§13. lrreduzibilitatskriterien und GauB'sches Lemma

Proposition (13.1)
Sei K ein Kérper und f € K|[x] nicht konstant, also f ¢ K.
(i) Ist grad(f) =1, dann ist f im Ring K|[x] irreduzibel.
(i) Im Fall grad(f) € {2,3} ist f genau dann irreduzibel, wenn
f in K keine Nullstelle besitzt.
(iii) Im Fall grad(f) € {4,5} ist f genau dann irreduzibel, wenn
f in K keine Nullstelle besitzt und durch kein normiertes,
irreduzibles Polynom vom Grad 2 teilbar ist.
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Nullstellen in Quotientenkdrpern

Satz (13.2)

Sei R ein faktorieller Ring, K sein Quotientenkérper und f € R[x]
ein Polynom vom Grad n > 1. Sei f = apx" + ... + a1x + ag mit
ag,...,an € R.

(i) Ist & € K eine Nulstelle von f, a = g mit p,q € R und
q # 0, wobei p und q teilerfremd sind, dann gilt q | a,
und p | agp.

(i) Ist insbesondere f normiert, also a, = 1, dann liegt a in R
und ist ein Teiler von ag.

Anwendungsbeispiel:
Das Polynom f = x3 — x + 2 ist irreduzibel in Q[x].
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Definition der primitiven Polynome

Definition (13.4)

Sei R ein faktorieller Ring und f = >"7_ akx* € R[x]. Wir nennen
das Polynom f primitiv, wenn f # 0 ist und die Koeffizienten
aop, ..., ap keinen gemeinsamen Primteiler besitzen.




Beispiele fiir primitive Polynome

(i) Normierte Polynome in R[x] sind primitiv.

(i) Das Polynom 2x? + 4x + 6 ist nicht primitiv, denn es gilt
ggT(2,4,6) = 2.

(iii) Ist R ein Integritidtsbereich und f € R[x] ein irreduzibles
Element vom Grad > 1, dann ist f primitiv.



Polynome als Vielfache von primitiven Polynomen

Sei R ein faktorieller Ring und K sein Quotientenkdrper. Sind
ai,...,an € K* beliebig vorgegeben, dann gibt ein oo € K*, so dass
die Elemente a) = aa; in R liegen und ggT(al, ..., a),) = 1 gilt.

Folgerung (13.5)

Sei R ein faktorieller Ring, K sein Quotientenkdrper und f € K|[x]
ein Polynom mit f = 0. Dann gibt es ein @ € K*, so dass af in
R[x] liegt und primitiv ist.




Beweis des GauB'schen Lemmas (Vorbereitungen)

Notation:
Sei R ein Integritatsbereich, p C R ein Primideal, R = R/p und

7 : R — R der kanonische Epimorphismus. Dann bezeichnet

pixl = PRI

die Menge aller Polynome, deren Koeffizienten in p enthalten sind.



Primideale in Polynomringen

Lemma (13.6)

Der Homomorphismus ¢ : R[x] — R[x] gegeben durch

n n
Z a,-x’ g Z 7r(a,-)x,-
i=0 i=0

induziert einen Isomorphismus R[x]/p[x] = R[x] von Ringen.

Folgerung (13.7)
Das Ideal p[x] ist ein Primideal in R[x].
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Das GauB'sche Lemma

Sei R ein faktorieller Ring, und seien f, g € R[x] primitive
Polynome. Dann ist auch fg primitiv.

Dieser Satz ist unter dem Namen ,,Lemma von GauB* bekannt.

Satz (13.9)

Sei R ein faktorieller Ring, K sein Quotientenkérper und f € R[x]
ein Polynom mit grad(f) > 1.

(i) Ist g € R[x] ein primitives Polynom mit der Eigenschaft,
dass g ein Teiler von f in K[x] ist, so ist g bereits ein Teiler
von f

(i) Ist f irreduzibel in R[x], dann auch in K[x].

v
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Polynomringe iiber faktoriellen Ringen

Ist R ein faktorieller Ring, dann ist auch R[x] faktoriell.




Das Eisenstein-Kriterium

Satz (13.11)
Sei R ein faktorieller Ring, p € R ein Primelement und f € R[x]
ein primitives Polynom vom Grad n > 0. Es sei
f=anx"+ an_1x"1+ ...+ a;x + ag mit ag, ..., a, € R, und wir
setzen voraus, dass die Koeffizienten von f folgende Bedingungen
erfiillen.

(i) plaj fir0<i<n

(i) ptan
(i) % 1 20
Dann ist f in R[x] irreduzibel.




|

/

‘\-.\MAL&,@Q:Q;-&sPLL‘JO\ L s Ecsws‘rf/m— K&{
R=x*t2x+ b &k tvedunibel wm 207 (und
N Solz 12 Y domdk udh i O] ) den
s do= b Gi=2 @, t AP=2
= olh plas, play \?l\'qz M\f,{»% :
AMss & {on 2K coeed. nodh b Brsaste, —
LSk A w 4

%



Korrektur: Beweis von Satz 13.11
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