Das Hurwitz-Kriterium

Satz (16.9)

Sei $A \in \mathcal{M}_{n,\mathbb{R}}$ eine symmetrische Matrix und A_k jeweils die linke obere $k \times k$ -Teilmatrix, für $1 \le k \le n$. Genau dann ist A positiv definit, wenn

$$\det(A_k) > 0$$
 für $1 \le k \le n$

erfüllt ist.

Beweis ion Satz 16 9 (Fortzetzing) geg. A & Mn. R symmetrish mit det (Ak) > 0 Pair 15 ksn 2 27. A ist positive definit dh ba (v, v) > 0 fin alle ve R" (10 Ruf, wohen baly, w) = tv A w Sei Ek = (21 ek) Uk = (Ek) = Rh × 101 1-12 Bk: Uk × Uk -> IR gag dood die Einschräntung von &A and den Unterveletorraum Uk des IR" Areate: Zeige duch willst I'd who ke dass la fin 15 /2 5 n positiv definit ist (Readle: Bn = BA

Br. Uk x Uk -> IR gog dood die Einschränkung von &A
and don laboureblowan Under IR" ad-Ant Sei V = U1, V = (V1, 0,, 0) und V1 + 0
Dan gelt by (v, v) = ty Ay = (v, 0 0) A () = v, an.
Dans gelt $b_{A}(v,v) = t_{V}A_{V} = (v_{1},0,,0)A_{0}^{(0)} = v_{1}^{2}a_{M}$. augustem: $A_{1} = (a_{11}) \Rightarrow a_{11} = det(A_{1}) > 0 \Rightarrow G_{A}(v,v) > 0$
Also lit b. positiv detenut. 71 - hould See techno, n-17, setes brans, dass by positiv
1) 2 300 EVEL OF POSITIV DELIVE
Da by positive defenit vid existing and ON-Bosis (1011
SI - TTI (811) Works TIME TO STATE OF THE ST
projetation and the bezochnet und $\tilde{u} = e_{k+1} - u$. Dann gilt $\tilde{u} \perp U_k$ legel like. Setze $\tilde{B} = (u_1, \dots, u_k, \tilde{u})$
The state of the s

	NAME OF TAXABLE PARTY.
Wegen U LUx existion dann ain a ER so dass	
de Dordellingsmatrix Mz (bkr) choch (E ()	
Angeodem gild det MB(brn) = 1 a = a	6
und April = MEKIN (BKIN) Setze T = JB	4
Des Sate von Bosiswechsel (fi. Bilmeaforne) lufeit Mg(len) = TMg(len) T =	Α.
det Me (liker) = def (T) det (Me (liker)) =>	-27
$\alpha = \det(\tau)^2 \det(A_{k+1})$ T is invertical	= 1

Dorans folgy, dass limi postzú defonit ist,

Folgerungen aus dem Hurwitz-Kriterium

Folgerung (16.10)

Eine Matrix $A \in \mathcal{M}_{n,\mathbb{R}}$ ist genau dann negativ definit, wenn $(-1)^k \det(A_k) > 0$ für $1 \le k \le n$ erfüllt ist.

Proposition (16.11)

Sei V ein endlich-dimensionaler \mathbb{R} -Vektorraum und b eine symmetrische Bilinearform auf V. Sei \mathcal{B} eine geordnete Basis von V und $A=\mathcal{M}_{\mathcal{B}}(b)$. Unter diesen Voraussetzungen ist b genau dann positiv definit, wenn A positiv definit ist.

Die orthogonale Gruppe

Definition (16.12)

- Eine Matrix $A \in \mathcal{M}_{n,\mathbb{R}}$ wird orthogonal genannt, wenn ${}^{\mathrm{t}}AA = E_n$ gilt.
- Die orthogonalen Matrizen bilden eine Untergruppe von $GL_n(\mathbb{R})$, die sogenannte orthogonale Gruppe $\mathcal{O}(n)$.
- Die Untergruppe $SO(n) = \{A \in \mathcal{O}(n) \mid \det(A) = 1\}$ wird spezielle orthogonale Gruppe genannt.

Nachweis des Cyroppeneugenschaft won A = O(n) invertiellar it, wolfe A-=tA · liberprife zunachst: A, BE O(n) -> ABE ON Also hifed die Matrizum multiplekation une

	Les sales over 1 of 1 and more to a server
1	Associativaesete
$\bar{\psi}_{\mathcal{D}}(v)$	· Neutralebound: tEn En = En En = En
	= En ∈ O(n) angedem; A En = En A = A
	A V & O(V)
	o Inverse: Zeige Rundstal dass für alle A €
	GLn(IR) sewers $t(A^{-1}) = (tA)^{-1}$ gala
	genight an istopisten, t(A-1). tA = En
	$t(A^{-1})$. $tA = t(AA^{-1}) = tE_n$
	= En.
	Scinm A & O(n) Beb. A -1 & O(n) Esquit + (A-1) A -1 = (A + A) -1 A -1 = (A + A) -1
	1 - 9 (M - (A) M - (M A)
1	

= $(AA^{-1})^{-1}$ = En^{-1} = En^{-1} = En^{-1} | Eh.)

Lua der Beh. folgt. duess A^{-1} die Truserse von A in du Grappe O(n) ist.

Bespiele fix orthogonale Matrizen in O(2)(1) Drehingen $D_{X} = \begin{pmatrix} \cos(x) & -\sin(x) \\ \sin(x) & \cos(x) \end{pmatrix}$, $x \in \mathbb{R}$ (Durhing un $O_{\mathbb{R}^{2}}$ with blutted or graph den Ultzergessinh)

(2) Spregeling an der x - Archse $S_{X} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ (3) Spregeling an der y - Archse $S_{Y} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

(Es gult Dx = SO(2), Sx. Sy & SO(2).)

(4) Speegulung an emir beliebryen Achse S

Dx Sx D-a worker x & R so gewählt wird dass

his x-Achse and die Achse s gedrecht wird

Kriterium für Orthogonaliät

Proposition (16.13)

Eine Matrix $A \in \mathcal{M}_{n,\mathbb{R}}$ ist genau dann orthogonal, wenn $\langle Av, Aw \rangle = \langle v, w \rangle$ für alle $v, w \in \mathbb{R}^n$ gilt.

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} M_{i} S_{ij} = \sum_{i=1}^{n} \lambda_{i} M_{i} S_{ii}$$

$$= \sum_{i=1}^{m} \lambda_{i} M_{i} = \langle v, w \rangle$$

$$= \sum_{i=1}^{n} \lambda_{i} M_{i} = \langle v, w \rangle$$

$$= \sum_{i=1}^{n} \lambda_{i} M_{i} = \langle v, w \rangle$$

$$= \sum_{i=1}^{n} \lambda_{i} M_{i} S_{ii}$$

$$= \sum_{i=1}^{n} \lambda_{i} M_{i} S$$

Bewegungen und Translationen

Definition (16.14)

Eine Bewegung im \mathbb{R}^n ist eine bijektive, abstandserhaltende Abbildung $\phi: \mathbb{R}^n \to \mathbb{R}^n$, also eine bijektive Abbildung mit der Eigenschaft, dass $\|\phi(v) - \phi(w)\| = \|v - w\|$ für alle $v, w \in \mathbb{R}^n$ gilt.

Ein wichtige Klasse von Beispielen für Bewegungen sind die Translationen, die Abbildungen der Form

$$\tau_u: \mathbb{R}^n \to \mathbb{R}^n$$
 , $v \mapsto u + v$

mit einem festen Vektor $u \in \mathbb{R}^n$.

Zwei Hilfsaussagen

Lemma (16.15)

Für alle $v, w \in \mathbb{R}^n$ gilt $\langle v, w \rangle = \frac{1}{2} \|v + w\|^2 - \frac{1}{2} \|v\|^2 - \frac{1}{2} \|w\|^2$.

Lemma (16.16)

Sei $\psi: \mathbb{R}^n \to \mathbb{R}^n$ eine Abbildung mit $\langle \psi(v), \psi(w) \rangle = \langle v, w \rangle$ für alle $v, w \in \mathbb{R}^n$. Dann gibt es eine Matrix $A \in \mathcal{O}(n)$ mit $\psi = \phi_A$, insbesondere ist ψ linear.

geg NEN 4: R" - IR" Albelding mit der Eigenschaft (4(v), 4(w)) = (v, w) (x) fri alle v. w E R1 Beh: E gilt and Matrix A & O(n) unt Y=0 Aus (x) tolet, does mit (en, en) auch Sei ve R", and soien him, In so detrined, does 4(v) = 5 dy 4(e) gild. Beh. $v = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$, d'h die Komponante vy van v strinut

Dirans folgt min, doss & liear ist, denn. Some vive R' and de R = v= 5 vie md w = 5 wie; => V+N = 5 (vi+ vi) ei md NV = 5 NV & = > + (V+W) = 5 5 (V_+tW_)+(e) = 5 u(+(e) 1 5 w, +(e) = +(v) + +(w) (5) und Y() = = > > y +(e) - > = v; Y(e) & luear => 7 A & Mr. R mit 4 = \$A Fir alle v. w = P gilt (Av. Aw) = (pA(v), pa(v))

= (4(v), 4(w) > = (v, w) A in (9(n) begt.	Davans Folgt, dass	
Para and	A CONTRACTOR OF THE PARTY OF TH	

Explizite Beschreibung der Bewegungen

Satz (16.17)

Die Bewegungen in \mathbb{R}^n sind genau die Abbildungen der Form $\tau_u \circ \phi_A$, mit $u \in \mathbb{R}^n$ und $A \in \mathcal{O}(n)$. Die Darstellung dieser Form ist eindeutig. Liegt A sogar in $\mathrm{SO}(n)$, dann spricht man von einer orientierungserhaltenden, ansonsten von einer orientierungsumkehrenden Bewegung.