Aufgabe F15T1A3 (6+6 Punkte)

Sei G eine Gruppe der Ordnung 105. Zeigen Sie:

- (a) G hat einen Normalteiler N mit #N = 5 oder #N = 7.
- (b) G ist auflösbar.

Lösung:

zu (a) Die Primfaktorzerlegung der Zahl 105 ist gegeben durch 105 = $3 \cdot 5 \cdot 7$. Für jede Primzahl p sei ν_p die Anzahl der p-Sylowgruppen von G. Auf Grund der Sylowsätze gilt $\nu_7 \mid 3 \cdot 5$, also $\nu_7 \in \{1, 3, 5, 15\}$, und außerdem $\nu_7 \equiv 1 \mod 7$. Wegen $3, 5 \not\equiv 1 \mod 7$ folgt daraus $\nu_7 \in \{1, 15\}$. Ebenso gilt $\nu_5 \in 3 \cdot 7$, also $\nu_5 \in \{1, 3, 7, 21\}$, und außerdem $\nu_5 \equiv 1 \mod 5$. Wegen $3 \not\equiv 1 \mod 5$ und $7 \equiv 2 \not\equiv 1 \mod 5$ folgt daraus $\nu_5 \in \{1, 21\}$.

Nehmen wir nun an, dass G weder einen Normalteiler der Ordnung 5 noch einen Normalteiler der Ordnung 7 besitzt. Jede 5-Sylowgruppe von G hat die Ordnung 5, denn dies ist die höchste Potenz von 5, welche die Gruppenordnung |G|=105 teilt. Wäre $\nu_5=1$, dann wäre auf Grund der Sylowsätze die einzige 5-Sylowgruppe auch ein Normalteiler von G, was aber unserer Annahme widerspricht. Also muss $\nu_5=21$ gelten. Genauso liefert unsere Annahme die Gleichung $\nu_7=15$.

Jedes Element $g \in G$ der Ordnung 5 liegt in genau einer 5-Sylowgruppe, nämlich die von g erzeugte Untergruppe $\langle g \rangle$. Andererseits ist jede 5-Sylowgruppe als Gruppe von Primzahlordnung zyklisch und enthält somit $\varphi(5)=4$ Elemente der Ordnung 5. Die Anzahl der Elemente der Ordnung 5 ist also viermal so groß wie die Anzahl der 5-Sylowgruppen. Es gibt also $4\nu_5=84$ Elemente der Ordnung 5 in G. Genauso kommt man zu dem Ergebnis, dass G genau $6\nu_7=90$ Elemente der Ordnung 7 enthält. Insgesamt würde G also mindestens 84+90=174 Elemente enthalten, was |G|=105 widerspricht. Also war unsere Annahme falsch, und G enthält einen Normalteiler der Ordnung 5 oder einen Normalteiler der Ordnung 7.

zu (b) Wir setzen folgende Tatsachen über auflösbare Gruppen als bekannt voraus: Jede abelsche Gruppe ist auflösbar. Ist G eine beliebige Gruppe und $N \subseteq G$, so ist G auflösbar genau dann, wenn N und G/N auflösbar sind.

Sei nun G eine Gruppe der Ordnung 105. Nach Teil (a) hat G einen Normalteiler N mit $\sharp N=5$ oder $\sharp N=7$. Betrachten wir zunächst den Fall $\sharp N=5$. Als Gruppe von Primzahlordnung ist N zyklisch, damit auch abelsch und auflösbar. Weiter unten wird gezeigt, dass jede Gruppe der Ordnung 21 auflösbar ist. Wegen

$$\sharp (G/N) = \frac{\sharp G}{\sharp N} = \frac{105}{5} = 21$$

ist also auch G/N auflösbar. Aus der Auflösbarkeit von N und G/N folgt die Auflösbarkeit von G. Setzen wir nun $\sharp N=7$ voraus. Dann ist N wiederum auflösbar als Gruppe von Primzahlordnung, außerdem gilt $\sharp (G/N)=\frac{105}{7}=15$. Aus der Vorlesung ist bekannt, dass jede Gruppe der Ordnung 15 zyklisch, und somit ebenfalls auflösbar, ist. (Dies wurde dort mit Hilfe der Sylowsätze gezeigt.) Wiederum folgt die Auflösbarkeit von G aus der Auflösbarkeit von N und G/N.

Es bleibt zu zeigen, dass Gruppen der Ordnung 21 auflösbar sind. Sei also H eine Gruppe der Ordnung 21, und für jede Primzahl p sei μ_p die Anzahl der p-Sylowgruppen von H. Auf Grund der Sylowsätze gilt $\mu_7 \mid 3$, also $\mu_7 \in \{1,3\}$. Zusammen mit $\mu_7 \equiv 1 \mod 7$ folgt wegen $3 \not\equiv 1 \mod 7$ daraus $\mu_7 = 1$. Sei N die einzige 7-Sylowgruppe von H. Dann gilt |N| = 7 (weil dies die größte Potenz von 7 ist, die $\sharp H$ teilt). Als Gruppe von Primzahlordnung ist N zyklisch und somit auch auflösbar. Weil es sich bei $\sharp (H/N) = 3$ um eine Primzahl handelt, ist H/N ebenfalls auflösbar. Auf der Auflösbarkeit von N und H/N folgt die Auflösbarkeit von H.