
Definition der Stufenfunktionen

Definition (6.1)

Als A -Stufenfunktion bezeichnen wir eine nichtnegative,
A -messbare Funktion f : Ω→ R, die nur endlich viele reelle Werte
annimmt. Die Menge der A -Stufenfunktionen bezeichnen wir mit
E (Ω,A ).



Definition des µ-Integrals von Stufenfunktionen

Sei (Ω,A , µ) ein Maßraum.

Definition (6.5)

Das µ-Integral einer Funktion f ∈ E (Ω,A ) der Form
f =

∑m
i=1 ui1Ai

mit u1, ..., um ∈ R+ und paarweise disjunkten
A1, ...,Am ∈ A mit Ω = A1 ∪ ... ∪ Am ist definiert durch∫

f dµ =
n∑

i=1

uiµ(Ai ),

wobei wir uiµ(Ai ) im Fall ui = 0, µ(Ai ) = +∞ gleich Null setzen.



Ein neues Messbarkeitskriterium

Weiterhin sei (Ω,A , µ) ein festgewählter Maßraum.

Satz (6.7)

Eine Funktion f : Ω→ R̄+ ist genau dann A -messbar, wenn eine
monoton wachsende Folge (fn)n∈N in E (Ω,A ) mit f = sup fn
existiert.



Das µ-Integral einer nichtnegativen messbaren Funktion

Definition (6.10)

Sei f : Ω→ R̄+ eine A -messbare Funktion und (fn)n∈N eine
monoton wachsende Folge in E (Ω,A ) mit sup fn = f . Dann ist
das µ-Integral von f definiert durch∫

f dµ = sup

∫
fn dµ.



Rechenregeln für Integrale nicht-neg. messb. Funktionen

Satz (6.11)

Für alle A -messbaren Funktionen f , g und alle α ∈ R+ gilt

(i)
∫

(αf ) dµ = α
∫
f dµ

(ii)
∫

(f + g) dµ =
∫
f dµ+

∫
g dµ

(iii) Ist f ≤ g , dann folgt
∫
f dµ ≤

∫
g dµ.



Satz über die monotone Konvergenz

Satz (6.12)

Sei (fn)n∈N eine monoton wachsende Folge A -messbarer
Funktionen fn : Ω→ R̄+, und sei f = sup fn. Dann ist auch f eine
A -messbare Funktion, und es gilt∫

f dµ = sup

∫
fn dµ.









µ-Integrierbarkeit reellwertiger Funktionen

Definition (6.13)

Eine Funktion f : Ω→ R̄ wird µ-integrierbar genannt, wenn f eine
A -messbare Funktion und die Integrale

∫
f + dµ,

∫
f − dµ endlich

sind. In diesem Fall nennt man∫
f dµ =

∫
f + dµ−

∫
f − dµ

das µ-Integral von f .

Ist der Maßraum gegeben durch (Rd ,Ad , µd), dann nennt man die
µd -integrierbaren Funktionen auch Lebesgue-integrierbar und
spricht vom Lebesgue-Integral der Funktion.



Charakterisierung der integrierbaren Funktionen

Satz (6.14)

Für eine A -messbare Funktion sind die folgenden Aussagen
äquivalent.

(i) Die Funktion f ist µ-integrierbar.

(ii) Es gibt µ-integrierbare Funktionen g , h : Ω→ R̄+

mit f = g − h.

(iii) Es gibt eine µ-integrierbare Funktion g1 : Ω→ R̄+

mit |f | ≤ g1.

(iv) Die Funktion |f | ist µ-integrierbar.

Ist Bedingung (ii) mit den Funktionen g und h erfüllt, dann gilt∫
f dµ =

∫
g dµ−

∫
h dµ.









Rechenregeln für das µ-Integral

Satz (6.15)

Seien f , g : Ω→ R̄ zwei µ-integrierbare Funktionen und α ∈ R.
Dann sind auch die Funktionen f + g , αf , min{f , g} und
max{f , g}, sofern sie auf ganz Ω definiert sind, jeweils
µ-integrierbar. Es gilt dann∫

(f + g) dµ =

∫
f dµ+

∫
g dµ

und ∫
(αf ) dµ = α

∫
f dµ.

Die reellwertigen µ-integrierbaren Funktionen bilden also einen
R-Vektorraum, den wir mit L 1(µ) bezeichnen.











Produkte integrierbarer Funktionen

Das Produkt fg zweier µ-integrierbarer Funktionen ist im
Allgemeinen nicht µ-integrierbar. Es gilt aber

Proposition (6.16)

Ist f : Ω→ R̄ µ-integrierbar und g : Ω→ R̄ beschränkt und
messbar, dann ist auch das Produkt µ-integrierbar.









Stetige Funktionen mit kompaktem Träger

Ist (X ,T ) ein topologischer Raum und f : X → R eine Funktion,
so wird der Abschluss der Menge {x ∈ X | f (x) 6= 0} der Träger
der Funktion genannt.

Satz (6.17)

Jede stetige Funktion f : Rd → R mit kompaktem Träger ist
Lebesgue-integrierbar.


