
Darstellung von Maßen als Integral

Definition (8.16)

Sei f : Ω → R̄+ eine nicht-negative Funktion. Dann bezeichnen wir
die Menge

Af = {(x , y) ∈ Ω×R | 0 ≤ y < f (x)}

als Teilmenge unter dem Funktionsgraphen von f .

Satz (8.17)

Eine nicht-negative Funktion f : Ω → R̄+ ist genau dann
A -messbar, wenn Af ∈ A ⊗ B1 erfüllt ist. In diesem Fall gilt

(µ⊗ µ1)(Af ) =

∫
f dµ.



Beweiskizze zu Satz 8.17

”
⇐“ Vorausgesetzt ist Af ∈ A ⊗ B1 voraus. Daraus folgt
(Af )y ∈ A für alle y ∈ R+.

Man überprüft nun, dass Λ+(f , y) = (Af )y ∈ A für alle
y ∈ R+ gilt. Für y < 0 gilt Λ+(f , y) = Ω ∈ A . Insgesamt
folgt daraus die Messbarkeit von f .

”
⇒“ Ist f messbar, dann gilt Λ+(f , α)× [0, α] ∈ A ⊗ B1

insbesondere für alle α ∈ Q+. Außerdem gilt

Af =
⋃

α∈Q+

(
Λ+(f , α)× [0, α]

)
Als Vereinigung abzählbar vieler Mengen aus A ⊗B1 ist dann
auch Af in A ⊗ B1 enthalten.



Beweiskizze zu Satz 8.17 (Forts.)

Wie man leicht überprüft, gilt (Af )
1
x = [0, f (x)[ für alle

x ∈ Ω. Die Gleichung zwischen Maß und Integral erhält man
nun mittels Satz 8.11 durch die Rechnung

(µ⊗ µ1)(Af ) =

∫
µ1(Af )

1
x dµ(x) =∫

µ1([0, f (x)[) dµ(x) =

∫
f (x) dµ(x) =

∫
f dµ.







Definition der Bildmaße

Definition (9.1)

Sei (Ω,A , µ) ein Maßraum, (Ω′,A ′) ein Messraum und
f : Ω → Ω′ eine A -A ′-messbare Abbildung. Dann nennt man die
Abbildung f (µ) : A ′ → R̄+ gegeben durch

f (µ)(A′) = µ(f −1(A′)) für alle A′ ∈ A ′

das Bildmaß von µ unter f .



Translationsinvariante Maße

Eine bijektive Abbildung Rn → Rn, die als Komposition einer
bijektiven linearen Abbildung mit einer Translation dargestellt
werden kann, bezeichnet man als Affinität.

Definition (9.2)

Ein Maß µ auf (Rn,Bn) wird translationsinvariant genannt, wenn
τv (µ) = µ für alle v ∈ Rn erfüllt ist. Ist sogar ϕ(µ) = µ für jede
Bewegung ϕ erfüllt, dann spricht man von einem bewegungs-
invarianten Maß.

Proposition (9.3)

Das Lebesgue-Borelsche Maß µn ist translationsinvariant.



Beweiskizze zu Proposition 9.3

Man überprüft, dass τv (µn)(Q) = µn(Q) für jeden Vektor
v ∈ Rn und für jeden Quader Q im Rn gilt.

Die Quader bilden ein σ-stabiles Erzeugendensystem der
Borelschen σ-Algebra, und µn ist σ-endlich. Nach Proposition
4.4 folgt daraus die Übereinstimmung von τv (µn) und µn.



Charakterisierung des Lebesgue-Borelschen Maßes

Lemma (9.4)

Sei S ⊆ R eine dichte Teilmenge von R. Dann wird die σ-Algebra
Bn von den Quadern der Form Q = [a1, b1[ ×...× [an, bn[ mit
ai , bi ∈ S für 1 ≤ i ≤ n erzeugt.

Satz (9.5)

Sei µ ein translationsinvariantes Maß auf Bn, und sei
α = µ([0, 1[n) ∈ R̄+. Dann gilt µ = αµn. Das Lebesgue-Borelsche
Maß µn ist das einzige translationsinvariante Maß µ auf (Rn,Bn)
mit µ([0, 1[n) = 1.



Beweiskizze zu Lemma 9.4

Zeige, dass die Teilmengen der Form {x ∈ Rn | xi > a} mit
a ∈ S als abzählbare Vereinigungen solcher Quader darstellbar
sind.

Zeige anschließend, dass auch für beliebiges a ∈ R eine solche
Darstellung existiert.

Durch Bildung von Komplementen und Durchschnitten erhält
man beliebige Quader.

Diese wiederum erzeugen die σ-Algebra Bn.



Beweiskizze zu Satz 9.5

Aus µ([0, 1[n) = α, der Translationsinvarianz und der
endlichen Additivität folgt

µ(
[
0, 1

m

[n
) = m−nα für alle m ∈ N.

Jeder Quader mit rationalen Koordinaten kann als disjunkte
Vereinigung von Translaten von

[
0, 1

m

[n
mit m ∈ N dargestellt

werden. Daraus folgt µ(Q) = αµn(Q) für solche Quader.

Nach Lemma 9.4 erzeugen diese Quader die gesamte
σ-Algebra Bn. Daraus folgt, dass µ und αµn auf ganz Bn

übereinstimmen.



Bewegungsinvarianz des Lebesgue-Maßes

Lemma (9.6)

Ist µ : Bn → R̄+ ein translationsinvariantes Maß auf Rn und ist
ϕ : Rn → Rn eine Affinität, dann ist auch ϕ(µ) translations-
invariant.

Beweisskizze:

Nach Definition der Affinitäten gilt ϕ = τv ◦ ψ für ein v ∈ Rn

und eine invertierbare lineare Abbildung ψ.

Sei w ∈ Rn. Zu zeigen ist τw (ϕ(µ)) = ϕ(µ). Dies ist
gleichbedeutend mit µ((τw ◦ ϕ)−1(A)) = µ(ϕ−1(A))
für alle A ∈ Bn.

Durch Einsetzen von ϕ führt dies auf die Gleichung

µ((τv+w ◦ ψ)−1(A)) = µ((τv ◦ ψ)−1(A)).



Beweis von Lemma 9.6 (Forts.)

Wir man unmittelbar nachrechnet, gilt

τv+w ◦ ψ = τv ◦ ψ ◦ τw ′ für w ′ = ψ−1(w).

Zu zeigen ist also

µ((τv ◦ ψ ◦ τw ′)−1(A)) = µ((τv ◦ ψ)−1(A)).

Nach Definition des Bildmaßes ist dies äquivalent zu

τw ′(µ)((τv ◦ ψ)−1(A)) = µ((τv ◦ ψ)−1(A)).

Nun sieht man, dass die Gleichung direkt aus der Transla-
tionsinvarianz von µ folgt.



Bewegungsinvarianz des Lebesgue-Maßes

Satz (9.7)

Das Lebesgue-Borelsche Maß µn ist bewegungsinvariant.

Folgerung (9.8)

Jede Hyperebene H ⊆ Rn ist eine Lebesguesche Nullmenge.



Beweiskizze zu Satz 9.7

Da die Translationsinvarianz bereits gezeigt wurde, genügt es,
die Invarianz unter orthogonalen Abbildungen zu betrachten.
Sei also ϕ : Rn → Rn eine orthogonale Abbildung.

Nach Lemma 9.6 und Satz 9.5 gilt ϕ(µn) = αµn für ein
α ∈ R̄+.

Aus der Orthogonalität von ϕ folgt ϕ(B) = B, wobei B ⊆ Rn

die abgeschlossene Einheitskugel bezeichnet.

Durch Vergleich mit geeigneten Quadern zeigt man, dass
µn(B) endlich und positiv ist.

Aus αµn(B) = ϕ(µn)(B) = µn(ϕ
−1(B)) = µn(B) folgt

deshalb α = 1.



Beweiskizze zu Folgerung 9.8

Die Koordinatenhyperebene gegeben durch x1 = 0 ist
abzählbare Vereinigung von Quadern vom Volumen Null,
nämlich {0} × [−m,m]n−1 mit m ∈ N. Diese Hyperebene hat
also Lebesgue-Maß null.

Jede beliebige Hyperebene kann durch eine Bewegung in diese
Koordinatenhyperebene überführt werden.

Also folgt die Aussage aus der Bewegungsinvarianz des
Lebesgue-Borelschen Maßes.



Transformationsverhalten des Lebesgue-Maßes

Proposition (9.9)

Ist D ∈ GLn(R) eine Diagonalmatrix mit positiven Einträgen auf
der Hauptdiagonalen, dann gilt ϕD(µn) = (detD)−1µn.

Satz (9.10)

Ist A ∈ GLn(R), dann gilt ϕA(µn) = | detA|−1µn.



Beweiskizze zu Proposition 9.9

Nach Lemma 9.6 ist ϕD(µn) translationsinvariant. Nach Satz
9.5 gibt es also ein α ∈ R̄+ mit ϕD(µn) = αµn.

Man überprüft, dass α = (detD)−1 ist, indem man ϕ−1
D auf

den Einheitsquader Q = [0, 1]n anwendet.



Beweiskizze zu Satz 9.10

Die Matrix B = tAA ist positiv definit und symmetrisch.

Nach dem Satz über die Hauptachsentransformation existiert
eine ON-Basis (v1, ..., vn) bestehend aus Eigenvektoren von B
mit positiven Eigenwerten λ1, ..., λn.

Die Vektoren uj = λ
−1/2
j Avj bilden ebenfalls eine ON-Basis

des Rn, wie man leicht überprüft.

Sei U die Matrix mit den Vektoren u1, ..., un als Zeilen, und V
die Matrix mit v1, ..., vn als Spalten. Dann gilt UAV = D mit

D = diag(λ
1/2
1 , ..., λ

1/2
n ).

Die Gleichung A = U−1DV−1 liefert | detA| = detD und
ϕA = ϕU−1 ◦ ϕD ◦ ϕV−1 mit den orthogonalen Abbildungen
ϕU−1 und ϕV−1 .

Auf Grund der Bewegungsinvarianz von µn folgt
ϕA(µn) = ϕD(µn) = (detD)−1µn mit Proposition 9.9.



Würfelvolumenänderung unter Diffeomorphismen

Erinnerung:

Ein C 1-Diffeomorphismus ϕ : U → V zwischen zwei offenen
Teilmengen U,V ⊆ Rn ist eine bijektive Abbildung mit der
Eigenschaft, dass sowohl ϕ als auch die Umkehrabbildung ϕ−1 in
jedem Punkt ihres Definitionsbereich stetig differenzierbar ist.

Lemma (9.11)

Seien U,V ⊆ Rn offene Umgebungen von 0Rn und ϕ : U → V ein
C 1-Diffeomorphismus mit ϕ(0Rn) = 0Rn und ϕ′(0Rn) = idRn .
Dann gibt es für jedes δ ∈ R+ eine Umgebung Uδ von 0Rn mit der
folgenden Eigenschaft: Ist W ⊆ Uδ ein abgeschlossener Würfel mit
0Rn ∈ W , dann gilt

µn(ϕ(W )) ≤ (1 + δ)µn(W ).



Beweiskizze zu Lemma 9.11

Jeder abgeschlossene Würfel W ⊆ Rn ist ein abgeschlossener
Ball bezüglich der ∥ · ∥∞-Norm auf Rn.

Auf Grund der totalen Differenzierbarkeit von ϕ im Nullpunkt
existiert eine Funktion h : U → Rn mit ϕ(x) = x + h(x) für
alle x ∈ U mit lim

x→0
∥x∥−1h(x) = 0.

Verwende dies, um für vorgegebenes δ ∈ R+ eine geeignete
Umgebung Uδ des Nullpunkts zu definieren und ∥ϕ(x)∥∞ in
Abhängigkeit von ∥x∥∞ abzuschätzen.



Das Quadervolumen unter Diffeomorphismen

Lemma (9.12)

Seien U,V ⊆ Rn offene Mengen, und sei ϕ : U → V ein
C 1-Diffeomorphismus mit | detϕ′(x)| = 1 für alle x ∈ U. Dann gilt
µn(ϕ(Q)) ≤ µn(Q) für jeden Quader Q ⊆ U.



Beweiskizze zu Lemma 9.12

Durch Anwendung von ϕD für eine geeignete Diagonalmatrix
D ∈ GLn(R) kann der Beweis für Quader auf Würfel
zurückgeführt werden.

Für einen abgeschlossenen Würfel W führt man den Beweis
durch Widerspruch und nimmt an, es gilt
µn(ϕ(W )) > (1 + δ)µn(W ).

Durch Halbierung der Würfelkanten findet man einen
Teilwürfel mit halber Kantenlänge, der die Ungleichung
ebenfalls erfüllt.

Durch Iteration erhält man erhält man eine Folge immer
kleiner Teilwürfel (ähnlich wie beim Beweis des Satzes über
die Kompaktheit von Quadern).

Die topologischen Abschlüsse der Würfel schneiden sich in
einem Punkt v (Intervallschachtelungsprinzip).

Indem man hinreichend kleine Teilwürfel betrachtet, die v
enthalten, erhält man einen Widerspruch zu Lemma 9.11.



Das Lebesgue-Maß unter Diffeomorphismen

Lemma (9.13)

Seien U,V ⊆ Rn offene Mengen, und sei ϕ : U → V ein
C 1-Diffeomorphismus mit | detϕ′(x)| = 1 für alle x ∈ U.
Dann gilt

(i) µ∗n(ϕ(A)) ≤ µ∗n(A) für jede Teilmenge A ⊆ U, und

(ii) µn(ϕ(A)) = µn(A) Borel-messbare A ⊆ U.



Beweiskizze zu Lemma 9.13

Das äußere Maß erhält man durch Überdeckung von A durch
abzählbare Vereinigungen von Figuren.

Für Figuren ist die Abschätzung nach Lemma 9.13 erfüllt. Auf
diese Weise zeigt man die Aussage (i).

In Teil (ii) erhält man die Ungleichung µn(ϕ(A)) ≤ µn(A) aus
der Tatsache, dass mit A auch ϕn(A) Borel-messbar ist, und
dass bei Lebesgue-messbaren (und insbesondere Borel-mess-
baren) Teilmengen das Lebesgue-Maß mit dem äußeren Maß
übereinstimmt.

Die Ungleichung µn(ϕ(A)) ≤ µn(A) erhält man durch
Anwendung der bereits bewiesenen Ungleichung auf
B = ϕ(A) und den C 1-Diffeomorphismus ϕ−1.



Der Transformationssatz

Satz (9.14)

Seien U,V ⊆ Rn offene Teilmengen, und sei ϕ : U → V ein
C 1-Diffeomorphismus. Sei A ⊆ U und B = ϕ(A). Sei außerdem
f : B → R̄ eine Funktion.

(i) Die Teilmenge A ist genau dann Lebesgue-messbar, wenn B
Lebesgue-messbar ist, und in diesem Fall gilt die Gleichung
µn(B) =

∫
A
| detϕ′| dµn(x). Genau dann ist A eine (Lebesguesche)

Nullmenge, wenn B eine Nullmenge ist.

(ii) Ist A Lebesgue-messbar, und ist f ≥ 0 und Lebesgue-messbar,
dann gilt ∫

B

f dµn =

∫
A

(f ◦ ϕ)| detϕ′| dµn. (*)

(iii) Sei A Lebesgue-messbar. Unter dieser Voraussetzung ist die
Funktion f auf B genau dann Lebesgue-integrierbar, wenn die
Funktion (f ◦ ϕ)| detϕ′| auf A Lebesgue-integrierbar ist, und es
gilt dann ebenfalls die Gleichung (*).



Beweiskizze zu Satz 9.14

Zunächst beweist man (ii) für Borel-messbares A mit Hilfe von
Lemma 9.13 und Satz 8.17 (der die Beziehung zwischen dem
Lebesgue-Integral einer Funktion und dem Lebesgue-Maß der
Menge unter dem Funktionsgraphen herstellt).

Durch Anwendung auf die Indikatorfunktion von B erhält man
die Aussage (i) für Borel-messbare Mengen.

Daraus folgt insbesondere, dass für jede Nullmenge N auch
ϕ(N) eine Nullmenge ist. Damit können (i) und (ii) auf
Lebesgue-messbare Mengen ausgedeht werden.

Beim Beweis von (iii) ergibt sich die
”
genau dann“-Aussage

zur Integrierbarkeit unmittelbar aus (ii). Die Gleichung (*)
erhält man durch Anwendung von (ii) auf f + und f −.



Anwendung auf krummlinige Koordinatensysteme

Folgerung (9.15)

(i) Sei ρ : R+ ×R→ R2, (r , φ) 7→ (r cos(φ), r sin(φ)) die
Polarkoordinaten-Abbildung. Ist A ⊆ R+ × [0, 2π] eine
Lebesgue-messbare Teilmenge und f : ρ(A) → R̄ eine
Lebesgue-integrierbare Funktion, dann gilt∫

ρ(A)
f dµ2 =

∫
A
(f ◦ ρ)(r , φ) · r dµ2(r , φ).

(ii) Sei ρ : R+ ×R×R→ R3, (r , φ, h) 7→ (r cos(φ), r sin(φ), h)
die Zylinderkoordinaten-Abbildung. Ist A ⊆ R+ × [0, 2π]×R
eine Lebesgue-messbare Teilmenge und f : ρ(A) → R̄ eine
Lebesgue-integrierbare Funktion, dann gilt∫

ρ(A)
f dµ3 =

∫
A
(f ◦ ρ)(r , φ, h) · r dµ3(r , φ, h).



Anwendung auf krummlinige Koordinatensysteme (Forts.)

Folgerung (9.15)

(iii) Sei ρ : R+ ×R×R→ R3,
(r , ϑ, φ) 7→ (r sin(ϑ) cos(φ), r sin(ϑ) sin(φ), r cos(ϑ)) die
Kugelkoordinaten-Abbildung. Ist A ⊆ R+ × [0, π]× [0, 2π]
eine Lebesgue-messbare Teilmenge und f : ρ(A) → R̄ eine
Lebesgue-integrierbare Funktion, dann gilt∫

ρ(A)
f dµ3 =

∫
A
(f ◦ ρ)(r , ϑ, φ) · r2 sin(ϑ) dµ3(r , ϑ, φ).






