Die Untergruppen einer zyklischen Gruppe, Teil I

Satz (3.7)

Jede Untergruppe einer zyklischen Gruppe ist zyklisch. Genauer gilt: Sei G eine zyklische Gruppe, g ein Element mit $G = \langle g \rangle$ und U eine Untergruppe $\neq \{e_G\}$. Dann gibt es ein $m \in \mathbb{N}$ mit

$$U = \langle g^m \rangle.$$

Ist ord(g) = n endlich, dann kann die Zahl m so gewählt werden, dass sie ein Teiler von n ist.

Die Untergruppen einer zyklischen Gruppe, Teil II

Satz (3.11)

Sei G eine zyklische Gruppe und $g \in G$ mit $G = \langle g \rangle$.

- (i) Ist $\operatorname{ord}(g) = \infty$, dann sind die verschiedenen Untergruppen von G gegeben durch $U_0 = \{e_G\}$ und $U_m = \langle g^m \rangle$, wobei m die natürlichen Zahlen durchläuft.
- (ii) Ist $\operatorname{ord}(g) = n$ endlich, dann sind $U_d = \langle g^d \rangle$ die verschiedenen Untergruppen von G, wobei d die Teiler von n durchläuft. Dabei gilt jeweils $|U_d| = \frac{n}{d}$.
- In (i) und (ii) gilt $U_m\subseteq U_{m'}$ für $m,m'\in\mathbb{N}$ genau dann, wenn m' ein Teiler von m ist.

Beweis von Satz 3.11 (Absolluss) noch zzg Aus Um = Um, folgt m=m' (in fall ord (g) = 00 fix beliefrage natritude Zahlen, in Fall in and mi. Um = Um: => Um & Um, and Umi & Um Somilm and minimum minimum mem Also said fir m + m' die Untergroppen Um, Um' tabachlich verschieden

Also said	fir m + m' die Untergryppen Um, Um'
Seispiel.	Unbergrippen enner zyletischen Groppe G = (g) der Ordning 12 (d.h. ord (g) = 12)
	G=U_1=(9) ₁₂ Ordning der U_2=(9 ²) ₆ U ₃ =(9 ³) ₄ Untergrappa
	U4 = <94>3
	12 = < 3,5 > = 461

Charakterisierung der zyklischen Gruppen

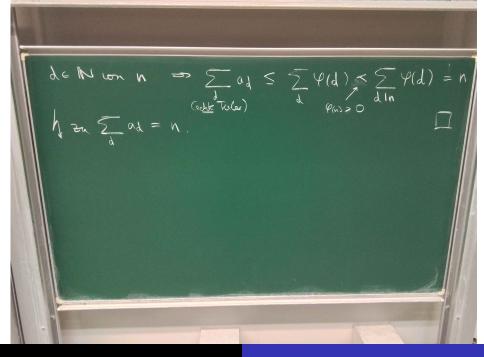
Satz (3.12)

Sei G eine endliche Gruppe der Ordnung n mit der Eigenschaft, dass G für jedes Teiler $d \in \mathbb{N}$ von n genau eine Untergruppe U_d mit $|U_d| = d$ besitzt. Dann ist G eine zyklische Gruppe.

Buveis con Satz 3 12 geg ne N. G Grappe de Ordning n Voranssebrung. Für jeden Teiler d EM von n hat G genon are Untergrappe. zzz. G est zyllish 1 Shrift: Baxese du Gleidung 5 P(d) = n Sei Hens zyzlishe Gouppe der Ordning n. Sate i Lagrange - Die Ordning jedes Elements he Hist ein Teile de Ni von n

Jedes Element des Ordning d hieft in der eindentry bestringten unkegsappe Vd won H de also. Es girl genan ((d) Elenente des Ordring d'in ganz H. Die Gesantzahl der Diere Gesantrall Est glach 141 = n. 2 Shrift: Boureis dos Anssage dos Salzes zerge: Es gilt in Gein ge G mit and (g) = n. (Own fligh (= (g > d.h

G is dann zyklich Ang. is existent tern soldies Element. Ordung of by G Dam gilt & ad = h Ang, fris de gett es mind en Flanant des Odang de bezuerne dieses mit g -> (9) ist die envige diese Uniongo enthalla gran (1d) Flenente de Orden d



Der Kleine Satz von Fermat

Folgerung (3.13)

Für jede Primzahl p und alle $a \in \mathbb{Z}$ gilt $a^p \equiv a \mod p$. Ist p kein Teiler von a, dann gilt darüber hinaus $a^{p-1} \equiv 1 \mod p$.

§ 4. Gruppenhomomorphismen

Definition (4.1)

Sind (G,*) und (H,\circ) Gruppen, so bezeichnet man eine Abbildung $\phi:G\to H$ als Gruppenhomomorphismus, wenn $\phi(g*g')=\phi(g)\circ\phi(g')$ für alle $g,g'\in G$ gilt.

Lemma (4.2)

Sei ϕ ein Homomorphismus zwischen den Gruppen (G,*) und (H,\circ) . Dann gilt

$$\phi(e_G) = e_H$$
 und $\phi(g^{-1}) = \phi(g)^{-1}$ für alle $g \in G$.

Busis ion Lemma 42: geg. Genppen (G,*), (H, o), Grappenhon O:G-H = 29: (i) \$ (eg) = en (ii) \$ (g-1) = \$ (g) - 1 \$ ge G $\frac{\partial u(i)}{\partial u(e_G)} = \phi(e_G + e_G) = \phi(e_G)$ - \$ (ec) = eH = \$ \$ (eg) = eH $\frac{1}{2n \ln 3}$ Set $\frac{1}{3} = \frac{1}{3} \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{$ φ(eg) = en - φ(g) · φ(g) · φ(g') = φ(g) · εμ = eno p (g-1) = p(g) - en = p(g-1) = p(g) -

Spezielle Arten von Homomorphismen

Definition (4.3)

Seien (G, *) und (H, \circ) Gruppen und $\phi : G \to H$ ein Homomorphismus von Gruppen. Man bezeichnet ϕ als

- (i) Monomorphismus, wenn ϕ injektiv
- (ii) Epimorphismus, wenn ϕ surjektiv
- (iii) Isomorphismus, wenn ϕ bijektiv ist.

Zwei Gruppen G und H sind also genau dann zueinander isomorph, wenn ein Isomorphismus $\phi: G \to H$ existiert.

Ergänzungen zum Homomorphismus-Begriff

- Einen Gruppen-Homomorphismus $\phi: G \to G$ von (G, \cdot) nach (G, \cdot) bezeichnet man als Endomorphismus von G.
- ullet Ist die Abbildung ϕ außerdem bijektiv, dann spricht man von einem Automorphismus der Gruppe G.
- Die Menge der Endomorphismen bezeichnen wir mit $\operatorname{End}(G)$, die der Automorphismen mit $\operatorname{Aut}(G)$.

Anwendung von Homomorphismen und Potenzierung

Lemma (4.4)

Ist $\phi: G \to H$ ein Gruppenhomomorphismus, dann gilt $\phi(g^n) = \phi(g)^n$ für alle $g \in G$ und $n \in \mathbb{Z}$.

Entil
$$\phi(e_G) \circ \phi(e_G) = \phi(e_G \circ e_G) = \phi(e_G)$$

Bevers on Lemma 44

gog Grappenhorn $\phi: G \to H$. $g \in G$

Rel: $\phi(g^n) = \phi(g)^n$ $\forall n \in \mathbb{Z}$

Zage die Gleichung zindchst für alle ne Me durch vollst.

Industria. Ind. And: $\phi(g^o) = \phi(e_G)$ bemark?

Ind. Shrift: Sei ne M, setze $\phi(g^n) = \phi(g)^n$ orans.

 $\phi(g^{nn}) = \phi(g^n, g) = \phi(g^n) \phi(g) = \phi(g)^n \phi(g) = \phi(g)^{n+1}$

Zeicze die Gleichung noch für negetive genze Zahlen

Sei $n \in M$. Dann gilt $\phi(g^n) = \phi(g^n) = \phi(g^n)$

Isomorphie von Permutationsgruppen

Satz (4.5)

Seien X,Y Mengen und $\phi:X\to Y$ eine Bijektion. Dann ist durch die Abbildung

$$\hat{\phi}: \operatorname{Per}(X) \to \operatorname{Per}(Y)$$
, $\sigma \mapsto \phi \circ \sigma \circ \phi^{-1}$

ein Isomorphismus von Gruppen definiert.

Auf Grund des Satzes gilt $\operatorname{Per}(X) \cong S_n$ für jede *n*-elementige Menge X.

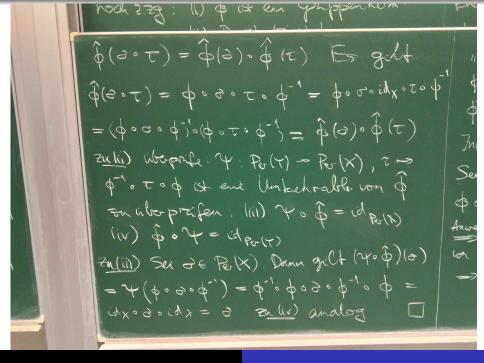
Beweis von Satz 4.5 yeg: Mengen X, Y, Bijetetión P: X = T For jedes & Fr(X) ist possos em Element von Per(Y), denn die Kompositeon bijektive Affoldingen ist brijeretis. = shalle duch $\phi(d) = \phi \circ d \circ \phi^{-1}$ are Abbelding Po(X) -> Por(Y) roch z.zg: li) & st ein Gappenhom (ii) of 1st bijetetiv Zuli) Seien of te Per(X) 2 zg

4

low

End

phis



Die Automorphismen als invertierbare Elemente

Sei (G, \cdot) eine Gruppe.

- Sind $\phi_1, \phi_2 \in \operatorname{End}(G)$, dann auch $\phi_1 \circ \phi_2$.
- Die Verknüpfung \circ auf $\operatorname{End}(G)$ erfüllt das Assoziativgesetz.
- Außerdem gilt $\phi_1 \circ \mathrm{id}_G = \mathrm{id}_G \circ \phi_1 = \phi_1$ für alle $\phi_1 \in \mathrm{End}(G)$. Also ist $(\mathrm{End}(G), \circ)$ ein Monoid.

Proposition (4.6)

Die invertierbaren Elemente in $\operatorname{End}(G)$ sind genau die Automorphismen der Gruppe G.

Beweis lon Proposition 4.6 See G eve Grappe and $\phi \in \operatorname{End}(G)$ Bh: $\phi \in Add(G) \Longrightarrow \phi$ invertisation in Monord (End(G), o) 200 of invertibles => 7 4 € End (G) mit Trop=ide and pory=ide = 74 ist die lakehrabbilding won p = p ist ein bijdetiver Endomorphismus ion G -> & ist in Antonor phismus won G.

"> " Ser $\phi \in And(G)$ = $\phi \in End(G)$ and p ist-bije bliv zeige: Die Unbehrabilding \$ con & height in End(G). (Danut & O das p)(0)

Die Automorphismengruppe einer Gruppe

Aus der Tatsache, dass die invertierbaren Elemente eines Monoids eine Gruppe bilden, folgt nun

Satz (4.7)

Die Automorphismen einer Gruppe G bilden mit der Verknüpfung \circ selbst eine Gruppe. Man nennt sie die Automorphismengruppe $\operatorname{Aut}(G)$ der Gruppe G.

Ergänzung:

Ist $\phi:G\to H$ ein Isomorphismus von Gruppen, dann gilt dasselbe für die Umkehrabbildung $\phi^{-1}:H\to G$.