Definition der Winkelfunktionen

Definition (14.10)

Sei $(V,\|\cdot\|)$ ein normierter \mathbb{R} -Vektorraum mit einer Orthogonalität \bot und $V^\times = V \setminus \{0_V\}$. Eine Winkelfunktion bezüglich $(V,\|\cdot\|,\bot)$ ist eine Abbildung $\angle:V^\times\times V^\times \to [0,\pi]$, die für alle $v,w\in V^\times$ folgende Bedingungen erfüllt.

- (i) $\angle(v,v) = 0$ und $\angle(v,w) = \angle(w,v)$
- (ii) $\angle(v,w) = \angle(v,\lambda w)$ für alle $\lambda \in \mathbb{R}^+$
- (iii) $\angle(v, w) + \angle(w, -v) = \pi$
- (iv) Aus $v \perp w$ folgt $\angle(v, w) = \frac{1}{2}\pi$.
- (v) Aus $v \perp (w v)$ folgt $\cos \angle (v, w) = \frac{\|v\|}{\|w\|}$.

Die Cauchy-Schwarz'sche Ungleichung

Satz (14.16)

Sei (V,b) ein euklidischer \mathbb{R} -Vektorraum, und sei $\|\cdot\|_b:V\to\mathbb{R}_+$ die Funktion definiert durch $\|v\|_b=\sqrt{b(v,v)}$ für $v\in V$. Dann gilt für alle $v,w\in V$

- (i) die sog. Cauchy-Schwarz'sche Ungleichung $|b(v, w)| \le ||v||_b ||w||_b$,
- (ii) die Dreiecksungleichung $||v + w||_b \le ||v||_b + ||w||_b$.

Dabei ist die Ungleichung (i) genau dann mit Gleichheit erfüllt, wenn v, w linear abhängig sind. Darüber hinaus ist durch $\|\cdot\|_b$ eine Norm auf V definiert. Man nennt sie die von b induzierte Norm.

Winkel in euklidischen Vektorräumen

Satz (14.18)

Sei (V, b) ein euklidischer Vektorraum. Dann ist auf dem normierten \mathbb{R} -Vektorraum $(V, \|\cdot\|_b)$ durch

$$v \perp_b w \Leftrightarrow b(v, w) = 0$$

eine Orthogonalität definiert, und die eindeutig bestimmte Funktion $\angle_b: V^{\times} \times V^{\times} \to [0, \pi]$ mit

$$\cos \angle_b(v,w) = \frac{b(v,w)}{\|v\|_b \|w\|_b}$$
 für alle $v,w \in V^{ imes}$

ist eine Winkelfunktion bezüglich $(V, \|\cdot\|_b, \perp_b)$.

Bowers con Satz 14, 18:

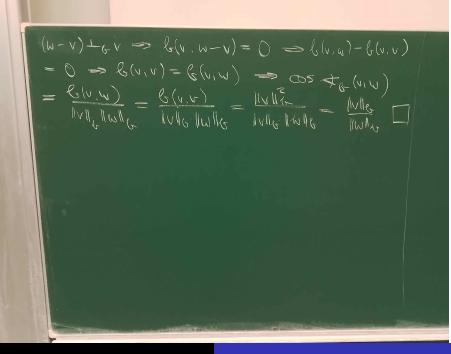
- · zw Othogonalitat Le. suche Skript

 $X_{e} \cdot V^{\times} \times V^{\times} \rightarrow [0, \pi]$ mix $\cos X_{e}(v, u) = \frac{b(v, u)}{\|v\|_{e}} \|u\|_{e}$

Cauchy-Schwarzsche Ungleichung = 16(v.w)] = 1 - lolv,w) = [-1,1] Analysis unt Voriebla =>

The WEV an weitoes Element, dann gelt COS \$ 6(V,W) = 6(0,W) $\frac{3d_{11}}{2} \frac{10 \, \text{lg}}{10 \, \text{lg}} \frac{$ $=\frac{\lambda}{|\lambda|} \infty \star_{\mathcal{G}}(\nu, u) \stackrel{\lambda>0}{=} \infty \star_{\mathcal{G}}(\nu, u) \Longrightarrow \star_{\mathcal{G}}(\nu, \lambda u) = \star_{\mathcal{G}}(\nu, u)$

Entire) Seven
$$v.w \in V^*$$
, $x = \underbrace{\langle v, w \rangle}$, $\beta = \underbrace{\langle v, w \rangle}$, $\beta = \underbrace{\langle w, -v \rangle}$
 $224 - x + \beta = \pi$
 $\cos(\beta) = \frac{\beta(w, -v)}{\|w\|_{C} \|v\|_{C}} = -\cos(\alpha)$
 $\cos(\beta) = \frac{\beta(w, -v)}{\|w\|_{C} \|v\|_{C}} = \frac{\beta(w, -v)}{\|v\|_{C} \|v\|_{C}}$
 $\cos(\beta) = \frac{\beta(w, -v)}{\|v\|_{C} \|v\|_{C}} = \frac{\beta(w, -v)}{\|v\|_{C} \|v\|_{C}}$
 $\cos(\beta) = \frac{\beta(w, -v)}{\|v\|_{C} \|v\|_{C}} = \frac{\beta(w, -v)}{\|v\|_{C} \|v\|_{C}}$
 $\cos(\beta) = \frac{\beta(w, -v)}{\|v\|_{C} \|v\|_{C}} = \frac{\beta(w, -v)}{\|v\|_{C} \|v\|_{C}}$



Definition der p-Normen auf dem \mathbb{R}^n

Satz (1.1)

Auf dem \mathbb{R} -Vektorraum $V=\mathbb{R}^n$ ist für jedes $p\in\mathbb{R}$, $p\geq 1$ durch

$$||x||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}, \quad x = (x_1, ..., x_n) \in V$$

eine Norm definiert, die sogenannte *p*-Norm. Eine weitere Norm erhält man durch

$$||x||_{\infty} = \max\{|x_1|,...,|x_n|\}$$
, die Supremumsnorm.

Beweis von Salz 11:
Eninering: Noon out even R-Veletorraum V = Abl.
1.11. V - 1R+ mit IVI = 0 = V=0V, 112V 11 = 121 1/V/1.
Ivtu 11x 11v11+ 11v11 Yv.w EV
Ulroprihage de Nomergenshaffen was 11 ls
Coon vive RM v = 0 -> max (v_1 , v_1 + = 0 =>
Im adservet: 10 pm 1 st - max (101,, 101 f - 0
Souve R", HER. Su ke (1,, N), so doss lux marrial
Dan of MVKI = MINKI de manuale Betrag are Komponente
I won 24 121/10 = 121/10/100

Son $u \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$. See ke $\{1,, n\}$, so does lux marrial
Seen v.w e IR" 2.2g. lv+w1100 5 11v1100 + 11w1100
hogen Hutwlloo = max/lvitual, vatual] genight ex 2.29
= V++ wk = Vk + Wk = VII = + Who
nach. Fir 1< p < to such die orsten beiden Normeigerschaften leicht zu aberprüfen, die Drenedzungleichung aber ist sehn aufwärdig.
outwindig.

LONG THE REAL PROPERTY.

Lemma zur Höldersche Ungleichung

Lemma (1.2)

Seien $p,q\in\mathbb{R}$, p,q>1 mit $\frac{1}{p}+\frac{1}{q}=1$ und $x,y\in\mathbb{R}_+$. Dann gilt

$$x^{1/p}y^{1/q} \quad \leq \quad \frac{x}{p} + \frac{y}{q}.$$

Beweisskizze

- Reduziere die Aussage zunächt auf die $x \ge y > 0$.
- Setzt man $\xi = \frac{x}{y}$ und $\eta = \xi 1$, dann ist die Ungleichung äquivalent zu $(\eta + 1)^{1/p} 1 \le \frac{1}{p}\eta$.
- Diese Ungleichung wiederum erhält man durch Anwendung des Mittelwertsatzes der Differentialrechnung auf die Funktion $\phi(t)=(t+1)^{1/p}$ und das Intervall $[0,\eta]$.

Beweis des Lemmas (Forts.)

Beweisskizze (Forts.)

- Demnach existiert ein $t_0 \in]0, \eta[$ mit $\phi'(t_0) = \phi(\eta) \phi(0)$.
- Die rechte Seite dieser Gleichung stimmt mit

$$(\eta+1)^{1/p}-1$$
 überein.

• Für die linke Seite gilt $\phi'(t_0) = \eta \cdot \frac{1}{p} (t_0 + 1)^{1/p-1} \le \frac{1}{p} \eta$.

Die Höldersche Ungleichung

Proposition (1.3)

Seien $x,y\in\mathbb{R}^n$, $x=(x_1,...,x_n)$ und $y=(y_1,...,y_n)$, und seien $p,q\in\mathbb{R}$ mit p,q>1 und $\frac{1}{p}+\frac{1}{q}=1$ vorgegeben. Dann gilt

$$\sum_{i=1}^{n} |x_i| \cdot |y_i| \leq \|x\|_p \|y\|_q.$$

Die Höldersche Ungleichung für p=q=2 ist genau die Cauchy-Schwarzsche Ungleichung.

Beweisskizze

• Anwendung des Lemmas auf die Zahlen $\frac{|x_i|^p}{\|x\|_p^p}$ und $\frac{|y_i|^q}{\|y\|_q^q}$ liefert für $1 \le i \le n$ jeweils

$$\frac{|x_i|}{\|x\|_p} \frac{|y_i|}{\|y\|_q} \le \frac{1}{p} \frac{|x_i|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_i|^q}{\|y\|_q^q}$$

Beweis der Hölderschen Ungleichung (Forts.)

Beweisskizze (Forts.)

- Außerdem gilt $\sum_{i=1}^{n} |x_i|^p = ||x||_p$ und $\sum_{i=1}^{n} |x_i|^q = ||x||_q$.
- Insgesamt kann die Summe durch 1 abgeschätzt werden. $\sum_{i=1}^{n} \frac{|x_i|}{\|x\|_p} \frac{|y_i|}{\|y\|_q}$
- Die Höldersche Ungleichung erhält man nun durch Multiplikation mit $\|x\|_p \|y\|_q$.

Herleitung der Dreiecksungleichung für $\|\cdot\|_p$

Beweisskizze

- Seien $x, y \in \mathbb{R}^n$ mit $x + y \neq 0_{\mathbb{R}^n}$.
- Sei $q \in \mathbb{R}^+$ die Zahl mit $\frac{1}{p} + \frac{1}{q} = 1$.
- Setze $z_i = (x_i + y_i)^{p-1}$. Die Höldersche Ungleichung liefert

$$||x+y||_p^p = \sum_{i=1}^n |x_i + y_i|^p \le$$

$$\sum_{i=1}^n |x_i| |x_i + y_i|^{p-1} + \sum_{i=1}^n |y_i| |x_i + y_i|^{p-1} =$$

$$\sum_{i=1}^n |x_i| |z_i| + \sum_{i=1}^n |y_i| |z_i| \le ||x||_p ||z||_q + ||y||_p ||z||_q.$$

Herleitung der Dreiecksungleichung für $\|\cdot\|_p$ (Forts.)

Beweisskizze

• Setzt man die Definition von $||z||_q$ ein, dann ergibt eine kurze Rechnung, dass die rechte Seite mit

$$||x||_p \cdot ||x+y||_p^{p-1} + ||y||_p \cdot ||x+y||_p^{p-1}$$
 übereinstimmt.

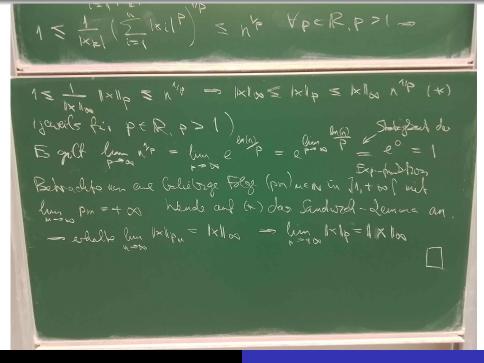
• Division der Ungleichung durch $||x + y||_p^{p-1}$ liefert das gewünschte Ergebnis.

Die Maximumsnorm als Grenzwert der p-Normen

Proposition (1.4)

Für alle $x \in \mathbb{R}^n$ gilt $\lim_{p \to \infty} ||x||_p = ||x||_{\infty}$.

Beweis con Proposition 14. 22 × E R" 22 lim 11x11p = 1x11 x Setze x + 0 Rm wrans Sei kell, , nf so genablt, dess 1×11 Diese kann rach unten abgaschätzt



Definition der Äquivalenz von Normen

Definition (1.5)

Zwei Normen $\|\cdot\|$ und $\|\cdot\|'$ auf einem \mathbb{R} -Vektorraum V werden als äquivalent bezeichnet, wenn reelle Konstanten $\gamma_1,\gamma_2>0$ mit der Eigenschaft

$$\gamma_1 ||x|| \le ||x||' \le \gamma_2 ||x||$$
 für alle $x \in V$ existieren.

Durch die Äquivalenz ist eine Äquivalenzrelation auf der Menge aller Normen auf V definiert.

Geometrische Interpretation der Aquivalenz

Sei $(V, \|\cdot\|)$ ein normierter \mathbb{R} -Vektorraum. Sei außerden $a \in V$ und $r \in \mathbb{R}^+$.

Definition des offenen Balls vom Radius r um a

$$B_{\|\cdot\|,r}(a) = \{x \in V \mid \|x - a\| < r\}$$

Definition des abgeschlossenen Balls vom Radius r um a

$$\bar{B}_{\|\cdot\|,r}(a) = \{x \in V \mid \|x - a\| \le r\}$$

Proposition (1.6)

Sei $\delta \in \mathbb{R}^+$. Dann ist die Ungleichung $\|x\|' \leq \delta \|x\|$ für alle $x \in V$ gleichbedeutend mit $B_{\|\cdot\|,r}(a) \subseteq B_{\|\cdot\|',\delta r}(a)$ für $a \in V$ und $r \in \mathbb{R}^+$. Eine entsprechende Aussage gilt auch für die abgeschlossenen Bälle.

and einem 1R-Veltowarm V ist die Bedingung, dass Konstanten y. S e Rt veisliven, so Jass Del abogsellossene Ball von Rading r um der Pant ac V buy are Norm III: BILION = (xeV | K-aller) (Abbitioning BILLE = BILLE (OV) = (x EV | IXII SE) B | | | (a) = | x \ \ | | |x - a | < - }

Beispiele fin abgesillessere Bille in IR2: $B_{1/2,T} = \{x \in \mathbb{R}^2 \mid ||x||_2 \leq r \} = \{x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq r \}$ za Aquirelenz von 1- md 2- Norm auf IR?

Benes on Proposition 1.61 ">> / / × / × / × / × / / × / / × / = 39 BIII, (a) S BIII S (a) (*) Seive B|| || (a) => || v-a|| < r - 1v-all' = & lv-all < &r => V E BINGER (a) "=" Ang (*) & shall finalle ac V, aber 1x11 > 5 |x| fr: en x V abeparte: Dean fill Exe B III fin T= 1x11' meden 18×1=81×1, < L

Andressets gill also 8x & BIII'. 8r