Aufgabe F20T2A4

- (a) Sei $h:A\to G$ ein surjektiver Gruppenhomomorphismus einer abelschen Gruppe A in eine Gruppe G. Zeigen Sie, dass dann auch G abelsch ist.
- (b) Sei p eine Primzahl, $p \neq 2$. Bestimmen Sie die Anzahl der Nullstellen des Polynoms $f(X) = x^2 + 2x + 1$ in \mathbb{F}_{p^2} und in $\mathbb{Z}/p^2\mathbb{Z}$.
- (c) Man zeige oder widerlege folgende Aussage: Für alle $a, b, c \in \mathbb{N}$ gilt ggT(a, b, c) kgV(a, b, c) = abc.

Hinweis/Kommentar:

Teil (a) ist eine leichte Routineaufgabe. Bei Teil (b) kommt man durch die Körpereingeschaft Es ist aber wichtig zu beachten, dass die Implikation $(\alpha + \bar{1})^2 = 0 \Rightarrow \alpha + \bar{1}$ in $\mathbb{Z}/p^2\mathbb{Z}$ nicht gültig ist, da es sich bei diesem Ring nicht um einen Körper handelt! Um eine Idee zu bekommen, wieviele Nullstellen das Polynom über $\mathbb{Z}/p^2\mathbb{Z}$ haben könnte, betrachten Sie es zunächst über $\mathbb{Z}/p\mathbb{Z}$. Machen Sie sich klar, dass wenn $c + p\mathbb{Z}$ eine Nullstelle in $\mathbb{Z}/p\mathbb{Z}$ ist, das Element $c + p^2\mathbb{Z}$ eine Nullstelle in $\mathbb{Z}/p^2\mathbb{Z}$ ist, für beliebiges $c \in \mathbb{Z}$. Welche Nullstellen in $\mathbb{Z}/p^2\mathbb{Z}$ gibt es dann noch?

Die Aussage in Teil (c) ist falsch. Um sie zu widerlegen, betrachten Sie für a, b, c geeignete Potenzen einer festen Primzahl, zum Beispiel 5. Auf diese Weise findet man schnell ein Gegenbeispiel. Das Ergebnis ist ein wenig überraschend, da die entsprechende Aussage für zwei Zahlen $a, b \in \mathbb{N}$ wahr ist. Dies überprüft man leicht anhand der Primfaktorzerlegung von a und b und den Formeln für ggT und kgV basierend auf der Primfaktorzerlegung.