Definition der Stufenfunktionen

Definition (6.1)

Als o7-Stufenfunktion bezeichnen wir eine nichtnegative,
2/-messbare Funktion f : Q@ — R, die nur endlich viele reelle Werte
annimmt. Die Menge der o-Stufenfunktionen bezeichnen wir mit

E(Q, 7).




Eigenschaften von Stufenfunktionen

Proposition (6.2)

Eine Funktion f : 2 — R ist genau dann eine .o/-Stufenfunktion,
wenn ein n € INg, paarweise disjunkte Mengen Ay, ..., A, € & mit

Q = AU..UA,

und uy, ..., u, € R, existieren, so dass f = Z,’-’:l uily, erfiillt ist.

V.

Proposition (6.3)

Sind f, g € E(Q, /), dann sind auch die Funktionen f + g, fg,
max{f, g} und min{f, g} in E(Q, o) enthalten.




Definition des p-Integrals von Stufenfunktionen (Vorb.)

Lemma (6.4)
Sei f € E(Q, /), und seien

m n
f = Za;lAi = Zﬂlej
i=1 J=1

zwei Darstellungen von f mit m,n € IN, oy, ...,am, B1, ..., Bn € R+
sowie A1, ...,Am, B1,..., B, € &, wobei Ay, ..., Ay und By, ..., B,
jeweils paarweise disjunkt sind und ihre Vereinigung jeweils Q
ergibt. Dann gilt

Doain(A) =Y Biu(By).
j=1

i=1
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Definition des pu-Integrals von Stufenfunktionen

Sei (Q, <7, 1) ein MaBraum.

Definition (6.5)

Das p-Integral einer Funktion f € E(Q, /) der Form
f=>",uila, mit u, ..., un € Ry und paarweise disjunkten
Al .0, An € & mit Q = A1 U ... UA,, ist definiert durch

/f dp = ZUiM(Ai),
—1

wobei wir ujp(A;) im Fall u; =0, p(A;) = +oo gleich Null setzen.

v




Rechenregeln fiir das p-Integral

Proposition (6.6)

Fir Ac &7, f,g € E(Q,4) und a € R gelten folgende
Rechenregeln.

(i) J1a dp= pu(A)

(i) [(af)dp=a[f du

(i) [(f+g)du=[fdu+ [gdu
(v) f<g=[fdu< [gdpu
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Ein neues Messbarkeitskriterium

Weiterhin sei (Q2, <7, 1) ein festgewahlter MaBraum.

Eine Funktion f : Q — R ist genau dann ./-messbar, wenn eine
monoton wachsende Folge (f;)nen in E(Q, &) mit f =supf,
existiert.
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p-Integrale von monoton wachsenden Folgen

Satz (6.8)

Sei (f,)ne eine monoton wachsende Folge in E(2, .%7) und
f € E(Q,.o/) eine Funktion mit f < sup f,. Dann folgt

/fdu < sup/fndu.

Folgerung (6.9)

Sind (fp)new und (gn)new zwei monoton wachsende Folgen in
E(Q, 47) mit lim f, = lim g,, dann folgt sup [ f, diu = sup [ g» dp.
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Das pu-Integral einer nichtnegativen messbaren Funktion

Definition (6.10)

Sei f: Q — R, eine o7-messbare Funktion und (f,),c eine
monoton wachsende Folge in E(£2,.2/) mit sup f, = f. Dann ist
das p-Integral von f definiert durch

/fdu = sup/fndu.




Rechenregeln fiir Integrale nicht-neg. messb. Funktionen

Fiir alle o7-messbaren Funktionen f, g und alle o € R gilt

() [(af) du=a [ f du
(i) J(f+g)du=[fdu+[gdu
(iii) Ist f < g, dann folgt [ f du < [ g dpu.
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