Aufgabe H10T2A2

Eine echte Untergruppe U einer Gruppe G wird maximal genannt, wenn G die einzige Untergruppe von G ist, die U echt enthält. Zeigen Sie, dass für $n \geq 4$ jede maximale Untergruppe U von S_n mindestens n Elemente enthält.

Hinweis: Unterscheiden Sie die Fälle, in denen U transitiv bzw. nicht transitiv auf $M_n = \{1, ..., n\}$ operiert.

Lösung:

Operiert U auf M_n transitiv, dann ist die Bahnlänge |U(1)| gleich n. Bezeichnet U_1 die Stabilisatorgruppe von 1, dann gilt $|U| \ge (U:U_1) \ge |U(1)| = n$. Betrachten wir nun den Fall, dass U auf M_n nicht transitiv operiert. Seien $A_1, ..., A_k$ die verschiedenen Bahnen der Operation von U auf M_n . Nach Voraussetzung ist $k \ge 2$. Wir definieren

$$A = A_1$$
 und $B = \bigcup_{i=2}^k A_i$.

Weil jede Bahn unter der Operation von U erhalten bleibt, gilt $\sigma(A) = A$ und $\sigma(B) = B$ für alle $\sigma \in U$. Damit ist U in der Untergruppe $V = \{\sigma \in S_n \mid \sigma(A) = A \text{ und } \sigma(B) = B\}$ enthalten. Weil U maximal ist, muss U = V gelten. Um die Größe von V zu bestimmen, zeigen wir, dass die Abbildung

$$\phi: V \longrightarrow \operatorname{Per}(A) \times \operatorname{Per}(B)$$
 , $\sigma \mapsto (\sigma|_A, \sigma|_B)$

ein Gruppen-Isomorphismus ist. Für alle $\sigma, \tau \in V$ gilt wegen $\sigma(A) = A$, $\tau(A) = A$ die Gleichung $(\sigma \circ \tau)|_A = \sigma|_A \circ \tau|_A$, und aus $\sigma(B) = B$, $\tau(B) = B$ folgt ebenso $(\sigma \circ \tau)|_B = \sigma|_A \circ \tau|_A$. Wir erhalten somit

$$\phi(\sigma \circ \tau) = ((\sigma \circ \tau)|_A, (\sigma \circ \tau)_B) = (\sigma|_A \circ \tau|_A, \sigma|_B \circ \tau|_B) = (\sigma|_A, \sigma|_B)(\tau|_A, \tau|_B) = \phi(\sigma)\phi(\tau).$$

Dies zeigt, dass ϕ ein Homomorphismus ist. Gilt $\phi(\sigma) = (\mathrm{id}_A, \mathrm{id}_B)$, dann gilt $\sigma|_A = \mathrm{id}_A$ und $\sigma|_B = \mathrm{id}_B$, und aus $A \cup B = M_n$ folgt $\sigma = \mathrm{id}_{M_n}$. Also ist ϕ injektiv. Ist $(\rho, \tau) \in \mathrm{Per}(A) \times \mathrm{Per}(B)$ vorgegeben, dann ist durch

$$\sigma(x) = \begin{cases} \rho(x) & \text{falls } x \in A \\ \tau(x) & \text{falls } x \in B \end{cases}$$

ein Element aus V gegeben, und es gilt $\phi(\sigma)=(\sigma|_A,\sigma|_B)=(\rho,\tau)$. Damit ist der Nachweis der Isomorphismus-Eigenschaften von ϕ abgeschlossen. Es folgt $|U|=|V|=|\operatorname{Per}(A)||\operatorname{Per}(B)|=k!(n-k)!$. Wir zeigen nun, dass diese Zahl durch $\geq n$ abgeschätzt werden kann, wobei wir zunächst den Fall $k\in\{1,n-1\}$ betrachten. In diesem Fall ist $k!(n-k)!=(n-1)!\geq (n-1)(n-2)$. Durch die Umformungen

$$(n-1)(n-2) \ge n \quad \Leftrightarrow \quad n^2 - 3n + 2 \ge n \quad \Leftrightarrow \quad n^2 - 4n + 2 \ge 0$$

$$\Leftrightarrow \quad n^2 - 4n + 4 \ge 2 \quad \Leftrightarrow \quad (n-2)^2 \ge 2 \quad \Leftrightarrow \quad n \ge 4$$

sieht man, dass die Ungleichung $(n-1)! \ge n$ für $n \ge 4$ erfüllt ist. Betrachten wir nun den Fall $2 \le k \le n-k$. Für beliebige natürliche Zahlen $a,b \ge 2$ gilt allgemein $ab \ge a+b$. Setzen wir nämlich o.B.d.A. $a \ge b$ voraus, dann folgt $ab \ge 2a \ge a+b \ge a+b$. Wenden wir dies auf a=k und b=n-k an, dann erhalten wir $k!(n-k)! \ge k(n-k) \ge k+(n-k)=n$ wie gewünscht.