Aufgabe F20T3A5

Wir betrachten das Polynom $f_1 := x^5 + 10x + 5$ in $\mathbb{Q}[x]$ und definieren induktiv Polynome $f_n(x) := f_1(f_{n-1}(x))$ für $n \in \mathbb{N}$ mit $n \geq 2$. Zeigen Sie, dass die Polynome f_n für alle $n \in \mathbb{N}$ irreduzibel sind. Zeigen Sie dazu folgende Zwischenschritte durch Induktion nach n:

- (a) f_n liegt in $\mathbb{Z}[x]$, und die Klasse von f_n in $\mathbb{Z}/5\mathbb{Z}[x]$ ist durch x^{5^n} gegeben.
- (b) Zeigen Sie, dass die Klasse von $f_n(0)$ in $\mathbb{Z}/25\mathbb{Z}$ nicht verschwindet.

Lösung:

zu (a) Für alle $n \in \mathbb{N}$ sei \bar{f}_n jeweils das Bild von $f_n \in \mathbb{Z}[x]$ in $\mathbb{Z}/5\mathbb{Z}[x]$. Wir beweisen nun die angegebene Aussage durch vollständige Induktion nach n. Das Polynom f_1 ist nach Definition in $\mathbb{Z}[x]$ enthalten und das Bild von f_1 in $\mathbb{Z}/5\mathbb{Z}[x]$ ist gegeben durch $\bar{f}_1 = x^5 + \overline{10}x + \bar{5} = x^5 = x^{5^1}$. Damit ist die Aussage für n = 1 bewiesen. Sei nun $n \in \mathbb{N}$, und setzen wir die Aussage für n voraus. Dann gilt also $f_n \in \mathbb{Z}[x]$ und $\bar{f}_n = x^{5^n}$. Allgemein gilt: Setzt man in ein Polynom $f \in \mathbb{Z}[x]$ ein Polynom $g \in Z[x]$ ein, dann ist f(g(x)) wiederum in $\mathbb{Z}[x]$ enthalten. Daraus folgt $f_{n+1}(x) = f_1(f_n(x)) \in \mathbb{Z}[x]$. Betrachten wir auf beiden Seiten dieser Gleichung das Bild in $\mathbb{Z}/5\mathbb{Z}[x]$, so erhalten wir $\bar{f}_{n+1}(x) = \bar{f}_1(\bar{f}_n(x)) = \bar{f}_n(x)^5 + \overline{10}\bar{f}_n(x) + \overline{5} = \bar{f}_n(x)^5 = (x^{5^n})^5 = x^{5^{n+1}}$. Damit ist die Aussage für n + 1 bewiesen.

zu (b) Hier beweisen wir durch vollständige Induktion über n, dass $f_n(0)$ jeweils zwar durch 5, aber nicht durch 25 teilbar ist. Daraus ergibt sich unmittelbar, dass das Bild von $f_n(0)$ in $\mathbb{Z}/25\mathbb{Z}$ ungleich null ist. Für n=1 ist die Aussage wegen $f_1(0)=5$, $5\mid 5$ und $25\nmid 5$ offenbar erfült. Sei nun $n\in\mathbb{N}$, und setzen wir die Aussage für n voraus. Dann gilt laut Annahme $5\mid f_n(0)$ und $25\nmid f_n(0)$. Nach Definition ist $f_{n+1}(x)=f_1(f_n(x))$ und somit $f_{n+1}(0)=f_1(f_n(0))=f_n(0)^5+10f_n(0)+5$. Wegen $5\mid f_n(0)$ ist $f_n(0)^5$ durch 5^5 und somit erst recht durch 25 teilbar. Aus $5\mid f_n(0)$ und $5\mid 10$ folgt auch $25\mid 10f_n(0)$. Damit gilt insgesamt $f_{n+1}(0)\equiv 5$ mod 25. Dies zeigt, dass auch $f_{n+1}(0)$ zwar durch 5, aber nicht durch 25 teilbar ist.

Die Irreduzibilität von f_n für alle $n \in \mathbb{N}$ folgt nun aus dem Eisenstein-Kriterium. Um nachzuweisen, dass die Voraussetzungen dieses Kriteriums jeweils erfüllt sind, zeigen wir noch durch vollständige Induktion, dass x^{5^n} jeweils der Leitterm von f_n , das Polynom also insbesondere normiert ist. Für f_1 ist dies offenbar erfüllt, der Leitterm ist x^5 . Sei nun $n \in \mathbb{N}$, und setzen wir voraus, dass x^{5^n} der Leitterm von f_n ist. Es ist $f_{n+1} = f_n^5 + 10f_n + 5$. Nach Induktionsvoraussetzung ist f_n vom Grad f_n 0 vom Grad f_n 1 vom Grad f_n 2 vom Grad f_n 3 vom Grad f_n 4 vom Grad f_n 5 vom Grad f_n 6 vom Grad f_n 6 vom Grad f_n 7 vom Grad f_n 8 vom Grad f_n 8 vom Grad f_n 9 vom Grad

Jedes f_n ist also normiert vom Grad 5^n , x^{5^n} ist der Leitterm und 1 der Leitkoeffizient. Weil das Bild von f_n in $\mathbb{Z}/5\mathbb{Z}[x]$ nach Teil (a) gleich x^{5^n} ist, sind alle übrigen Koeffizienten von f_n durch 5 teilbar. Nach Teil (b) ist der konstante Termn $f_n(0)$ aber nicht durch 25 teilbar. Also sind tatsächlich alle Voraussetzungen des Eisenstein-Kriteriums erfüllt.