Darstellung von MaBen als Integral

Definition (8.16)

Sei f : Q — R, eine nicht-negative Funktion. Dann bezeichnen wir
die Menge

Ar = {(xy)eQxR|0<y < f(x)}

als Teilmenge unter dem Funktionsgraphen von f.

.

Eine nicht-negative Funktion f : Q — R ist genau dann
a/-messbar, wenn Af € o7 @ %' erfiillt ist. In diesem Fall gilt

(o )(A) = [ f




Beweiskizze zu Satz 8.17

@ , <" Vorausgesetzt ist Ar € of ® %1 voraus. Daraus folgt
(Af)y € o fir alle y € R

e Man iiberpriift nun, dass AT (f,y) =
y € Ry gilt. Fiir y < 0 gilt AT(f,y)
folgt daraus die Messbarkeit von f.

e ,=" st f messbar, dann gilt AT (f,a) x [0,a] € & ® %
insbesondere fiir alle o € Q. AuBerdem gilt

Ar = | (AT(f,a) x [0,q])

acQt

(A ) € o fiir alle
=Q € o/. Insgesamt

Als Vereinigung abzahlbar vieler Mengen aus &/ ® % ist dann
auch Ar in & ® %, enthalten.



Beweiskizze zu Satz 8.17 (Forts.)

e Wie man leicht iiberpriift, gilt (As)L = [0, f(x)] fiir alle
x € Q. Die Gleichung zwischen MaB und Integral erhilt man
nun mittels Satz 8.11 durch die Rechnung

(e m)(Ar) = / (An)L du(x) =

[m© D dut) =[£G dut) = [ an
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Definition der BildmaBe

Definition (9.1)

Sei (Q, o7, 1) ein MaBraum, (Q', /") ein Messraum und

f:Q — Q eine «7-a/'-messbare Abbildung. Dann nennt man die
Abbildung (i) : &/’ — Ry gegeben durch

F(u)(A) = u(FH(A))  firalle A €&’

das BildmaB von p unter f.




Translationsinvariante MaBe

Eine bijektive Abbildung R" — R", die als Komposition einer
bijektiven linearen Abbildung mit einer Translation dargestellt
werden kann, bezeichnet man als Affinitat.

Definition (9.2)

Ein MaB p auf (R", 4,) wird translationsinvariant genannt, wenn
Tv(p) = p fiir alle v € R" erfiillt ist. Ist sogar ¢(u) = p fiir jede
Bewegung ¢ erfiillt, dann spricht man von einem bewegungs-
invarianten MaB.

Proposition (9.3)

Das Lebesgue-Borelsche MaB i, ist translationsinvariant.




Beweiskizze zu Proposition 9.3

e Man iberpriift, dass 7, (un)(Q) = pn(Q) fir jeden Vektor
v € R" und fiir jeden Quader @ im R" gilt.

@ Die Quader bilden ein o-stabiles Erzeugendensystem der
Borelschen U-Algebr:i, und p, ist o-endlich. Nach Proposition
4.4 folgt daraus die Ubereinstimmung von 7,(p,) und .



Charakterisierung des Lebesgue-Borelschen MalBes

Lemma (9.4)

Sei S C R eine dichte Teilmenge von R. Dann wird die o-Algebra
P von den Quadern der Form Q = [a1, bi[ X... X [an, bn[ mit
aj,b; € S fiir 1 < i < n erzeugt.

Sei p ein translationsinvariantes MaB auf %, und sei
a = u([0,1[") € R,. Dann gilt 4 = au,. Das Lebesgue-Borelsche
MaB pu, ist das translationsinvariante MaB p auf (R", %,)
mit p([0,1[") = 1.




Beweiskizze zu Lemma 9.4

o Zeige, dass die Teilmengen der Form {x € R" | x; > a} mit
a € S als abzahlbare Vereinigungen solcher Quader darstellbar
sind.

@ Zeige anschlieBend, dass auch fiir beliebiges a € R eine solche
Darstellung existiert.

@ Durch Bildung von Komplementen und Durchschnitten erhilt
man beliebige Quader.

@ Diese wiederum erzeugen die o-Algebra %,,.



Beweiskizze zu Satz 9.5

o Aus u([0,1[") = «, der Translationsinvarianz und der
endlichen Additivitat folgt

w([0, 2" = m"a firallemeN.

@ Jeder Quader mit rationalen Koordinaten kann als disjunkte
Vereinigung von Translaten von [O, % [n mit m € IN dargestellt
werden. Daraus folgt 1(Q) = apn(Q) fiir solche Quader.

@ Nach Lemma 9.4 erzeugen diese Quader die gesamte
o-Algebra #,. Daraus folgt, dass p und au, auf ganz %,
tibereinstimmen.



Bewegungsinvarianz des Lebesgue-MaBes

Lemma (9.6)

Ist yu : B, — R, ein translationsinvariantes MaB auf R” und ist
¢ : R™ — R" eine Affinitat, dann ist auch ¢(u) translations-
invariant.

Beweisskizze:

@ Nach Definition der Affinitdten gilt ¢ = 7, o % fiir ein v € R"
und eine invertierbare lineare Abbildung .

@ Sei w € R". Zu zeigen ist 7, (¢(1)) = ¢(u). Dies ist
gleichbedeutend mit 11((7y © ) "1(A)) = u(¢~(A))
fir alle A € 4,,.

@ Durch Einsetzen von ¢ fiihrt dies auf die Gleichung
p(rvrw o) HA) = ul(rvo9)H(A)):



Beweis von Lemma 9.6 (Forts.)

@ Wir man unmittelbar nachrechnet, gilt
o . ! -1
Tviw ot = Tyoor, firw =y (w).

Zu zeigen ist also

w(roovomy) HA) = ul(ry o v) H(A)).

@ Nach Definition des BildmaBes ist dies dquivalent zu

Tw (1) (7 0 9)H(A)) = pl(7y 0 ) 7H(A)).

Nun sieht man, dass die Gleichung direkt aus der Transla-
tionsinvarianz von p folgt.



Bewegungsinvarianz des Lebesgue-MaBes

Das Lebesgue-Borelsche MaB p, ist bewegungsinvariant.

Folgerung (9.8)
Jede Hyperebene H C R" ist eine Lebesguesche Nullmenge.




Beweiskizze zu Satz 9.7

@ Da die Translationsinvarianz bereits gezeigt wurde, geniigt es,
die Invarianz unter orthogonalen Abbildungen zu betrachten.
Sei also ¢ : R™ — R" eine orthogonale Abbildung.

e Nach Lemma 9.6 und Satz 9.5 gilt ¢(un) = au, fiir ein
(oS ]R+.

@ Aus der Orthogonalitdt von ¢ folgt ¢(B) = B, wobei B C R"
die abgeschlossene Einheitskugel bezeichnet.

@ Durch Vergleich mit geeigneten Quadern zeigt man, dass
wn(B) endlich und positiv ist.

o Aus ajip(B) = ¢(kn)(B) = k(¢ (B)) = un(B) folgt
deshalb a = 1.



Beweiskizze zu Folgerung 9.8

o Die Koordinatenhyperebene gegeben durch x; = 0 ist
abzdhlbare Vereinigung von Quadern vom Volumen Null,
namlich {0} x [-m, m]"~! mit m € IN. Diese Hyperebene hat
also Lebesgue-MaB null.

o Jede beliebige Hyperebene kann durch eine Bewegung in diese
Koordinatenhyperebene iiberfiihrt werden.

@ Also folgt die Aussage aus der Bewegungsinvarianz des
Lebesgue-Borelschen MaBes.



Transformationsverhalten des Lebesgue-MaBes

Proposition (9.9)

Ist D € GL,(RR) eine Diagonalmatrix mit positiven Eintragen auf
der Hauptdiagonalen, dann gilt ¢p(u,) = (det D)L,

Ist A € GLp(R), dann gilt ¢a(1n) = | det A| "L,




Beweiskizze zu Proposition 9.9

® Nach Lemma 9.6 ist ¢p(4n) translationsinvariant. Nach Satz
9.5 gibt es also ein @ € Ry mit ¢p(pn) = apn.

o Man iiberpriift, dass o = (det D)~ ist, indem man ¢! auf
den Einheitsquader Q = [0, 1]” anwendet.



Beweiskizze zu Satz 9.10

e Die Matrix B = 'AA ist positiv definit und symmetrisch.

@ Nach dem Satz iiber die Hauptachsentransformation existiert
eine ON-Basis (v, ..., v,) bestehend aus Eigenvektoren von B
mit positiven Eigenwerten A1, ..., A,.

e Die Vektoren u; = )\;1/2Avj- bilden ebenfalls eine ON-Basis
des R", wie man leicht iiberpriift.

@ Sei U die Matrix mit den Vektoren uy, ..., u, als Zeilen, und V
die Matrix mit vi, ..., v, als Spalten. Dann gilt UAV = D mit
D = diag(A?, ..., \/?).

o Die Gleichung A= U~1DV ! liefert | det A| = det D und
oA = ¢py-10 ¢p o py-1 mit den orthogonalen Abbildungen
(bU—l und ¢V—1.

@ Auf Grund der Bewegungsinvarianz von p, folgt
da(itn) = ¢p(pn) = (det D)~ p, mit Proposition 9.9.



Wiirfelvolumenanderung unter Diffeomorphismen

Erinnerung:

Ein ¢1-Diffeomorphismus ¢ : U — V zwischen zwei offenen
Teilmengen U, V C R" ist eine bijektive Abbildung mit der
Eigenschaft, dass sowohl ¢ als auch die Umkehrabbildung ¢! in
jedem Punkt ihres Definitionsbereich stetig differenzierbar ist.

Lemma (9.11)

Seien U,V C R" offene Umgebungen von Og~ und ¢ : U — V ein
¢*-Diffeomorphismus mit ¢(Orn) = Or» und ¢'(Orn) = idRgn.

Dann gibt es fiir jedes 6 € R™ eine Umgebung Us von Ogr» mit der
folgenden Eigenschaft: Ist W C Us ein mit
Or» € W, dann gilt

Mn(¢(W)) < (1+5)Nn(W)' )
I




Beweiskizze zu Lemma 9.11

@ Jeder abgeschlossene Wiirfel W C R" ist ein abgeschlossener
Ball beziiglich der || - [[oc-Norm auf R".

@ Auf Grund der totalen Differenzierbarkeit von ¢ im Nullpunkt
existiert eine Funktion h: U — R"” mit ¢(x) = x + h(x) fir
alle x € U mit lim |x||7*h(x) = 0.

X—

e Verwende dies, um fiir vorgegebenes § € R eine geeignete
Umgebung Us des Nullpunkts zu definieren und ||¢(x)|/co in
Abhidngigkeit von ||x| s abzuschitzen.



Das Quadervolumen unter Diffeomorphismen

Seien U,V C R" offene Mengen, und sei ¢ : U — V ein
%*-Diffeomorphismus mit | det ¢/(x)| = 1 fiir alle x € U. Dann gilt
1n(0(Q)) < pun(Q) fiir jeden Quader Q@ C U.




Beweiskizze zu Lemma 9.12

Durch Anwendung von ¢p fiir eine geeignete Diagonalmatrix
D € GL,(R) kann der Beweis fiir Quader auf Wiirfel
zuriickgefiihrt werden.

Fiir einen abgeschlossenen Wiirfel W fiihrt man den Beweis
durch Widerspruch und nimmt an, es gilt

pin(@(W)) > (14 6)pn(W).

Durch Halbierung der Wiirfelkanten findet man einen
Teilwiirfel mit halber Kantenlange, der die Ungleichung
ebenfalls erfiillt.

Durch Iteration erhalt man erhdlt man eine Folge immer
kleiner Teilwiirfel (dhnlich wie beim Beweis des Satzes iiber
die Kompaktheit von Quadern).

Die topologischen Abschliisse der Wiirfel schneiden sich in
einem Punkt v (Intervallschachtelungsprinzip).

Indem man hinreichend kleine Teilwiirfel betrachtet, die v
enthalten, erhdlt man einen Widerspruch zu Lemma 9.11.



Das Lebesgue-MaB unter Diffeomorphismen

Seien U, V C R" offene Mengen, und sei ¢ : U — V ein
%-Diffeomorphismus mit | det ¢/(x)| = 1 fiir alle x € U.
Dann gilt
(i) ph(e(A)) < pr(A) fiir jede Teilmenge A C U, und
(i) pn(6(A)) = un(A) Borel-messbare A C U.




Beweiskizze zu Lemma 9.13

o Das suBere MaB erhilt man durch Uberdeckung von A durch
abzahlbare Vereinigungen von Figuren.

e Fiir Figuren ist die Abschdtzung nach Lemma 9.13 erfiillt. Auf
diese Weise zeigt man die Aussage (i).

@ In Teil (ii) erhdlt man die Ungleichung n(#(A)) < pn(A) aus
der Tatsache, dass mit A auch ¢,(A) Borel-messbar ist, und
dass bei Lebesgue-messbaren (und insbesondere Borel-mess-
baren) Teilmengen das Lebesgue-MaB mit dem duBeren MaB
iibereinstimmt.

e Die Ungleichung pin(¢(A)) < pn(A) erhdlt man durch
Anwendung der bereits bewiesenen Ungleichung auf
B = #(A) und den €*-Diffeomorphismus ¢ 1.



Der Transformationssatz

Seien U, V C R" offene Teilmengen, und sei ¢ : U — V ein
%"'-Diffeomorphismus. Sei A C U und B = ¢(A). Sei auBerdem
f : B — R eine Funktion.

(i) Die Teilmenge A ist genau dann Lebesgue-messbar, wenn B
Lebesgue-messbar ist, und in diesem Fall gilt die Gleichung
in(B) = [, |det | dpin(x). Genau dann ist A eine (Lebesguesche)
Nullmenge, wenn B eine Nullmenge ist.

(i) Ist A Lebesgue-messbar, und ist f > 0 und Lebesgue-messbar,
dann gilt

/fdﬂn _ /(fo¢)|det¢’|dun. *)
B A

(iii) Sei A Lebesgue-messbar. Unter dieser Voraussetzung ist die
Funktion 7 auf B genau dann Lebesgue-integrierbar, wenn die
Funktion (f o ¢)| det ¢'| auf A Lebesgue-integrierbar ist, und es
gilt dann ebenfalls die Gleichung (*).




Beweiskizze zu Satz 9.14

@ Zunichst beweist man (ii) fiir Borel-messbares A mit Hilfe von
Lemma 9.13 und Satz 8.17 (der die Beziehung zwischen dem
Lebesgue-Integral einer Funktion und dem Lebesgue-MaB der
Menge unter dem Funktionsgraphen herstellt).

@ Durch Anwendung auf die Indikatorfunktion von B erhalt man
die Aussage (i) fiir Borel-messbare Mengen.

@ Daraus folgt insbesondere, dass fiir jede Nullmenge N auch
¢(N) eine Nullmenge ist. Damit kénnen (i) und (ii) auf
Lebesgue-messbare Mengen ausgedeht werden.

@ Beim Beweis von (iii) ergibt sich die , genau dann"-Aussage

zur Integrierbarkeit unmittelbar aus (ii). Die Gleichung (*)
erhilt man durch Anwendung von (i) auf f* und f~.



Anwendung auf krummlinige Koordinatensysteme

Folgerung (9.15)
(i) Sei p: Ry x R — R2, (r,¢) + (rcos(e), rsin(p)) die
Polarkoordinaten-Abbildung. Ist A C R4 x [0, 27] eine

Lebesgue-messbare Teilmenge und f : p(A) — R eine
Lebesgue-integrierbare Funktion, dann gilt

[t = [ (Fop)ne)-r dua(r)
p(A) A

(i) Sei p: Ry x R x R — R3, (r, ¢, h) = (rcos(p), rsin(p), h)
die Zylinderkoordinaten-Abbildung. Ist A C R, x [0,27] x R
eine Lebesgue-messbare Teilmenge und f : p(A) — R eine
Lebesgue-integrierbare Funktion, dann gilt

/ fdus — / (f 0 0)(r, 0, ) - r dus(r, 0, B).
p(A) A




Anwendung auf krummlinige Koordinatensysteme (Forts.)

Folgerung (9.15)
(i) Sei p: Ry x R x R — RS,
(r, 9, @) — (rsin(¥) cos(yp), rsin(¥) sin(yp), r cos(?)) die
Kugelkoordinaten-Abbildung. Ist A C Ry x [0, 7] x [0, 27]
eine Lebesgue-messbare Teilmenge und f : p(A) — R eine
Lebesgue-integrierbare Funktion, dann gilt

[ fdu = [ (Fop)rv.e) R sin() dus(r.9.).
p(A) A
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