Lineare Algebra

— Blatt 13 —

(Tutoriumsblatt)

Aufgabe 0 (Vorbereitung auf das Tutorium)

- (a) Wie sind die Eigenwerte und die Eigenvektoren eines Endomorphismus $\phi: V \to V$ definiert (wobei V einen K-Vektorraum bezeichnet)?
- (b) Was sind die Eigenwerte des Endomorphismus id_V von V?
- (c) Warum ist es sinnvoll, den Nullvektor 0_V bei der Eigenwertdefinition auszuschließen?
- (d) Geben Sie einen Endomorphismus des \mathbb{R} -Vektorraums \mathbb{R}^3 mit Eigenwert 0 an.
- (e) Wenn ϕ ein injektiver Endomorphismus von \mathbb{R}^3 ist, kann 0 dann Eigenwert von ϕ sein?

Aufgabe 1

Sei $n \in \mathbb{N}$, K ein Körper, und seien $A, B \in \mathcal{M}_{n,K}$ zueinander ähnliche Matrizen.

- (a) Beweisen Sie die Gleichung det(A) = det(B).
- (b) Zeigen Sie, dass A und B dieselben Eigenwerte haben.
- (c) Zeigen Sie: Ist A invertierbar und $\lambda \in K$ ein Eigenwert von A, dann ist $\lambda \neq 0$, und λ^{-1} ist ein Eigenwert von A^{-1} .

Aufgabe 2

Das charakteristische Polynom einer Matrix $A \in \mathcal{M}_{n,K}$ ist gegeben durch $\chi_A = \det(xE^{(n)} - A)$. In der Vorlesung wird gezeigt, dass die Nullstellen von χ_A in K genau die Eigenwerte von A sind. Wir betrachten nun über $K = \mathbb{R}$ die Matrix

$$A = \begin{pmatrix} 3 & 0 & 2 \\ -8 & -1 & 4 \\ 4 & 0 & -3 \end{pmatrix}.$$

- (a) Berechnen Sie χ_A , und bestimmen Sie alle reellen Eigenwerte von A. (Zumindest die erste Nullstelle von χ_A muss durch probeweises Einsetzen ermittelt werden.)
- (b) Bestimmen Sie für jeden Eigenwert λ von A eine Basis von Eig (A, λ) .

Aufgabe 3

Seien $a, b \in \mathbb{R}$ mit $b \neq 0$. Wir betrachten die Matrix

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathcal{M}_{2,\mathbb{R}}.$$

- (a) Zeigen Sie, dass A keine reellen Eigenwerte besitzt, und bestimmen Sie die komplexen Eigenwerte.
- (b) Bestimmen Sie für jeden komplexen Eigenwert je einen Eigenvektor in \mathbb{C}^2 .
- (c) Bestimmen Sie eine Matrix $T \in GL_2(\mathbb{C})$, so dass $T^{-1}AT$ eine Diagonalmatrix ist, und begründen Sie, dass keine solche Matrix in $GL_2(\mathbb{R})$ existiert.

Dieses Blatt wird vom 12. bis zum 16. Juli im Tutorium bearbeitet.