Der Chinesische Restsatz

Satz (14.6)
Sei R ein Ring, I, ..., I, paarweise teilerfremde Ideale in R und
I =15h-... I, Dann gibt es einen Isomorphismus von Ringen
¢: R/l — (R/h) x ... x (R/1)
mit _
pla+1)=(a+h,...,a+ ) firalle acR.




Losbarkeit von Kongruenzsystemen

Satz (14.7)

Seien r € IN mit r > 2, auBerdem ny, ..., n, € IN paarweise
teilerfremde natiirliche Zahlen und n = H}:l n;. Seien
Cl,..., ¢+ € Z. Dann ist die Losungsmenge £ C Z des
Kongruenzsystems

XxX=cmodn , x=cmodn, , .. , Xx=c modn,

nicht leer. Ist a € L beliebig gewahlt, dann gilt
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Berechnung einer Losung eines Kongruenzsystems

Seien m, n € NN teilerfremd und ¢, d € Z. Gesucht wird eine
Losung des Systems x = ¢ mod m, x = d mod n.

(1) Bestimme mit Hilfe des Euklidischen Algorithmus Zahlen
u,v € Z mit um+ vn = ggT(m,n) = 1.
(2) Berechne a; =1—um=vnund ap =1 — a;.

(3) Setze a = ca; + day. Dies ist eine Losung des Systems. Die
gesamte Losungsmenge ist gegeben durch £ = a + mnZ.
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Losungen im nicht-teilerfremden Fall

Satz (14.8)
Seien m,n € IN und a, b € Z. Wir betrachten die Ldsungsmenge
L C 7, des Kongruenzsystems

x=amodm , x=bmodn.

(i) Es gilt £ # @ genau dann, wenn a = bmod d
erfiillt ist, mit d = ggT(m, n).

(i) Sei £ € Z mit b= a+ (d, auBerdem m' = % und n’ = Z.
Sei ¢ eine Losung des Systems
Dann ist die Lésungsmenge des urspriinglichen Systems
gegeben durch £ = a+ dc + kgV(m, n)Z.




Losungen von Polynomgleichungen

Satz (14.9)

Seien m,n € N teilerfremd und f € Z[x]. Es bezeichne N die
Menge der Nullstellen von f in Z/(mn)Z, und N, bzw. N, die

Menge der Nullstellen von f in Z/mZ bzw. Z/nZ. Dann existiert
eine

PN = Np x N,

mit ¥(a + mnZ) = (a+ mZ,a + nZ) fir alle a € Z mit
a+mnZ eN.
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Ringisomorphismen und Einheiten

Lemma (14.10)
Seien R und S Ringe. Dann gilt
(i) (RxS)*=R*xS*
(ii) Ist ¢ : R — S ein Isomorphismus von Ringen, dann gilt

¢(R*) = S*. Insbesondere sind die Einheitengruppen R*
und S* also isomorph.

Proposition (14.11)

Sind m, n teilerfremd und m, n > 2. Dann gilt fiir die Eulersche
-Funktion die Rechenregel p(mn) = o(m)p(n).




Der Exponent einer Gruppe

Der Exponent exp(G) einer Gruppe G ist die kleinste Zahl n € IN
mit der Eigenschaft g” = e fiir alle g € G. Existiert keine
natiirliche Zahl mit dieser Eigenschaft, dann setzt man

exp(G) = +o0.

Proposition (14.12)

Sei G eine endliche abelsche Gruppe vom Exponenten n. Dann
existiert in G ein Element der Ordnung n.
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Existenz von Primitivwurzeln

Sei K ein Korper und U eine endliche Untergruppe der
multiplikativen Gruppe K*. Dann ist U zyklisch. Insbesondere ist
die multiplikative Gruppe eines endlichen Korpers immer eine
zyklische Gruppe.

Folgerung (14.14)
Ist p eine Primzahl, dann gilt (Z/pZ)* = Z/(p — 1)Z.

Eine Zahl a € Z mit der Eigenschaft (Z/pZ)* = (a + pZ) wird
Primitivwurzel modulo p genannt.
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