Das Eisenstein-Kriterium

Satz (13.11)
Sei R ein faktorieller Ring, p € R ein Primelement und f € R[x]
ein primitives Polynom vom Grad n > 0. Es sei
f=anx"+ an_1x"1+ ...+ a;x + ag mit ag, ..., a, € R, und wir
setzen voraus, dass die Koeffizienten von f folgende Bedingungen
erfiillen.

(i) plaj fir0<i<n

(i) ptan
(i) % 1 20
Dann ist f in R[x] irreduzibel.




Das Reduktionskriterium

Sei R ein faktorieller Ring, p € R ein Primelement und R = R/(p).
Essei f =) " ,aix’ € R[x] ein primitives Polynom mit a, ¢ (p)
und f das Bild von f in R[x]. Ist f in R[x] irreduzibel, dann auch
das Polynom f in R[x].
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§14. Kongruenzrechnung und Chinesischer Restsatz

Erinnerung: Seien a,b € Z und n € IN.
bedeutet: n | (b — a)

Proposition (14.1)

Seien m,n € IN, auBerdem a, b, c,d € Z und p eine Primzahl.

(i) Ausa=c mod nund b= d mod n folgt
a+b=c+d mod nund ab=cd mod n.

(i) Gilt a= b mod n und ist m ein Teiler von n,
dann folgt a= b mod m.

(iii) Es gilt a= b mod n genau dann, wenn ma = mb mod mn
erfiillt ist.

(iv) Es gilt a» = a mod p. Unter der zusatzlichen Voraussetzung
p 1 a gilt dariiber hinaus a?~! =1 mod p.

Die Aussage (iv) ist auch als Kleiner Satz von Fermat bekannt.
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Teilerfremdheit von Idealen

Definition (14.2)
Sei R ein Ring. Zwei Ideale I, J in R werden teilerfremd genannt,
wenn [ + J = (1) gilt, wobei (1) wie iiblich das Einheitsideal in R

bezeichnet.

Sei R = Z, und seien m, n € IN. Genau dann sind die Ideale
I = (m) und J = (n) teilerfremd, wenn m, n als natiirliche Zahlen

teilerfremd sind.
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Beweis des Chinesischen Restsatzes - Vorbereitungen

Lemma (14.4)

Sei R ein Ring, und seien i, ..., I,, J Ideale in R, wobei I, ..., I,
jeweils teilerfremd zu J sind. Dann ist auch das Produkt f - ... - I,
teilerfremd zu J.

Sei R ein Ring, und seien /1, ..., I, Ideale in R, die paarweise
teilerfremd sind. Dann gilt

heo-ln=hn.. .0l
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Der Chinesische Restsatz

Satz (14.6)
Sei R ein Ring, I, ..., I, paarweise teilerfremde Ideale in R und
I =15h-... I, Dann gibt es einen Isomorphismus von Ringen
¢: R/l — (R/h) x ... x (R/1)
mit _
pla+1)=(a+h,...,a+ ) firalle acR.
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Losbarkeit von Kongruenzsystemen

Satz (14.7)

Seien r € IN mit r > 2, auBerdem ny, ..., n, € IN paarweise
teilerfremde natiirliche Zahlen und n = H}:l n;. Seien
Cl,..., ¢+ € Z. Dann ist die Losungsmenge £ C Z des
Kongruenzsystems

XxX=cmodn , x=cmodn, , .. , Xx=c modn,

nicht leer. Ist a € L beliebig gewahlt, dann gilt
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