Aufgabe F20T1A1

Sei K ein Körper und $V=K^{2\times 2}$ der K-Vektorraum der 2×2 -Matrizen über K. Für $A,B\in K^{2\times 2}$ betrachten wir die Abbildung $\Phi:V\to V,\,X\mapsto AXB$. Zeigen Sie:

- (a) Φ ist ein Endomorphismus von V.
- (b) $Spur(\Phi) = Spur(A)Spur(B)$

Lösung:

zu (a) Wir müssen überprüfen, dass durch Φ eine lineare Abbildung $V \to V$ gegeben ist, dass also $\Phi(X_1 + X_2) = \Phi(X_1) + \Phi(X_2)$ und $\Phi(\lambda X_1) = \lambda \Phi(X_1)$ für alle $X_1, X_2 \in V$ und $\lambda \in K$ gegeben ist. Beide Gleichungen ergeben sich unmittelbar aus den bekannten Rechenregeln für Matrizen. Es gilt

$$\Phi(X_1 + X_2) = A(X_1 + X_2)B = A(X_1B + X_2B) = AX_1B + AX_2B = \Phi(X_1) + \Phi(X_2)$$

und $\Phi(\lambda X_1) = A(\lambda X_1)B = A(\lambda(X_1B)) = \lambda(AX_1B) = \lambda\Phi(X_1).$

zu (b) Für $1 \le i, j \le 2$ sei $B_{ij} \in K^{2\times 2}$ jeweils die Basismatrix mit dem Eintrag 1 an der Stelle (i, j) (bei der alle übrigen Einträge gleich null sind), also

$$B_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 , $B_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $B_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Wir berechnen die Spur von Φ , indem wir die Darstellungsmatrix von Φ bezüglich der geordneten Basis $(B_{11}, B_{12}, B_{21}, B_{22})$ des K-Vektorraums V bestimmen. Es gilt

$$\Phi(B_{11}) = AB_{11}B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} \\ a_{21}b_{11} & a_{21}b_{12} \end{pmatrix}$$

$$\Phi(B_{12}) \quad = \quad AB_{12}B \quad = \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \quad = \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{21} & b_{22} \\ 0 & 0 \end{pmatrix} \quad = \quad \begin{pmatrix} a_{11}b_{21} & a_{11}b_{22} \\ a_{21}b_{21} & a_{21}b_{22} \end{pmatrix}$$

$$\Phi(B_{21}) \quad = \quad AB_{21}B \quad = \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \quad = \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ b_{11} & b_{12} \end{pmatrix} \quad = \quad \begin{pmatrix} a_{12}b_{11} & a_{12}b_{12} \\ a_{22}b_{11} & a_{22}b_{12} \end{pmatrix}$$

$$\Phi(B_{22}) \quad = \quad AB_{22}B \quad = \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \quad = \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ b_{21} & b_{22} \end{pmatrix} \quad = \quad \begin{pmatrix} a_{12}b_{21} & a_{12}b_{22} \\ a_{22}b_{21} & a_{22}b_{22} \end{pmatrix}$$

Jede dieser Gleichungen liefert eine Spalte der Darstellungsmatrix; insgesamt ist die Darstellungsmatrix gegeben durch

$$\begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{21} \\ a_{11}b_{12} & a_{11}b_{22} & a_{12}b_{12} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{21} & a_{22}b_{11} & a_{22}b_{21} \\ a_{21}b_{12} & a_{21}b_{22} & a_{22}b_{12} & a_{22}b_{22} \end{pmatrix}$$

Es gilt $\operatorname{Spur}(A) = a_{11} + a_{22}$ und $\operatorname{Spur}(B) = b_{11} + b_{22}$. Die Spur von Φ ist nach Definition gleich der Spur der Darstellungsmatrix, und für diese erhalten wir den Wert

$$a_{11}b_{11} + a_{11}b_{22} + a_{22}b_{11} + a_{22}b_{22} = (a_{11} + a_{22})(b_{11} + b_{22}) = \operatorname{Spur}(A)\operatorname{Spur}(B).$$