Aufgabe F19T1A4 (12 Punkte)

Für ein Polynom $f \in \mathbb{C}[x]$ bezeichne f' die Ableitung und $\deg(f)$ den Grad von f. Ferner sei $n_0(f) \in \mathbb{N}_0$ die Anzahl der verschiedenen Nullstellen von f in \mathbb{C} (also ohne Vielfachheiten gezählt). Zeigen Sie, dass für jedes Polynom $f \in \mathbb{C}[x]$ mit $f \neq 0$ die Gleichung

$$deg(f) = deg(ggT(f, f')) + n_0(f)$$
 gilt.

Lösung:

Allgemein gilt: Ist K ein Körper, $0 \neq f \in K[x]$ und $a \in K$ eine Nullstelle von f der Vielfachheit $r \in \mathbb{N}$, dann ist a eine Nullstelle der Vielfachheit r-1 von f'. Auf Grund der Voraussetzung gilt nämlich $f = (x-a)^r g$ für ein $g \in K[x]$ mit $g(a) \neq 0$. Durch Anwendung der Produktregel erhält man

$$f' = r(x-a)^{r-1}g + (x-a)^rg' = (x-a)^{r-1}(rg + (x-a)g') = (x-a)^{r-1}h$$

mit h = rg + (x - a)g', und es ist $h(a) = rg(a) + (a - a)g' = rg(a) \neq 0$.

Zum Beweis der Gleichung sei nun $f \in \mathbb{C}[x]$ mit $f \neq 0$ vorgegeben. Weil \mathbb{C} algebraisch abgeschlossen ist, zerfällt f in Linearfaktoren. Es gibt somit ein $n \in \mathbb{N}_0$, Elemente $\alpha_1, ..., \alpha_n \in \mathbb{C}$, $e_1, ..., e_n \in \mathbb{N}$ und ein $a \in \mathbb{C}^{\times}$ mit

$$f = a \prod_{i=1}^{n} (x - \alpha_i)^{e_i}$$

wobei jeweils $\alpha_i \neq \alpha_j$ für $1 \leq i < j \leq n$ gilt. Es sind also $\alpha_1, ..., \alpha_n$ die verschiedenen Nullstellen von f und $e_1, ..., e_n$ ihre Vielfachheiten; somit ist $n_0(f) = n$. Weiter ist ggT(f, f') ein Teiler von f; es gibt also $e'_1, ..., e'_n \in \mathbb{N}_0$ mit $0 \leq e'_i \leq e_i$ für $1 \leq i \leq n$ und

$$ggT(f, f') = \prod_{i=1}^{n} (x - \alpha_i)^{e'_i}.$$

Auf Grund unserer Vorüberlegung ist α_i jeweils eine Nullstelle der Vielfachheit e_i-1 von f', für $1 \leq i \leq n$. Da α_i außerdem eine Nullstelle der Vielfachheit e_i von f ist, wird ggT(f, f') von $(x - \alpha_i)^{e_i-1}$, aber nicht von $(x - \alpha_i)^{e_i}$ geteilt. Es gilt also $e'_i = e_i - 1$ für $1 \leq i \leq n$ und somit

$$ggT(f, f') = \prod_{i=1}^{n} (x - \alpha_i)^{e_i - 1}.$$

Insgesamt erhalten wir damit

$$\deg(\operatorname{ggT}(f, f')) + n_0(f) = \deg\left(\prod_{i=1}^n (x - \alpha_i)^{e_i - 1}\right) + n = \sum_{i=1}^n (e_i - 1) + n = \sum_{i=1}^n e_i - n + n = \sum_{i=1}^n e_i = \deg(f).$$