{grad}(f)=3$. Wir untersuchen nun, ob f bereits über $\mathbb{Q}(\alpha)$ in Linearfaktoren zerfällt; daraus würde folgen, dass L mit $\mathbb{Q}(\alpha)$ übereinstimmt. Wäre dies der Fall, dann würden alle komplexen Nullstellen von f bereits in $\mathbb{Q}(\alpha)$ liegen; wegen $\mathbb{Q}(\alpha)\subseteq\mathbb{R}$ wären sie also reell. Weil f als irreduzibles Polynom über \mathbb{Q} wegen $\mathrm{char}(\mathbb{Q})=0$ separabel ist, würde daraus folgen, dass f drei verschiedene, reelle Nullstellen besitzt. Nach dem Satz von Rolle aus der Analysis gäbe es zwischen diesen drei Nullstellen mindestens zwei reelle Nullstellen der Ableitung. Aber $f'=3x^2+1$ besitzt offenbar keine reellen Nullstellen.

Dies zeigt, dass f neben α eine weitere Nullstelle β in $\mathbb{C} \setminus \mathbb{R}$ besitzt. Zunächst stellen wir fest, dass der Zerfällungskörper von f durch $L = \mathbb{Q}(\alpha, \beta)$ gegeben ist. Denn weil α und β verschiedene Nullstellen von f sind, gibt es ein normiertes Polynom $h \in \mathbb{Q}(\alpha, \beta)[x]$ vom Grad 1 mit $f = (x - \alpha)(x - \beta)h$. Dieses Polynom hat die Form $h = x - \gamma$ mit $\gamma \in \mathbb{Q}(\alpha, \beta)$; wir sehen somit, dass alle drei komplexen Nullstellen α, β, γ von f bereits in $\mathbb{Q}(\alpha, \beta)$ liegen und f über $\mathbb{Q}(\alpha, \beta)$ somit in Linearfaktoren zerfällt. Außerdem wird $\mathbb{Q}(\alpha, \beta)$ von den komplexen Nullstellen des Polynoms über \mathbb{Q} erzeugt, da der Körper nach Definition bereits von $\{\alpha, \beta\}$ über \mathbb{Q} erzeugt wird. Damit ist $L = \mathbb{Q}(\alpha, \beta)$ bewiesen.

Sei $g \in \mathbb{Q}(\alpha)[x]$ das eindeutig bestimmte, normierte Polynom mit $f = (x - \alpha)g$. Dann gilt grad(g) = 2. Wäre g über $\mathbb{Q}(\alpha)$ reduzibel, dann würde die Nullstelle β von g in $\mathbb{Q}(\alpha)$ liegen, was wir aber bereits ausgeschlossen haben. Also ist g über $\mathbb{Q}(\alpha)$ irreduzibel, und zusammen mit $g(\beta) = 0$ folgt $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)] = \operatorname{grad}(g) = 2$. Mit dem Gradsatz erhalten wir nun

$$[L:\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\alpha)] \cdot [\mathbb{Q}(\alpha):\mathbb{Q}] = 2 \cdot 3 = 6.$$

zu (c) Da L Zerfällungskörper eines Polynoms $f \in \mathbb{Q}[x]$ über \mathbb{Q} vom Grad 3 ist, ist $G = \operatorname{Gal}(L|\mathbb{Q})$ laut Vorlesung isomorph zu einer Untergruppe U von S_3 . Außerdem gilt $|G| = [L : \mathbb{Q}] = 6 = |S_3|$. Aus $U \subseteq S_3$ und $|U| = |S_3|$ folgt $U = S_3$. Also ist G isomorph zu S_3 .

zu (d) Aus $\alpha^3 + \alpha - 1 = f(\alpha) = 0$ folgt $\alpha^3 = -\alpha + 1$ und $\alpha^4 = -\alpha^2 + \alpha$. Wir erhalten $\alpha^4 - 2\alpha^2 = (-\alpha^2 + \alpha) + (-2)(-\alpha + 1) = -2 + 3\alpha - \alpha^2$. Die gesuchten Werte sind also $\lambda_1 = -2$, $\lambda_2 = 3$ und $\lambda_3 = -1$.