Definition der Stufenfunktionen

Definition (6.1)

Als o7-Stufenfunktion bezeichnen wir eine nichtnegative,
2/-messbare Funktion f : Q@ — R, die nur endlich viele reelle Werte
annimmt. Die Menge der o-Stufenfunktionen bezeichnen wir mit

E(Q, 7).




Definition des pu-Integrals von Stufenfunktionen

Sei (Q, <7, 1) ein MaBraum.

Definition (6.5)

Das p-Integral einer Funktion f € E(Q, /) der Form
f=>",uila, mit u, ..., un € Ry und paarweise disjunkten
Al .0, An € & mit Q = A1 U ... UA,, ist definiert durch

/f dp = ZUiM(Ai),
—1

wobei wir ujp(A;) im Fall u; =0, p(A;) = +oo gleich Null setzen.

v




Ein neues Messbarkeitskriterium

Weiterhin sei (Q2, <7, 1) ein festgewahlter MaBraum.

Eine Funktion f : Q — R ist genau dann ./-messbar, wenn eine
monoton wachsende Folge (f;)nen in E(Q, &) mit f =supf,
existiert.




Das pu-Integral einer nichtnegativen messbaren Funktion

Definition (6.10)

Sei f: Q — R, eine o7-messbare Funktion und (f,),c eine
monoton wachsende Folge in E(£2,.2/) mit sup f, = f. Dann ist
das p-Integral von f definiert durch

/fdu = sup/fndu.




Rechenregeln fiir Integrale nicht-neg. messb. Funktionen

Fiir alle o7-messbaren Funktionen f, g und alle o € R gilt

() [(af) du=a [ f du
(i) J(f+g)du=[fdu+[gdu
(iii) Ist f < g, dann folgt [ f du < [ g dpu.




Satz iiber die monotone Konvergenz

Satz (6.12)

Sei (fn)nen eine monoton wachsende Folge </-messbarer
Funktionen f, : Q — R, und sei f = sup f,. Dann ist auch f eine
o7-messbare Funktion, und es gilt

/fdu = sup/fnd,u.
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p-Integrierbarkeit reellwertiger Funktionen

Definition (6.13)

Eine Funktion f : Q — R wird p-integrierbar genannt, wenn f eine
«/-messbare Funktion und die Integrale [ 1 dpu, [~ du
sind. In diesem Fall nennt man

/fd,u = /f+du—/f_du

das p-Integral von f.

Ist der MaBraum gegeben durch (R9, .27, 1), dann nennt man die
lg-integrierbaren Funktionen auch Lebesgue-integrierbar und
spricht vom Lebesgue-Integral der Funktion.



Charakterisierung der integrierbaren Funktionen

Satz (6.14)

Fiir eine o/-messbare Funktion sind die folgenden Aussagen
dquivalent.

(i) Die Funktion f ist p-integrierbar.
(ii) Es gibt p-integrierbare Funktionen g, h: Q — R,
mit f = g — h.
(iii) Es gibt eine u-integrierbare Funktion g1 : Q — R
mit |f| < g1.
(iv) Die Funktion |f| ist u-integrierbar.
Ist Bedingung (ii) mit den Funktionen g und h erfiillt, dann gilt
Jfdu=[gdu—[hdpu
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Rechenregeln fiir das p-Integral

Satz (6.15)

Seien f,g : Q — R zwei p-integrierbare Funktionen und a € R.
Dann sind auch die Funktionen f + g, af, min{f, g} und
max{f, g}, sofern sie auf ganz Q definiert sind, jeweils
p-integrierbar. Es gilt dann

/(f+g)du=/fdu+/gdu
/(ozf)du:a/fd,u.

Die reellwertigen u-integrierbaren Funktionen bilden also einen
, den wir mit .Z*(u) bezeichnen.
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Produkte integrierbarer Funktionen

Das Produkt fg zweier p-integrierbarer Funktionen ist im
Allgemeinen p-integrierbar. Es gilt aber

Proposition (6.16)

Ist f : Q — R p-integrierbar und g : Q — R beschrinkt und
messbar, dann ist auch das Produkt u-integrierbar.
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Stetige Funktionen mit kompaktem Trager

Ist (X,.7) ein topologischer Raum und f : X — R eine Funktion,
so wird der Abschluss der Menge {x € X | f(x) # 0} der Trager
der Funktion genannt.

Jede stetige Funktion f : R — R mit kompaktem Trager ist
Lebesgue-integrierbar.




