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Definition messbarer Abbildungen

Definition (5.1)
Seien (2, «7) und (', &/’) Messraume.
@ Eine Abbildung f : Q — Q" wird messbar beziiglich &/ und </’
genannt, wenn f~1(A") € o fiir alle A’ € &’ efiillt ist.
o Ist speziell (',.27") = (R, %1), dann sprechen wir von einer
«/-messbaren Funktion.

o Ist dariiber hinaus Q C RY und & = {ANQ | A€ Ay}, dann
nennen wir die beziiglich .« messbaren Funktionen auch
Borel-messbar.

Jede konstante Abbildung f : Q — Q' zwischen Messrdumen
(Q,2) und (', /") ist messbar.



Komposition messbarer Abbildungen

Proposition (5.2)

Die Komposition messbarer Abbildungen ist messbar. Genauer:
Sind (Q,.«7), (', <") und (Q", &) drei Messraume, ist

f:Q — Q' messbar beziiglich ./, o7’ und g : Q' — Q" messbar
beziiglich .&7’, &/”, dann ist g o f : Q — Q" messbar beziiglich &/
und 7",

Proposition (5.3)

Seien die Bezeichnungen wie in Definition 5.1 gewahlt. Ist & ein
Erzeugendensystem von &/’ als o-Algebra, so ist f genau dann
messbar beziiglich <7 und &/, wenn f~1(E’) € o/ fiir alle E' € &’
erfiillt ist.




Messbarkeit der Indikatorfunktion

Proposition (5.4)

Sei (Q, o7) ein Messraum und A C Q eine Teilmenge. Die
Indikatorfunktion 14 : Q — R von A ist definiert durch

1 fallsxe A
la(x) = {

0 fallsx¢ A

Diese Funktion ist genau dann messbar beziiglich <7, wenn A in &
enthalten ist.
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Borel-Messbarkeit stetiger Funktionen

Proposition (5.5)

Sei Q C RY und £ : Q — R eine stetige Funktion. Dann ist f
Borel-messbar.




Messbarkeitskriterium fur Funktionen

Sei (Q, <) ein Messraum. Eine Funktion f : Q — R ist genau
dann messbar beziiglich o7, wenn fiir jedes & € R die Menge

A (f,a) = {xeQ]f(x)>a} in .o/ liegt.
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Weitere Messbarkeitskriterien

Folgerung (5.7)
Sei (Q, /) ein Messraum und f : Q — R. Dann ist die

/-Messbarkeit von f zu jeder der folgenden Aussagen dquivalent.
(i) Fir jedes @ € R gilt AT(f,a)={x€ Q| f(x) >a} € &.
(ii) Fir jedes a € Rgilt A= (f,a) ={x e Q| f(x) <a} e .

(iii) Fiir jedes o € R gilt A=(f,a) = {x € Q| f(x) < a} € .
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Notwendige Messbarkeitskriterien

Folgerung (5.8)

Sind f,g : Q — R messbar beziiglich <7, dann sind die Mengen
(i) {x e Q[ f(x) <g(x)}

(i) {x € Q[ f(x) = g(x)}

(ii)) {x € Q[ f(x) # g(x)}

in &/ enthalten.
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Konvention zum Rechnen mit £oo: Multiplikation

| - J-oo]b<0][b=0[b>0]+

—00 || o0 | +o0 0 —00 | —00
a<0| 4+oo| ab 0 ab | —oo
a= 0 0 0 0 0

a>0| —oco| ab 0 ab |+
400 || —o0 | —00 0 400 | 400




Messbarkeit von Summen und Produkten

Proposition (5.9)

Ist g : Q — R .&/-messbar, dann gilt dasselbe fiir die Funktion
a+ bg fiir alle a, b € R.

Sind f,g: Q2 — R zwei 7-messbare Funktionen, dann sind auch
die Funktion f £+ g und fg messbar beziiglich <7, sofern sie auf
ganz Q definiert sind.
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Messbarkeit von Supremum und Infimum

Sei (fp)nev eine Folge von o7-messbaren Funktionen. Dann sind
auch die Funktionen sup f,, inf f,, limsup f, und liminf f, messbar
beziiglich <.




Messbarkeit und punktweise Konvergenz

Folgerung (5.12)

(i) Sind f, ..., f, : © — R messbare Funktionen beziiglich .27,
dann gilt dasselbe fiir x — min{f(x), ..., f,(x)} und
x = max{fi(x), ..., f(x)}.

(i) Ist (fa)new eine Folge o/-messbarer Funktionen, die
punktweise gegen eine Funktion f : Q — R konvergiert,
dann ist auch f eine «/-messbare Funktion.




Zerlegung in einen positiven und einen negativen Anteil

Ist f: Q — R eine beliebige Funktion, dann definieren wir
Funktionen f* und f~ durch f*(x) = max{0, f(x)} und
f~(x) = —min{0, f(x)}. Es gilt dann f = f* — f~ und
[fl=f*+f".

Folgerung (5.13)

Eine Funktion f : Q — R ist genau dann «/-messbar, wenn f* und
f~ beide o7-messbar sind. Ist die Funktion f messbar beziiglich <7,
dann gilt dasselbe fiir |f].
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Definition der Stufenfunktionen

Definition (6.1)

Als o7-Stufenfunktion bezeichnen wir eine nichtnegative,
2/-messbare Funktion f : Q@ — R, die nur endlich viele reelle Werte
annimmt. Die Menge der o-Stufenfunktionen bezeichnen wir mit

E(Q, 7).




Eigenschaften von Stufenfunktionen

Proposition (6.2)

Eine Funktion f : 2 — R ist genau dann eine .o/-Stufenfunktion,
wenn ein n € INg, paarweise disjunkte Mengen Ay, ..., A, € & mit

Q = AU..UA,

und uy, ..., u, € R, existieren, so dass f = Z,’-’:l uily, erfiillt ist.

V.

Proposition (6.3)

Sind f, g € E(Q, /), dann sind auch die Funktionen f + g, fg,
max{f, g} und min{f, g} in E(Q, o) enthalten.




Definition des p-Integrals von Stufenfunktionen (Vorb.)

Lemma (6.4)
Sei f € E(Q, /), und seien

m n
f = Za;lAi = Zﬂlej
i=1 J=1

zwei Darstellungen von f mit m,n € IN, oy, ...,am, B1, ..., Bn € R+
sowie A1, ...,Am, B1,..., B, € &, wobei Ay, ..., Ay und By, ..., B,
jeweils paarweise disjunkt sind und ihre Vereinigung jeweils Q
ergibt. Dann gilt

Doain(A) =Y Biu(By).
j=1

i=1




Definition des pu-Integrals von Stufenfunktionen

Sei (Q, <7, 1) ein MaBraum.

Definition (6.5)

Das p-Integral einer Funktion f € E(Q, /) der Form
f=>",uila, mit u, ..., un € Ry und paarweise disjunkten
Al .0, An € & mit Q = A1 U ... UA,, ist definiert durch

/f dp = ZUiM(Ai),
—1

wobei wir ujp(A;) im Fall u; =0, p(A;) = +oo gleich Null setzen.
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