Aufgabe F17T3A4 (12 Punkte)

Sei K ein Körper, $n \ge 1$, und $\mu_A \in K[x]$ das Minimalpolynom einer Matrix $A \in \mathcal{M}_{n,K}$. Sei $f \in K[x]$ ein Polynom, dass zu μ_A teilerfremd ist. Man zeige, dass die Matrix f(A) invertierbar ist.

Lösung:

Weil f und μ_A teilerfremd sind, existieren nach dem Lemma von Bézout Polynome $g, h \in K[x]$ mit $gf + h\mu_A = 1$. Nach Definition des Minimalpolynoms gilt $\mu_A(A) = 0$, somit erhalten wir $g(A)f(A) = h(A) \cdot 0 + g(A)f(A) = h(A)\mu_A(A) + g(A)f(A) = I$, wobei $I \in \mathcal{M}_{n,K}$ die Einheitsmatrix bezeichnet. Dies zeigt, dass f(A) invertierbar und g(A) die Inverse von f(A) ist.