Ringisomorphismen und Einheiten

Lemma (14.10)
Seien R und S Ringe. Dann gilt
(i) (RxS)* =R x 5%
(ii) Ist ¢ : R — S ein Isomorphismus von Ringen, dann gilt

d(R*) = §*. Insbesondere sind die Einheitengruppen R*
und S* also isomorph.

Sind m, n € N teilerfremd, dann gilt auf Grund des Chinesischen
Restsatzes also

(Z/mnZ)* = (Z/mZXZ/nZ)* = (Z/mZ)*x(Z/nZ)*.



Existenz von Primitivwurzeln

Sei K ein Korper und U eine endliche Untergruppe der
multiplikativen Gruppe K*. Dann ist U zyklisch. Insbesondere ist
die multiplikative Gruppe eines endlichen Korpers immer eine
zyklische Gruppe.

Folgerung (14.14)
Ist p eine Primzahl, dann gilt (Z/pZ)* = Z/(p — 1)Z.

Eine Zahl a € Z mit der Eigenschaft (Z/pZ)* = (a + pZ) wird
Primitivwurzel modulo p genannt.



Kongruenzen modulo einer Primzahlpotenz

(i) Sei p eine ungerade Primzahl und m € IN. Dann gilt
(14 p)P"" = 1mod p™ und (14 p)P" " # 1 mod p™*L.

(i) Fiir alle me N, m > 2 gilt 52" = 1 mod 2™ und
52" % 1 mod 2m+1.
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Struktur der primen Restklassengruppen

Satz (14.16)
(i) Fir jede ungerade Primzahl p und jedes m € IN ist
(Z/p™7Z)* eine zyklische Gruppe der Ordnung p™~1(p — 1).
(i) Es gilt (Z/27Z)* = {1} und (Z/4Z)* = 7./27.
Fiir alle m > 3 existiert jeweils ein Isomorphismus
(Z/2"Z)* = Z)27. x Z./]2™?7Z.
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§15. Endliche und algebraische Korpererweiterungen

Bereits in §9 haben wir die Begriffe , Teilkorper*,
»Erweiterungskorper” und ,, Korpererweiterung” eingefiihrt.

Definition (15.1)

Sei L|K eine Korererweiterung. Ein Zwischenkdrper von L|K ein
Teilkorper von L, der zugleich Erweiterungskorper von K ist.




Erzeugendensysteme von Teilkorpern

Satz (15.2)

Sei Z]K eine Korpererweiterung und S C [ eine Teilmenge. Dann
gibt es einen eindeutig bestimmten Zwischenkorper L von L|K mit
den Eigenschaften

() LDS

(i) Fiir jeden weiteren Zwischenkorper L’ von L|K mit L' D S
gilt ' D L.

Insgesamt ist L also der kleinste Zwischenkorper von L|K mit der
Eigenschaft L O S.

Wir bezeichnen den Koérper L mit K(S) und nennen ihn den von
der Teilmenge S iliber K erzeugten Teilkdrper von L.



Eigenschaften erzeugter Teilkorper

Proposition (15.3)

Sei Z|K eine Korpererweiterung, und seien S und T beliebige
Teilmengen von L. Dann gilt

K(SUT) = K(S)(T).

Proposition (15.4)

Sei Z|K eine Koérpererweiterung und a € L. Dann gilt

K(a) = {2‘3 ‘ fgec K[X],g(a)¢o}.
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Der Grad einer Korpererweiterung
Definition (15.5)

Ist L|K eine Korpererweiterung, dann definieren die beiden
Abbildungen

+:LxL—>L, (,B)—a+f und -:KxL—L, (aa)— ax

eine auf L. Dabei bezeichnet man
[L: K] =dimg L als den Grad der Kérpererweiterung. Ist [L : K]
endlich, dann nennt man L|K eine endliche K&rpererweiterung.

Seien L|K und M|L endliche Kérpererweiterungen. Dann ist auch
die Kérpererweiterung M|K endlich, und es gilt

M:K] = [M:L]-[L:K].
I
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