Aufgabe F13T1A3 (3+6+6 Punkte)

Sei
$$G = \operatorname{SL}_2(\mathbb{F}_7) = \{ A \in \operatorname{GL}_2(\mathbb{F}_7) \mid \det(A) = 1 \}$$
 und $H = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mid a \in \mathbb{F}_7 \right\}.$

- (a) Zeigen Sie, dass H eine Untergruppe der Ordnung 7 von G ist.
- (b) Zeigen Sie, dass die Gruppe G die Ordnung 336 hat.
- (c) Wie viele Untergruppen der Ordnung 7 gibt es in G?

Lösung:

zu (a) Zunächst überprüfen wir die Untergruppen-Eigenschaft von H. Das Neutralelement von G ist die Einheitsmatrix, und diese ist offenbar in H enthalten (setze a=0). Die Gleichungen

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}$$

und

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Leftrightarrow \qquad \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix}$$

für beliebige $a, b \in \mathbb{F}_7$ zeigen, dass das Produkt zweier Elemente aus H wiederum in H enthalten ist, und dass das Inverse eines Elements aus H wieder in H liegt. Also ist H tatsächlich eine Untergruppe von G. Desweiteren ist

$$\mathbb{F}_7 \longrightarrow H$$
 , $a \mapsto \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$

offenbar eine bijektive Abbildung. Für die Ordnung von H gilt also $|H| = |\mathbb{F}_7| = 7$.

zu (b) Durch $A \mapsto \det(A)$ ist ein Gruppenhomomorphismus $\phi : \operatorname{GL}_2(\mathbb{F}_7) \to \mathbb{F}_7^{\times}$ definiert, denn für jede (invertierbare) Matrix $A \in \operatorname{GL}_2(\mathbb{F}_7)$ ist $\det(A) \neq 0$, und für alle $A, B \in \operatorname{GL}_2(\mathbb{F}_7)$ gilt $\det(AB) = \det(A) \det(B)$. Wegen $A \in \ker(\phi) \Leftrightarrow \phi(A) = 1 \Leftrightarrow \det(A) = 1 \Leftrightarrow A \in G$ gilt $\ker(\phi) = G$. Darüber hinaus ist der Homomorphismus ϕ surjektiv. Ist nämlich $a \in \mathbb{F}_7^{\times}$ vorgegeben, dann ist

$$A = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$$

ein Element von $GL_2(\mathbb{F}_7)$, und es gilt $\phi(A) = \det(A) = a \cdot 1 = a$. Insgesamt sind damit die Voraussetzungen des Homomorphiesatzes erfüllt. Wir erhalten einen Isomorphismus $GL_2(\mathbb{F}_7)/G \cong \mathbb{F}_7^{\times}$. Es folgt $|GL_2(\mathbb{F}_7)|/|G| = |\mathbb{F}_7^{\times}| = 6$ und somit $|G| = \frac{1}{6}|GL_2(\mathbb{F}_7)|$.

Wir bestimmen nun die Ordnung von $GL_2(\mathbb{F}_7)$. Eine 2×2 -Matrix A liegt genau dann in $GL_2(\mathbb{F}_7)$, wenn die beiden Spaltenvektoren $v, w \in \mathbb{F}_7^2$ linear unabhängig sind. Für die Wahl von v gibt es $7^2 - 1 = 48$ Möglichkeiten (alle Vektoren in \mathbb{F}_7^2 außer dem Nullvektor). Ist v bereits gewählt, dann bleiben noch $7^2 - 7 = 42$ Möglichkeiten für die Wahl von w, nämlich alle Vektoren aus $\mathbb{F}_7^2 \setminus \text{lin}(v)$, wobei $\text{lin}(v) = \{\lambda v \mid \lambda \in \mathbb{F}_7\}$ ist. Insgesamt hat $GL_2(\mathbb{F}_7)$ die Ordnung $48 \cdot 42$. Für |G| erhalten wir somit den Wert $\frac{1}{6} \cdot 48 \cdot 42 = 8 \cdot 42 = 336$.

zu (c) Wegen $|G| = 336 = 8 \cdot 42 = 8 \cdot 6 \cdot 7 = 2^4 \cdot 3^1 \cdot 7^1$ sind die Untergruppen der Ordnung 7 von G genau die 7-Sylowgruppen von G. Sei ν_7 deren Anzahl. Auf Grund der Sylowsätze gilt $\nu_7 \mid 2^4 \cdot 3^1$, also $\nu_7 \in \{1, 2, 4, 8, 16, 3, 6, 12, 24, 48\}$, außerdem $\nu_7 \equiv 1 \mod 7$. Wegen $1, 2, 3, 4, 6 \not\equiv 1 \mod 7$, $12 \equiv 5 \not\equiv 1 \mod 7$, $16 \equiv 2 \not\equiv 1 \mod 7$, $24 \not\equiv 3 \not\equiv 1 \mod 7$ und $24 \equiv 6 \not\equiv 1 \mod 7$ folgt $24 \not\equiv 1 \mod 7$.

Wir haben in Teil (a) bereits festgestellt, dass H eine Untergruppe der Ordnung 7 von G ist. Wenn wir nun zumindest eine weitere Untergruppe der Ordnung 7 in G angeben können, so folgt $\nu_7 = 8$. Dazu betrachten wir die Teilmenge $H' \subseteq G$ gegeben durch

$$H' = \left\{ \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \mid a \in \mathbb{F}_7 \right\}$$

Jede Matrix in H' hat Determinante 1, also ist H' tatsächlich in G enthalten. Für alle $a, b \in \mathbb{F}_7$ gilt

$$\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a+b & 1 \end{pmatrix}$$

und

$$\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -a & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Leftrightarrow \qquad \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}^{-1} = \qquad \begin{pmatrix} 1 & 0 \\ -a & 1 \end{pmatrix}$$

und außerdem ist durch

$$\mathbb{F}_7 \longrightarrow H' \qquad , \qquad a \mapsto \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$$

wiederum eine Bijektion gegeben. Dies zeigt, dass H' eine von H verschiedene Untergruppe von G der Ordnung 7 ist. Es gilt also $\nu_7 = 8$, und 8 ist die genaue Anzahl der Untergruppen der Ordnung 7 von G.