Der Grad einer Korpererweiterung

Definition (15.5)

Ist L|K eine Korpererweiterung, dann definieren die beiden
Abbildungen

+:LxL—>L, (,B)—a+pf und -:KxL—L, (aa)— ax

eine auf L. Dabei bezeichnet man
[L: K] =dimgk L als den Grad der Kérpererweiterung. Ist [L : K]
endlich, dann nennt man L|K eine endliche K&rpererweiterung.




Algebraische und transzendente Elemente

Definition (15.7)

Sei L|K eine Kérpererweiterung. Ein Element o € L heiBit
algebraisch iiber K, wenn ein Polynom f # 0 in K[x] mit der
Eigenschaft existiert, dass « eine von f ist. Gibt es ein
solches Polynom nicht, dann nennt man « transzendent iiber K.

Definition (15.8)

Sei L|K eine Korpererweiterung, und sei o € L algebraisch iiber K.
Dann gibt es ein eindeutig bestimmtes, normiertes Polynom
feKlx], f#0 mit f(a) = 0. Man nennt f das
Minimalpolynom von « iiber K. Wir bezeichnen es mit i, k-




Die Struktur einfacher algebraischer Erweiterungen

Satz (15.10)

Sei L|K eine Kérpererweiterung, e € L algebraisch iiber K,
f = po,k und n = grad(f). Dann bilden die Elemente

eine von K(«) als K-Vektorraum. Insbesondere gilt
[K() : K] = n.
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Algebraische Erweiterungen als Faktorring

Satz (15.11)

Sei L|K eine Korpererweiterung, v € L algebraisch iiber K und
f = o, k- Dann gibt es einen Isomorphismus

¢ K[x]/(f) — K(a) mit ¢(g+(f)) = g(a) fiir alle g € K[x].

Dabei bezeichnet K(«) den von « erzeugten Zwischenkdrper der
Erweiterung L|K.
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Existenz algebraischer Erweiterungen

Sei K ein Korper und f € K|[x] ein irreduzibles Polynom. Dann
gibt es eine Korpererweiterung L|K und ein Element o € L mit
f(a) =0.
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Algebraische Korpererweiterungen

Definition (15.13)

Eine Korpererweiterung L|K wird algebraisch genannt, wenn jedes
Element o € L algebraisch iiber K ist.

Proposition (15.14)

Sei L|K eine Kérpererweiterung.

(i) Ist L|K endlich, dann auch algebraisch.

(i) Sind aq, ..., € L algebraisch tiber K und gilt
L =K(ai,...,a,), dann ist die Erweiterung L|K endlich
(also insbesondere algebraisch).

Es gibt aber unendliche algebraisch Erweiterungen, zum Beispiel
Q(S)Q mit S={V2|neN}.
I
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Eigenschaften algebraischer Erweiterungen

(i) Sei L|K eine Korpererweiterung und T C L die Teilmenge
bestehend aus den Elementen, die algebraisch iiber K sind.
Dann ist T ein Teilkorper von L.

(ii) Seien L|K und M|L Korpererweiterungen. Genau dann ist die
Erweiterung M|K algebraisch, wenn die Erweiterungen L|K
und M|L beide algebraisch sind.

Folgerung (15.16)

Ist L|K eine Korpererweiterung und S C L eine Teilmenge mit der
Eigenschaft, dass jedes o € S algebraisch liber K ist, dann ist
K(S)|K eine algebraische Erweiterung.
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