Analysis mehrerer Variablen

— Blatt 7 —

(Tutoriumsblatt)

Aufgabe 0 (Vorbereitung auf das Tutorium)

- (a) Seien V und W normierte \mathbb{R} -Vektorräume. Wie sind $\mathcal{L}(V,W)$ und die Operatornorm auf $\mathcal{L}(V,W)$ definiert?
- (b) Sei $\phi_A: \mathbb{R}^3 \to \mathbb{R}^3$, $v \mapsto Av$ die lineare Abbildung gegeben durch die Matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.$$

Was ist die Operatornorm von ϕ_A , wenn auf \mathbb{R}^3 die $\|\cdot\|_{\infty}$ -Norm zu Grunde gelegt wird?

- (c) Wenn U, V Teilmengen eines metrischen Raums sind, U offen ist und $V \supseteq U$ gilt, ist dann V immer auch eine offene Teilmenge?
- (d) Sei (X, d) ein metrischer Raum und $f: X \to \mathbb{R}$ eine stetige Abbildung, wobei auf \mathbb{R} die Standard-Metrik zu Grunde gelegt wird. Wie kann man mit Hilfe von f die Offenheit von Teilmengen $U \subseteq X$ nachweisen?
- (e) Wenn $f: X \to Y$ eine stetige Abbildung zwischen metrischen Räumen und $A \subseteq X$ eine offene Teilmenge von X ist, ist dann die Bildmenge f(A) immer offen?

Aufgabe 1

- (a) Sei (X, d_X) ein metrischer Raum. Zeigen Sie, dass eine Teilmenge $U \subseteq X$ genau dann offen ist, wenn für jedes $x \in U$ ein $n \in \mathbb{N}$ mit $\bar{B}_{1/n}(x) \subseteq U$ existiert.
- (b) Zeigen Sie anhand eines konkreten Gegenbeispiels, dass der Durchschnitt einer unendlichen Familie offener Teilmengen eines metrischen Raums im Allgemeinen nicht offen ist.

Aufgabe 2

- (a) Geben Sie eine stetige Abbildung $f: \mathbb{R}^2 \to \mathbb{R}$ und eine offene Teilmenge $V \subseteq \mathbb{R}$ an, so dass $f^{-1}(V) =]-1, 3[\times \mathbb{R}$ erfüllt ist.
- (b) Zeigen Sie mit Hilfe der Stetigkeit von f, dass die Menge $U=\{(x,y)\in\mathbb{R}^2\mid -1< x<3\ ,\ x^2+y^2<3\} \text{ eine offene Teilmenge von }\mathbb{R}^2 \text{ ist.}$
- (c) Zeigen Sie, dass $\{(x,y) \in \mathbb{R}^2 \mid \sin(x) < y < \cos(x)\}$ eine offene Teilmenge von \mathbb{R}^2 ist.

Aufgabe 3

Sei V der \mathbb{R} -Vektorraum der stetigen Funktionen $[-1,1] \to \mathbb{R}$ versehen mit der Supremumsnorm $||f||_{\infty} = \sup\{ |f(x)| \mid x \in [-1,1] \}$. Wir betrachten die Abbildung $\phi : V \to \mathbb{R}$ gegeben durch

$$\phi(f) = \int_{-1}^{1} f(x) dx$$
 für alle $f \in V$.

- (a) Zeigen Sie, dass die Abbildung ϕ linear ist.
- (b) Weisen Sie nach, dass ϕ stetig ist, und bestimmen Sie die Operatornorm von ϕ .

Dieses Blatt wird vom 6. bis zum 10. Dezember im Tutorium bearbeitet.

Analysis mehrerer Variablen

— Blatt 7 —

(Globalübungsblatt)

Aufgabe 1 (6+4 Punkte)

- (a) Zeigen Sie, dass eine Teilmenge $U \subseteq \mathbb{R}^2$ genau dann Umgebung eines Punktes $(x,y) \in \mathbb{R}^2$ ist, wenn $a,b,c,d \in \mathbb{R}$ mit $a < x < b,\ c < y < d$ und $]a,b[\times]c,d[\subseteq U$ existieren. (Dabei sei die Offenheit einer Menge und der Umgebungsbegriff bezüglich einer beliebigen Norm auf \mathbb{R}^2 definiert.)
- (b) Seien $U, V \subseteq \mathbb{R}$ offene Teilmengen von \mathbb{R} . Zeigen Sie, dass dann $U \times V$ eine offene Teilmenge von \mathbb{R}^2 ist.

Aufgabe 2 (4+6 Punkte)

- (a) Zeigen Sie, dass $A = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le 1, x^2 + y^2 \le (1 z)^2\}$ in \mathbb{R}^3 abgeschlossen ist.
- (b) Bestimmen Sie die Menge der inneren Punkte von A.

Anleitung: Zeigen Sie zunächst, dass $B = \{(x, y, z) \in \mathbb{R}^3 \mid 0 < z < 1 \ , \ x^2 + y^2 < (1 - z)^2\}$ eine offene Teilmenge von \mathbb{R}^3 ist, und begründen Sie, dass die Elemente von B alles innere Punkte von A sind.

Aufgabe 3 (2+8 Punkte)

Sei V der \mathbb{R} -Vektorraum der stetigen Funktionen $[0,1] \to \mathbb{R}$ versehen mit der Supremumsnorm $||f||_{\infty} = \sup\{|f(x)| \mid x \in [0,1]\}$. Wir betrachten die Abbildung $\phi: V \to V$ gegeben durch

$$\phi(f)(x) = \int_0^x f(t) dt$$
 für $x \in [0,1]$ und $f \in V$.

(Dass die Funktion $\phi(f)$ für jedes $f \in V$ wieder in V liegt, folgt aus dem Hauptsatz der Differential- und Integralrechnung und braucht hier nicht gezeigt werden.)

- (a) Zeigen Sie, dass die Abbildung ϕ linear ist.
- (b) Weisen Sie nach, dass ϕ stetig ist, und bestimmen Sie die Operatornorm von ϕ .

Abgabe: Freitag, 17. Dezember 2021, 10:15 Uhr

Verspätete Abgaben können aus organisatorischen Gründen leider nicht nachträglich angenommen werden. Bitte geben Sie auf jeder Abgabe die Nummer Ihrer Übungsgruppe an.