Aufgabe H05T2A2

Sei G eine endliche Gruppe. Zeigen Sie:

- (a) Ist die Automorphismengruppe Aut(G) von G zyklisch, dann ist G abelsch.
- (b) Ist |Aut(G)| = 2, dann ist G zyklisch von Ordnung 3, 4 oder 6.

Lösung:

zu (a) Aus der Vorlesung ist bekannt, dass für jedes $g \in G$ die Konjugationsabbildung $c_g : G \to G$, $h \mapsto ghg^{-1}$ einen Automorphismus von G definiert, und dass die Zuordnung $\phi : G \to \operatorname{Aut}(G)$ einen Gruppenhomomorphismus ist. Der Kern von ϕ ist genau das Zentrum Z(G) von G: Für alle $g \in G$ gilt $c_g = \phi(g) = \operatorname{id}_G$ genau dann, wenn $ghg^{-1} = c_g(h) = h \Leftrightarrow gh = gh$ für alle $h \in G$ erfüllt ist. Die Gültigkeit von gh = hg für alle $h \in G$ ist äquivalent dazu, dass g im Zentrum Z(G) liegt. Nach dem Homomorphiesatz induziert ϕ einen injektiven Homomorphismus $\bar{\phi} : G/Z(G) \to \operatorname{Aut}(G)$. Die Faktorgruppe G/Z(G) ist also isomorph zu einer Untergruppe von $\operatorname{Aut}(G)$. Ist nun $\operatorname{Aut}(G)$ zyklisch, dann gilt dasselbe für G/Z(G), denn die Untergruppe einer zyklischen Gruppe ist zyklisch. Aus der Vorlesung ist außerdem bekannt, dass jede Gruppe G mit der Eigenschaft, dass G/Z(G) zyklisch ist, eine abelsche Gruppe ist.

zu (b) Als Gruppe der Ordnung 2 ist $\operatorname{Aut}(G)$ zyklisch, und nach Teil (a) ist G damit jedenfalls eine abelsche Gruppe. Als endliche, abelsche Gruppe ist G isomorph zu einem Produkt $C_{m_1} \times ... \times C_{m_r}$ mit $r, m_1, ..., m_r \in \mathbb{N}$, wobei wir $m_1 \geq ... \geq m_r \geq 2$ voraussetzen können und C_m jeweils die zyklische Gruppe der Ordnung m bezeichnet. Aus der Vorlesung ist bekannt, dass $|\operatorname{Aut}(C_m)| = \varphi(m)$ gilt, wobei φ die Eulersche φ -Funktion bezeichnet. Ist $\alpha_i \in \operatorname{Aut}(C_i)$ für $i \in \{1, ..., r\}$, dann ist

$$(g_1, ..., g_r) \mapsto (\alpha_1(g_1), ..., \alpha_r(g_r))$$

ein Automorphismus von $C_{m_1} \times ... \times C_{m_r}$. Daraus folgt $|\operatorname{Aut}(G)| \geq \prod_{i=1}^r \varphi(m_i)$.

Betrachten wir nun zunächst den Fall, dass G nicht zyklisch, also $r \geq 2$ ist. Die Zahlen 1,2 sind die einzigen Zahlen $m \in \mathbb{N}$ mit $\varphi(m) = 1$. Gilt $m_{r-1} \geq m_r \geq 3$, dann folgt $\varphi(m_{r-1}), \varphi(m_r) \geq 2$, und Aut(G) wäre mindestens vierelementig, im Widerspruch zur Voraussetzung. Es gibt also ein $s \in \mathbb{N}$ mit $G \cong C_2^s$ oder $G \cong C_2^s \times C_3$. Jeder \mathbb{F}_2 -Vektorraum-Automorphismus von \mathbb{F}_2^s ist auch ein Automorphismus der Gruppe $(C_2^s, +)$. Darüber hinaus erhalten wir für jeden solchen Automorphismus durch $(g, h) \mapsto (\alpha(g), h)$ auch einen Automorphismus der Gruppe $C_2^s \times C_3$. In beiden Fällen gilt also

$$|\operatorname{Aut}(G)| \ge |\operatorname{GL}_s(\mathbb{F}_2)| \ge (2^s - 1)(2^s - 2).$$

Dabei kommt die Abschätzung der Ordnung von $GL_s(\mathbb{F}_2)$ dadurch zu Stande, dass es für die Wahl der ersten Spalte einer Matrix $A \in GL_2(\mathbb{F}_2)$ genau $2^s - 1$ und für die Wahl der zweiten Spalte genau $2^s - 2$ Möglichkeiten gibt. Für $s \geq 2$ wäre bereits $|\operatorname{Aut}(G)| \geq 3 \cdot 2 = 6$, so dass dieser Fall ausgeschlossen werden kann. Im Fall $G \cong C_2 \times C_3$ wäre G isomoroph zu G (nach dem Chinesischen Restsatz, weil 2 und 3 teilerfremd sind) und damit zyklisch. Damit haben wir gezeigt, dass G unter der Voraussetzung $|\operatorname{Aut}(G)| = 2$ eine zyklische Gruppe sein muss.

Gehen wir nun davon aus, dass G zyklisch ist, also $G\cong C_m$ für ein $m\in\mathbb{N}$. Sei $m=\prod_{i=1}^r p_i^{e_i}$ die Primfaktorzerlegung von m, mit verschiedenen Primzahlen $p_1,...,p_r$ und $e_1,...,e_r\in\mathbb{N}$. Dann gilt $|\mathrm{Aut}(G)|=\varphi(m)=\prod_{i=1}^r \varphi(p_i^{e_i})$. Wäre $p_i\geq 5$ für eine der Primzahlen, dann würde $|\mathrm{Aut}(G)|\geq \varphi(p_i)\geq 4$ folgen, was ausgeschlossen ist. Also kommen in der Primfaktorzerlegung nur die Primzahlen 2 und 3 vor, d.h. es gilt $m=2^e3^f$ mit $e,f\in\mathbb{N}$. Wegen $\varphi(2^e)=2^{e-1}$ und $\varphi(3^f)=2\cdot 3^{f-1}$ muss $e\leq 2$ und $f\leq 1$ gelten. Damit bleiben für (e,f) nur die sechs Möglichkeiten (0,0), (1,0), (2,0), (0,1), (1,1), (2,1), für m also nur die Möglichkeiten 1,2,4,3,6,12. Einsetzen zeigt, dass 3,4 und 6 die einzigen Zahlen mit $\varphi(m)=2$ sind. Also ist G eine zyklische Gruppe der Ordnung 3,4 oder 6.