Aufgabe H12T1A3 (2+3+3+3 Punkte)

- (a) Bestimmen Sie den Zerfällungskörper $L \subseteq \mathbb{C}$ von $f = (x^3 2)(x^2 5) \in \mathbb{Q}[x]$.
- (b) Zerlegen Sie f über L in Linearfaktoren und bestimmen Sie $[L:\mathbb{Q}]$.
- (c) Bestimmen Sie ein primitives Element von L.
- (d) Bestimmen Sie die Galoisgruppe $Gal(L|\mathbb{Q})$.

Lösung:

zu (a) Die Nullstellenmenge von f ist die Vereinigung der Nullstellenmengen der beiden Faktoren $g=x^3-2$ und $h=x^2-5$. Sei $\zeta=-\frac{1}{2}+\frac{1}{2}\sqrt{-3}$ (eine primitive dritte Einheitswurzel), $\alpha=\sqrt[3]{2}$ und $\beta=\sqrt{5}$. Dann sind $\alpha,\zeta\alpha,\zeta^2\alpha$ die drei komplexen Nullstellen von g und $\pm\beta$ die beiden Nullstellen von h. Der Zerfällungskörper L ist also gegeben durch

$$L = \mathbb{Q}(\alpha, \zeta \alpha, \zeta^2 \alpha, \beta, -\beta).$$

Wir zeigen, dass $L = \mathbb{Q}(\zeta, \alpha, \beta)$ gilt. Die Inklusion " \subseteq " ist erfüllt, weil mit ζ, α, β auch die Nullstellen $\zeta\alpha$, $\zeta^2\alpha$ und $-\beta$ von f in $\mathbb{Q}(\zeta, \alpha, \beta)$ liegen. Ebenso gilt " \supseteq ", denn nach Definition liegt α in L, wegen $\zeta\alpha \in L$ auch $\alpha = (\zeta\alpha)/\zeta$ und mit β auch die Nullstelle $-\beta$.

zu (b) Wir haben bereits in Aufgabenteil (a) die fünf verschiedenen Nullstellen von f bestimmt, und jede Nullstelle liefert einen Linearfaktor in der Zerlegung von f. Demnach gilt

$$f = gh = (x - \alpha)(x - \zeta\alpha)(x - \zeta^2\alpha)(x - \beta)(x + \beta).$$

Nun bestimmen wir den Erweiterungsgrad $[L:\mathbb{Q}]$. Das Element α ist Nullstelle von $g\in\mathbb{Q}[x]$. Außerdem ist g normiert und nach dem Eisenstein-Kriterium (für p=2) irreduzibel. Es handelt sich also um das Minimalpolynom von α über \mathbb{Q} , und wir erhalten $[\mathbb{Q}(\alpha):\mathbb{Q}]=\mathrm{grad}(g)=3$. Das Polynom $h\in\mathbb{Q}[x]$ ist normiert, irreduzibel nach Eisenstein (für p=5) und hat β als Nullstelle. Also ist h das Minimalpolynom von β über \mathbb{Q} , und wir erhalten $[\mathbb{Q}(\beta):\mathbb{Q}]=2$. Für die Erweiterung $K|\mathbb{Q}$ mit $K=\mathbb{Q}(\alpha,\beta)$ gilt nach dem Gradsatz

$$[K:\mathbb{Q}] \quad = \quad [K:\mathbb{Q}(\alpha)] \cdot [\mathbb{Q}(\alpha):\mathbb{Q}] \cdot \quad = \quad [K:\mathbb{Q}(\alpha)] \cdot 3$$

und ebenso

$$[K:\mathbb{Q}] = [K:\mathbb{Q}(\beta)] \cdot [\mathbb{Q}(\beta):\mathbb{Q}] = [K:\mathbb{Q}(\beta)] \cdot 2 ,$$

also sind 2 und 3 Teiler von $[K:\mathbb{Q}]$. Wegen ggT(2,3)=1 folgt daraus, dass 6 ein Teiler von $[K:\mathbb{Q}]$ ist und folglich $[K:\mathbb{Q}]\geq 6$ gilt.

Das dritte Kreisteilungspolynom $u=x^2+x+1$ hat ζ als Nullstelle, ist normiert und auch in K[x] noch irreduzibel. Denn andernfalls würden die beiden nicht-reellen Nullstellen ζ, ζ^2 von u wegen $\operatorname{grad}(u)=2$ in K liegen, was aber wegen $K\subseteq \mathbb{R}$ unmöglich ist. Also ist u das Minimalpolynom von ζ über K, und wir erhalten

$$[L:K] = [K(\zeta):K] = \operatorname{grad}(u) = 2.$$

Es folgt $[L : \mathbb{Q}] = [L : K] \cdot [K : \mathbb{Q}] \ge 2 \cdot 6 = 12.$

Für die Abschätzung des Polynomgrades nach oben sei \tilde{g} das Minimalpolynom von β über $\mathbb{Q}(\alpha)$. Wegen $g(\beta)=0$ ist \tilde{g} ein Teiler von g. Es folgt

$$[K:\mathbb{Q}(\alpha)] = [\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\alpha)] = \operatorname{grad}(\tilde{g}) \leq \operatorname{grad}(g) = 2$$

und $[L:\mathbb{Q}] = [L:K] \cdot [K:\mathbb{Q}(\alpha)] \cdot [\mathbb{Q}(\alpha):\mathbb{Q}] \le 2 \cdot 2 \cdot 3 = 12$. Damit ist insgesamt $[L:\mathbb{Q}] = 12$ bewiesen.

zu (c),(d) Zunächst bemerken wir, dass $L|\mathbb{Q}$ eine Galoiserweiterung ist. Weil L durch Adjunktion der algebraischen Elemente ζ, α, β an \mathbb{Q} zu Stande kommt, handelt es sich um eine algebraische Erweiterung, und wegen $\operatorname{char}(\mathbb{Q}) = 0$ ist diese auch separabel. Als Zerfällungskörper eines Polynoms $f \in \mathbb{Q}[x]$ über \mathbb{Q} ist $L|\mathbb{Q}$ außerdem normal.

Nun bestimmen wir die Galoisgruppe $G = \operatorname{Gal}(L|\mathbb{Q})$. Weil $L|\mathbb{Q}$ eine Galoiserweiterung ist, gilt $|G| = [L:\mathbb{Q}] = 12$. Wegen $L = \mathbb{Q}(S)$ mit $S = \{\zeta, \alpha, \beta\}$ ist jedes $\sigma \in G$ durch die Bilder $(\sigma(\zeta), \sigma(\alpha), \sigma(\beta))$ bereits eindeutig festgelegt. Weil σ ein \mathbb{Q} -Automorphismus ist, muss $\sigma(\zeta)$ eine Nullstelle von $u, \sigma(\alpha)$ eine Nullstelle von g und $\sigma(\beta)$ eine Nullstelle von h sein. Die Nullstellen der Polynome u, g, h wurden in den Aufgabenteilen (a) und (b) bereits bestimmt. Insgesamt ist $\sigma \mapsto (\sigma(\zeta), \sigma(\alpha), \sigma(\beta))$ damit eine injektive Abbildung $\phi: G \to T$ mit

$$T = \{\zeta, \zeta^2\} \times \{\alpha, \zeta\alpha, \zeta^2\alpha\} \times \{\beta, -\beta\}.$$

Wegen $|T|=2\cdot 3\cdot 2=12=|G|$ ist ϕ auch surjektiv. Daraus folgt, dass in G Elemente ρ,σ,τ existieren mit

$$\begin{split} \rho(\zeta) &= \zeta^2 \quad , \quad \rho(\alpha) = \alpha \quad , \quad \rho(\beta) = \beta \\ \sigma(\zeta) &= \zeta \quad , \quad \sigma(\alpha) = \zeta\alpha \quad , \quad \sigma(\beta) = \beta \\ \tau(\zeta) &= \zeta \quad , \quad \tau(\alpha) = \alpha \quad , \quad \tau(\beta) = -\beta. \end{split}$$

Für das Element ρ gilt einerseits $\rho \neq \mathrm{id}_L$, andererseits $\rho^2(\zeta) = \rho(\rho(\zeta)) = \rho(\zeta^2) = \rho(\zeta)^2 = (\zeta^2)^2 = \zeta^4 = \zeta$ und $\rho^2(\alpha) = \alpha$, $\rho^2(\beta) = \beta$, also $\rho^2 = \mathrm{id}_L$. Daraus folgt $\mathrm{ord}(\rho) = 2$. Ebenso ist $\sigma \neq \mathrm{id}_L$, aber $\sigma^2(\alpha) = \sigma(\sigma(\alpha)) = \sigma(\zeta) = \sigma(\zeta)$

$$\sigma^3(\alpha) = \sigma(\sigma^2(\alpha)) = \sigma(\zeta^2\alpha) = \sigma(\zeta)^2\sigma(\alpha) = \zeta^2(\zeta\alpha) = \zeta^3\alpha = \alpha.$$

Wegen $\sigma^3(\zeta) = \zeta$ und $\sigma^3(\beta) = \beta$ ist $\sigma^3 = \mathrm{id}_L$ und damit insgesamt $\mathrm{ord}(\sigma) = 3$. Also enthält die Untergruppe $\langle \rho, \sigma \rangle$ Elemente der Ordnung 2 und 3, daraus folgt $|\langle \rho, \sigma \rangle| \geq 6$. Weiter gilt $\tau \notin \langle \rho, \sigma \rangle$, denn die Elemente in $\langle \rho, \sigma \rangle$ bilden im Gegensatz zu τ das Element β auf sich selbst ab. Aus $|\langle \rho, \sigma \rangle| \geq 6$, $\langle \rho, \sigma, \tau \rangle \supseteq \langle \rho, \sigma \rangle$ und |G| = 12 folgt $G = \langle \rho, \sigma, \tau \rangle$. Damit ist die Berechnung der Galoisgruppe abgeschlossen.

Zum Schluss zeigen wir, dass $\gamma = \sqrt[3]{2}\sqrt{-3} + 10\sqrt{5}$ ein erzeugendes Element der Erweiterung $L|\mathbb{Q}$ ist. Sei $G(\gamma) = \{\sigma_1(\gamma) \mid \sigma_1 \in G\}$ die Bahn von γ unter der Operation von G, und nehmen wir an, dass $\mathbb{Q}(\gamma) \subsetneq L$ gilt. Dann ist $U = \operatorname{Gal}(L|\mathbb{Q}(\gamma))$ nach dem Hauptsatz der Galoistheorie eine nichttriviale Untergruppe von G, und wegen $\sigma_1(\gamma) = \gamma$ für alle $\sigma_1 \in U$ ist diese im Stabilisator G_γ von γ enthalten. Es folgt $|G_\gamma| > 1$ und $|G(\gamma)| = (G:G_\gamma) < |G| = 12$. Wir führen dies nun zum Widerspruch, indem wir nachweisen, dass die Bahn $G(\gamma)$ aus genau 12 verschiedenen Elementen besteht.

Zunächst zeigen wir, dass für $K_0 = \mathbb{Q}(\sqrt{5})$ und $\tilde{\gamma} = \sqrt[3]{2}\sqrt{-3}$ die Gleichung $K_0(\tilde{\gamma}) = L$ erfüllt ist. Die Inklusion "⊆" ist gültig, weil mit $\zeta = -\frac{1}{2} + \frac{1}{2}\sqrt{-3}$ auch das Element $\sqrt{-3}$ in L liegt und wir mit $\sqrt{-3}$, $\sqrt[3]{2} \in L$ auch $\tilde{\gamma} \in L$ enthalten. Wegen $\sqrt{5} \in L$ gilt schließlich auch $K_0 \subseteq L$. Für den Nachweis von "⊇" bemerken wir zunächst, dass $\sqrt{5} \in K_0 \subseteq K_0(\tilde{\gamma})$ gilt. Mit $\tilde{\gamma}$ liegt auch $\tilde{\gamma}^2 = -3\sqrt[3]{2}$ und damit $\sqrt[3]{2}$ in $K_0(\tilde{\gamma})$, und es folgt $\tilde{\gamma}/\sqrt[3]{2} = \sqrt{-3} \in K_0(\tilde{\gamma})$ und $\zeta \in K_0(\tilde{\gamma})$. Damit ist die Gleichung bewiesen.

Sei nun $V = \operatorname{Gal}(L|K_0)$. Wegen $K_0(\tilde{\gamma}) = L$ gilt $\sigma_1(\tilde{\gamma}) \neq \tilde{\gamma}$ für alle $\sigma_1 \in V \setminus \{\operatorname{id}_L\}$ (denn aus $\sigma_1(\tilde{\gamma}) = \tilde{\gamma}$ folgt bereits $\sigma_1 = \operatorname{id}_L$, weil jedes Element der Galoisgruppe durch das Bild von $\tilde{\gamma}$ festliegt). Der Stabilisator $V_{\tilde{\gamma}}$ ist also trivial, und folglich besteht $V(\tilde{\gamma})$ aus mindestens sechs verschiedenen Elementen. Durch Anwendung der Automorphismen $\rho, \sigma \in V$ sieht man, dass diese durch

$$V(\tilde{\gamma}) \quad = \quad \{\tilde{\gamma} = \sqrt[3]{2}\sqrt{-3} \ , \quad -\sqrt[3]{2}\sqrt{-3} \ , \quad \sqrt[3]{2}\zeta\sqrt{-3} \ , \quad -\sqrt[3]{2}\zeta\sqrt{-3} \ , \quad -\sqrt[3]{2}\zeta^2\sqrt{-3} \ , \quad -\sqrt[3]{2}\zeta^2\sqrt{-3} \}$$

gegeben sind. Mit $V(\tilde{\gamma})$ enthält auch

$$V(\gamma) = \{\sqrt[3]{2}\sqrt{-3} + 10\sqrt{5} , -\sqrt[3]{2}\sqrt{-3} + 10\sqrt{5} , \sqrt[3]{2}\zeta\sqrt{-3} + 10\sqrt{5} , -\sqrt[3]{2}\zeta\sqrt{-3} + 10\sqrt{5} , -\sqrt[3]{2}\zeta\sqrt{-3} + 10\sqrt{5} \}$$

genau sechs verschiedene Elemente. Berücksichtigt man nun noch die Operation von τ , so erhalten für die Bahn von γ unter G die Gleichung $G(\gamma) = V(\gamma) \cup B$ mit

$$B = \{\sqrt[3]{2}\sqrt{-3} - 10\sqrt{5} , -\sqrt[3]{2}\sqrt{-3} - 10\sqrt{5} , \sqrt[3]{2}\zeta\sqrt{-3} - 10\sqrt{5} , -\sqrt[3]{2}\zeta\sqrt{-3} - 10\sqrt{5} , -\sqrt[3]{2}\zeta\sqrt{-3} - 10\sqrt{5} \}.$$

Dabei sind die Menge $V(\gamma)$ und B disjunkt. Denn alle Elemente in $V(\tilde{\gamma})$ sind vom Betrag $\sqrt[3]{2}\sqrt{3}$, und damit kann der Realteil der Elemente in $V(\gamma)$ durch $\geq 10\sqrt{5} - \sqrt[3]{2}\sqrt{3} \geq 20 - 2 \cdot 3 \geq 14$ abgeschätzt werden. Für den Realteil der Elemente aus B dagegen gilt die obere Abschätzung $\leq -10\sqrt{5} + \sqrt[3]{2}\sqrt{3} \leq -20 + 2 \cdot 3 \leq -14$. Insgesamt erhalten wir damit $|G(\gamma)| = |V(\gamma)| + |B| = 6 + 6 = 12$ wie gewünscht.