Aufgabe F13T3A4 (6 Punkte)

- (a) Sei \mathbb{F}_3 der Körper mit drei Elementen. Man bestimme alle normierten, irreduziblen Polynome mit Grad ≤ 2 in $\mathbb{F}_3[x]$.
- (b) Ist $x^4 + 9x^2 2x + 2$ in $\mathbb{Q}[x]$ irreduzibel?

Lösung:

zu (a) Laut Vorlesung ist jedes konstante Polynom ungleich Null in einem Polynom über einem Körper K eine Einheit in K[x], und jedes Polynom vom Grad 1 ist in K[x] irreduzibel. Also sind x, $x + \bar{1}$, $x + \bar{2}$ in $\mathbb{F}_3[x]$ irreduzible Elemente. Ein normiertes Polynom vom Grad 2 in $\mathbb{F}_3[x]$ ist genau dann irreduzibel, wenn es in \mathbb{F}_3 keine Nullstelle besitzt. Ein normiertes Polynom mit konstantem Term $\bar{0}$ hat $\bar{0}$ als Nullstelle und ist somit reduzibel. Die übrigen normierten Polynome in $\mathbb{F}_3[x]$ vom Grad 2 sind

$$x^2 + \bar{1}$$
 , $x^2 + \bar{2}$, $x^2 + x + \bar{1}$, $x^2 + x + \bar{2}$, $x^2 + \bar{2}x + \bar{1}$, $x^2 + \bar{2}x + \bar{2}$.

Die Polynome $x^2 + \bar{2}$, $x^2 + x + \bar{1}$ und $x^2 + \bar{2}x + \bar{1}$ haben $\bar{1}$ als Nullstelle, sind also ebenfalls reduzibel. Die drei übrigen Polynome haben in \mathbb{F}_3 keine Nullstelle und sind damit irreduzibel. Insgesamt sind die normierten, irreduziblen Polynome vom Grad ≤ 2 also gegeben durch

$$x$$
 , $x + \bar{1}$, $x + \bar{2}$, $x^2 + \bar{1}$, $x^2 + x + \bar{2}$, $x^2 + \bar{2}x + \bar{2}$

zu (b) Das Bild von $f = x^4 + 9x^2 - 2x + 2$ in $\mathbb{F}_3[x]$, das man durch Reduktion der Koeffizienten modulo 3 erhält, ist $\bar{f} = x^4 + x + \bar{2}$. Es genügt zu zeigen, dass \bar{f} in $\mathbb{F}_3[x]$ irreduzibel ist, denn dann folgt die Irreduzibilität von f in $\mathbb{Z}[x]$ aus dem Reduktionskriterium, und mit dem Gaußschen Lemma erhalten wir die Irreduzibilität von f in $\mathbb{Q}[x]$.

Ist \bar{f} in $\mathbb{F}_3[x]$ reduzibel, dann hat es wegen $\operatorname{grad}(\bar{f})=4$ entweder in \mathbb{F}_3 eine Nullstelle, oder es ist als Produkt zweier irreduzibler, normierter Polynome $\bar{g}, \bar{h} \in \mathbb{F}_3[x]$ vom Grad 2 darstellbar. (Weil \bar{f} normiert ist, können die Faktoren \bar{g}, \bar{h} ebenfalls normiert gewählt werden.) Das Produkt der konstanten Terme von \bar{g} und \bar{h} muss gleich $\bar{2}$ sein, denn dies ist der konstante Term von \bar{f} . Wegen $\bar{1}^2=\bar{1}$ und $\bar{2}^2=\bar{1}$ ist ausgeschlossen, dass die Faktoren \bar{g} und \bar{h} übereinstimmen. Auf Grund der Ergebnisse von Teil (a) müssen \bar{g} und \bar{h} zwei verschiedene Elemente der Menge

$$\{x^2 + \bar{1}, x^2 + x + \bar{2}, x^2 + \bar{2}x + \bar{2}\}\$$

sein. Weil das Produkt der konstanten Terme $\bar{2}$ sein muss, sind die einzigen möglichen Zerlegungen

$$\bar{f} = (x^2 + \bar{1})(x^2 + x + \bar{2})$$
 oder $\bar{f} = (x^2 + \bar{1})(x^2 + \bar{2}x + \bar{2}).$

Es gilt aber $(x^2 + \bar{1})(x^2 + x + \bar{2}) = x^4 + x^3 + x + \bar{2}$ und $(x^2 + \bar{1})(x^2 + \bar{2}x + \bar{2}) = x^4 + \bar{2}x^3 + \bar{2}x + \bar{2}$, d.h. keines der Produkte stimmt mit \bar{f} überein. Damit ist die Irreduzibilität von \bar{f} nachgewiesen.