Analysis mehrerer Variablen

— Lösung Blatt 9 —

(Tutoriumsblatt)

Aufgabe 0

zu (a) Jede einelementige Menge $\{x\}$ von X ist zusammenhängend, denn es gibt keine Zerlegung von $\{x\}$ in zwei disjunkte nichtleere Mengen, erst recht keine Zerlegung in zwei in $\{x\}$ relativ offene disjunkte nichtleere Mengen. Auch für die leere Menge gibt es offenbar keine solche Zerlegung, also ist auch sie zusammenhängend. Sei nun $A\subseteq X$ eine Teilmenge mit mindestens zwei Elementen und $a\in A$. Laut Vorlesung ist jede Teilmenge von X offen und damit erst recht relativ offen in A. Daraus folgt, dass durch $U=\{a\}$ und $V=A\setminus\{a\}$ eine Zerlegung von A in disjunkte, nichtleere, in A relativ offene Teilmengen gegeben ist.

zu (b) Wäre $\{0,1\}$ wegzusammenhängend in \mathbb{R} , dann gäbe es eine stetige Abbildung $\gamma:[0,1]\to\mathbb{R}$ mit $\gamma(0)=0,\ \gamma(1)=1$ und $\gamma(t)\in\{0,1\}$ für alle $t\in[0,1]$. Auf Grund des Zwischenwertsatzes müsste ein $t_0\in[0,1[$ mit $\gamma(t_0)=\frac{1}{2}$ existieren. Aber wegen $\frac{1}{2}\notin\{0,1\}$ steht dies im Widerspruch zu $\gamma(t)\in\{0,1\}$ für alle $t\in[0,1]$.

zu (c) Man erhält die partielle Ableitung nach x, dem man y und z als Konstanten ansieht und nach x ableitet. Weil $\frac{y}{z}$ als konstanter Faktor angesehen werden kann und die Ableitung von x nach x gleich 1 ist, erhält man also $\frac{\partial f}{\partial x}(x,y,z)=\frac{y}{z}$. Genauso findet man auch die Ableitungen $\frac{\partial f}{\partial y}(x,y,z)=\frac{x}{z}$ und $\frac{\partial f}{\partial z}(x,y,z)=-\frac{xy}{z^2}$.

zu (d) Man verwendet die Hilfsfunktion $\phi(t) = A + tE^{(2)}$. Die Funktion det $\circ \phi$ ist dann gegeben durch

$$(\det \circ \phi)(t) = \det(A + tE^{(2)}) = \det\begin{pmatrix} 1+t & 2\\ 3 & 4+t \end{pmatrix} = (1+t)(4+t) - 2 \cdot 3$$
$$= 4+4t+t+t^2-6 = t^2+5t-2$$

mit der Ableitung $(\det \circ \phi)'(t) = 2t + 5$. Es gilt also $\partial_{E^{(2)}} \det(A) = (\det \circ \phi)'(0) = 5$.

Aufgabe 1

zu (a) Seien $p, q \in A_1$ vorgegeben, mit p = (x, y) und q = (u, v). Zu zeigen ist, dass die Verbindungsstrecke $[p, q] = \{(1 - t)p + tq \mid t \in [0, 1]\}$ ganz in A_1 enthalten ist. Für jedes $t \in [0, 1]$ gilt (1 - t)p + tq = ((1 - t)x + tu, (1 - t)y + tv). Wegen $p, q \in A_1$ gilt x, u > 0 und somit (1 - t)x + tu > 0, weil die Zahlen 1 - t und t beide ≥ 0 und mindestens eine der beiden positiv ist. Ebenso gilt y, v > 0 und somit (1 - t)y + tv > 0. Insgesamt erhalten wir $(1 - t)p + tq \in A_1$, und damit ist $[p, q] \subseteq A_1$ nachgewiesen.

Seien nun $p,q\in A_2$ vorgegeben, mit p=(x,y) und q=(u,v). Zu zeigen ist, dass $[p,q]=\{(1-t)p+tq\mid t\in [0,1]\}$ ganz in A_2 liegt. Für jedes $t\in [0,1]$ gilt (1-t)p+tq=((1-t)x+tu,(1-t)y+tv). Wegen $p,q\in A_2$ gilt x,u<0 und somit (1-t)x+tu<0. Aus $p,q\in A_2$ folgt außerdem y,v>0 und somit (1-t)y+tv>0. Insgesamt erhalten wir $(1-t)p+tq\in A_2$. Damit ist $[p,q]\subseteq A_2$ gezeigt.

zu (b) Die Abbildungen $\pi_1: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x$ und $\pi_2: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto y$ sind stetig. Da \mathbb{R}^+ eine offene Teilmenge von \mathbb{R} ist, sind $\pi_1^{-1}(\mathbb{R}^+)$ und $\pi_2(\mathbb{R}^+)$ somit offene Teilmengen von \mathbb{R}^2 . Es gilt $A_1 = \pi_1^{-1}(\mathbb{R}^+) \cap \pi_2^{-1}(\mathbb{R}^+)$ wegen

$$(x,y) \in \pi_1^{-1}(\mathbb{R}^+) \cap \pi_2^{-1}(\mathbb{R}^+) \quad \Leftrightarrow \quad (x,y) \in \pi_1^{-1}(\mathbb{R}^+) \wedge \pi_2^{-1}(\mathbb{R}^+) \quad \Leftrightarrow \quad \pi_1(x,y) \in \mathbb{R}^+ \wedge \pi_2(x,y) \in \mathbb{R}^+ \quad \Leftrightarrow \quad x > 0 \wedge y > 0 \quad \Leftrightarrow \quad (x,y) \in A_1.$$

Also ist A_1 als Durchschnitt zweier offener Mengen eine offene Teilmenge von \mathbb{R}^2 . Wegen $A_1 \subseteq A$ gilt $A_1 = A \cap A_1$. Nach (2.65) ist A_1 somit auch relativ offen in A.

Die Menge $B_1 = \{(x, y) \in \mathbb{R}^2 \mid x, y \geq 0\}$ ist abgeschlossen in \mathbb{R}^2 . Denn $\mathbb{R}_+ = [0, +\infty[$ ist als abgeschlossenes Intervall eine abgeschlossene Teilmenge von \mathbb{R} , und auf Grund der Stetigkeit von π_1 und π_2 sind $\pi_1^{-1}(\mathbb{R}_+)$ und $\pi_2^{-1}(\mathbb{R}_+)$ abgeschlossene Teilmengen von \mathbb{R}^2 . Wegen

$$(x,y) \in \pi_1^{-1}(\mathbb{R}_+) \cap \pi_2^{-1}(\mathbb{R}_+) \quad \Leftrightarrow \quad (x,y) \in \pi_1^{-1}(\mathbb{R}_+) \wedge \pi_2^{-1}(\mathbb{R}_+) \quad \Leftrightarrow \quad \pi_1(x,y) \in \mathbb{R}_+ \wedge \pi_2(x,y) \in \mathbb{R}_+ \quad \Leftrightarrow \quad x \ge 0 \wedge y \ge 0 \quad \Leftrightarrow \quad (x,y) \in B_1$$

gilt $B_1 = \pi_1^{-1}(\mathbb{R}_+) \cap \pi_2^{-1}(\mathbb{R}_+)$, also ist B_1 als Durchschnitt zweier abgeschlossener Teilmengen selbst eine abgeschlossene Teilmenge von \mathbb{R}^2 . Offenbar gilt $B_1 \cap A_i = \emptyset$ für i = 2, 3, 4. Es folgt $B_1 \cap A = B_1 \cap (A_1 \cup A_2 \cup A_3 \cup A_4) = A_1$, und dies zeigt, dass A_1 in A relativ abgeschlossen ist. (Alternativ könnte man auch argumentieren, dass A_2, A_3, A_4 wie A_1 relativ offen in A sind und somit A_1 als Komplement von $A_2 \cup A_3 \cup A_4$ in A relativ abgeschlossen.)

zu (c) Bei A_1 handelt es sich um eine von \varnothing und von A verschiedene Teilmenge von A, die sowohl relativ offen als auch relativ abgeschlossen in A ist. Nach Prop. (6.2) folgt daraus, dass A nicht zusammenhängend ist.

Aufgabe 2

zu (a) Sei $(x^{(n)}, y^{(n)})_{n \in \mathbb{N}}$ eine Folge in \mathbb{R}^2 , die gegen (0,0) konvergiert. Zu zeigen ist $\lim_n f(x^{(n)}, y^{(n)}) = f(0,0) = 0$. Sei dazu $\varepsilon \in \mathbb{R}^+$ vorgegeben. Ist $n \in \mathbb{N}$ und $x^{(n)} \neq 0$, dann gilt

$$|f(x^{(n)}, y^{(n)})| = \frac{|(x^{(n)})^2 y^{(n)}|}{(x^{(n)})^2 + (y^{(n)})^2} = \frac{|y^{(n)}|}{1 + |\frac{x^{(n)}}{y^{(n)}}|^2} \le |y^{(n)}|.$$

Ist $x^{(n)} = 0$, dann gilt $f(x^{(n)}, y^{(n)}) = 0$. Also ist in jedem Fall $|f(x^{(n)}, y^{(n)})| \le |y^{(n)}|$ erfüllt.

Wegen $\lim_n (x^{(n)}, y^{(n)}) = (0, 0)$ gilt insbesondere $\lim_n y^{(n)} = 0$. Also existiert ein $N \in \mathbb{N}$ mit $|f(x^{(n)}, y^{(n)})| \le |y^{(n)}| < \varepsilon$ für alle $n \ge N$. Damit ist $\lim_n f(x^{(n)}, y^{(n)}) = 0$ nachgewiesen.

zu (b) Sei $v = (a, b) \in \mathbb{R}^2$ vorgegeben und $\phi : \mathbb{R} \to \mathbb{R}^2$ die Hilfsfunktion $\phi(t) = (ta, tb)$. Zunächst setzen wir $v \neq (0, 0)$ voraus. Für jedes $t \neq 0$ ist

$$(f\circ\phi)(t) \quad = \quad f(ta,tb) \quad = \quad \frac{t^3a^2b}{t^2(a^2+b^2)} \quad = \quad \frac{ta^2b}{a^2+b^2}.$$

Wegen f(0,0) = 0 ist diese Gleichung auch für t = 0 gültig. Es folgt $(f \circ \phi)'(t) = \frac{a^2b}{a^2+b^2}$ für alle $t \in \mathbb{R}$ und somit $\partial_v f(0,0) = (f \circ \phi)'(0) = \frac{a^2b}{a^2+b^2}$.

Ist v = (0,0), dann gilt $\phi(t) = (0,0)$ für alle $t \in \mathbb{R}$ und somit $(f \circ \phi)(t) = f(0,0) = 0$ für alle $t \in \mathbb{R}$. Es folgt $(f \circ \phi)'(t) = 0$ für alle $t \in \mathbb{R}$, also $\partial_v f(0,0) = (f \circ \phi)'(0) = 0$.

Aufgabe 3

Seien $w, z \in \mathbb{C}$ beliebig vorgegeben und w = u + iv, z = x + iy die Zerlegung in Real- und Imaginärteil. Sei $\phi : \mathbb{R} \to \mathbb{C}$ die Hilfsfunktion $\phi(t) = z + tw$. Dann gilt für alle $t \in \mathbb{R}$ jeweils

$$(f \circ \phi)(t) = f(z+tw) = f((x+iy)+t(u+iv)) = f((x+tu)+i(y+tv))$$
$$= |(x+tu)+i(y+tv)|^2 = (x+tu)^2 + (y+tv)^2.$$

Durch Anwendung der Kettenregel erhalten wir $(f \circ \phi)'(t) = 2u(x+tu) + 2v(y+tv)$ für alle $t \in \mathbb{R}$. Die Richtungsableitung ist also gegeben durch $\partial_w f(z) = (f \circ \phi)'(0) = 2ux + 2vy$.