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Abstract
Let k be a field of characteristic 0. Let G be an exceptional simple

algebraic group over k of type F4, 1E6 or E7 with trivial Tits algebras.
Let X be a projective G-homogeneous variety. If G is of type E7 we
assume in addition that the respective parabolic subgroup is of type
P7. The main result of the paper says that the degree map on the
group of zero cycles of X is injective.

1 Introduction

Let k be a field and G a simple algebraic group over k. Consider a projective
G-homogeneous variety X over k. Any such variety over the separable clo-
sure ks of k becomes isomorphic to the quotient Gs/P , where P is a parabolic
subgroup of the split group Gs = G×k ks. It is known that conjugacy classes
of parabolic subgroups of Gs are in one-to-one correspondence with subsets
of the vertices Π of the Dynkin diagram of Gs: we say a parabolic subgroup
is of type θ ⊂ Π and denote it by Pθ if it is conjugate to a standard parabolic
subgroup generated by the Borel subgroup and all unipotent subgroups cor-
responding to roots in the span of Π with no θ terms (see [TW02, 42.3.1]).

In the present paper we assume the field k has characteristic 0, G is an
exceptional simple algebraic group over k of type F4,

1E6 or E7 with trivial
Tits algebras and X is a projective G-homogeneous variety over k. The goal
of the paper is to compute the group of zero-cycles CH0(X) which is an
important geometric invariant of a variety. Namely, we prove

Theorem. Let k be a field of characteristic 0. Let G be an exceptional simple
algebraic group over k of type F4,

1E6 or E7 with trivial Tits algebras and X
a projective G-homogeneous variety over k. If G is of type E7 we assume in
addition that X corresponds to the parabolic subgroup of type P7. Then the
degree map CH0(X) → Z is injective.
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The history of the question starts with the work of I. Panin [Pa84], where
he proved the injectivity of the degree map for Severi-Brauer varieties. For
quadrics this was proved by R. Swan in [Sw89]. The case of involution
varieties was considered by A. Merkurjev in [Me95]. For varieties of type F4

it was announced by M. Rost.
Our work was mostly motivated by the paper of D. Krashen [Kr05], where

he reformulated the question in terms of R-triviality of certain symmetric
powers and proved the injectivity for a wide class of generalized Severi-
Brauer varieties and some involutive varieties, hence, generalizing the previ-
ously known results by Panin and Merkurjev. Another motivating point is
the result of V. Popov [Po05], which gives a full classification of generically
n-transitive actions of a split linear algebraic group G on a projective homo-
geneous variety G/P . For instance, the case of a Cayley plane X = G/P1,
where G is split of type E6 (see [IM05]), provides an example of such an
action for n = 3. As a consequence, one can identify the open orbit (S3X)0

of the induced action on the third symmetric power with a homogeneous
variety G/(T ·Spin8), where T is the torus which is complementary to Spin8.
Then by the result of Krashen one reduces the question of injectivity to the
question of R-triviality of a twisted form of (S3X)0/S3.

Apart from the main result concerning exceptional varieties we provide
shortened proofs of the injectivity of the degree map in cases of quadrics and
Severi-Brauer varieties.

Recently V. Chernousov and A. Merkurjev have obtained an independent
proof of the same results in any characteristic using Rost Invariant and Chain
Lemma (see [CM]). Our proof doesn’t use those tools but only the geometry
of and some basic facts about projective homogeneous varieties.

The paper is organized as follows. In the first section we provide several
facts about zero-cycles and symmetric powers. Then we prove the theorem
for twisted forms of a Cayley plane (here the prime 3 plays the crucial role).
In the next section we prove the injectivity in the case of a twisted form of
a homogeneous variety of type E7 (this deals with the prime 2). Combining
these two results together with certain facts about rational correspondences
we finish the proof of the theorem.
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2 Zero cycles and symmetric powers

In the present section we remind several results and definitions of paper
[Kr05] concerning the group of zero-cycles of a projective variety X and the
group of R-equivalence classes of certain symmetric powers of X.

2.1. We shall systematically use the language of Galois descent, i.e., identify
a quasi-projective variety X over k with the variety Xs = X ×k ks over the
separable closure ks equipped with an obvious action of the absolute Galois
group Γ = Gal(ks/k). By means of this identification the set of k-rational
points of X is the set of ks-rational points of Xs invariant under the action
of Γ.

Let X be a variety over k. Two rational points p, q ∈ X(k) are called
elementary linked if there exists a rational morphism ϕ : P1

k 99K X such that
p, q ∈ Im(ϕ(k)). The R-equivalence is the equivalence relation generated by
this relation. A variety X is called R-trivial if the set of rational points is
non-empty and any two rational points are R-equivalent. A variety X is
called algebraically R-trivial if XK = X ×k K is R-trivial for any finite field
extension K/k.

The n-th symmetric power of X is defined to be the quotient SnX =
Xn/Sn, where Sn is the symmetric group acting on the product Xn =
X × . . .×X︸ ︷︷ ︸

n

by permuting the factors.

Let p be a prime number. A field k is called prime-to-p closed if there is
no proper finite field extension K/k of degree prime to p. For any field k we
denote by kp a prime-to-p closed algebraic extension of k.

Let X be a projective variety over k. By C̃H0(X) we denote the kernel
of the degree map

C̃H0(X) = Ker(deg : CH0(X) → Z).

The following results will be extensively used in the sequel

2.2 Lemma. ([Kr05, Lemma 1.3]) If C̃H0(Xkp) = 0 for each prime p, then

C̃H0(X) = 0.

2.3 Proposition. ([Kr05, Theorem 1.4]) Suppose that k is prime-to-p closed
and the following conditions are satisfied:

• for some integer n ≥ 0 the pn-th symmetric power Spn
X is algebraically

R-trivial;

3



• for any field extension K/k such that X(K) 6= ∅ the variety XK is
R-trivial.

Then C̃H0(X) = 0.

2.4. As an immediate consequence of these results we obtain the proof of the
fact that C̃H0(SB(A)) = 0, where A is a central simple algebra over k and
SB(A) is the respective Severi-Brauer variety (see [Pa84, Theorem 2.3.7]).

For simplicity we may assume degA = p is prime. By Lemma 2.2 we may
assume the base field k is prime-to-p closed (for a prime q different from p
the algebra A splits over kq).

According to Proposition 2.3 it suffices to show that the p-th symmetric
power Sp SB(AK) is R-trivial for every finite field extension K/k (the second
hypothesis of 2.3 holds for any twisted flag variety). Changing the base we
may assume K = k. If A is split, the assertion is trivial, so we may assume
A is a division algebra.

According to our conventions (see 2.1) Severi-Brauer variety SB(A) is the
variety of all parabolic subgroups P of type P1 in the group PGL1(A⊗k ks)
with the action of Γ coming from its action on ks. Therefore, SpX is the
variety of all unordered p-tuples [P (1), . . . , P (p)] of parabolic subgroups of
type P1 of PGL1(A ⊗k ks). Let U be an open subset of SpX defined by
the condition that the intersection P (1) ∩ . . . ∩ P (p) is a maximal torus in
PGL1(A ⊗k ks). Every maximal torus T in PGL1(A ⊗k ks) is contained in
precisely p parabolic subgroups of type P1 whose intersection is T . Therefore,
U is isomorphic to the variety of all maximal tori in PGL1(A). This variety
is known to be rational and, hence, R-trivial (since it is homogeneous). To
finish the proof observe that the open embedding U → SpX is surjective on
k-points. So SpX is R-trivial.

2.5. The same method can be applied to prove that C̃H0(Q) = 0 for a
nonsingular projective quadric Q over a field of characteristic 0 (the result
of Swan [Sw89]).

As above we may assume that p = 2 and Q is anisotropic. It suffices to
prove that S2Q is R-trivial. Let q be the corresponding quadratic form on
a vector space V . The quadric Q can be viewed as the variety of lines 〈v〉,
where v ∈ V ⊗k ks satisfies q(v) = 0, with an obvious action of Γ. Its second
symmetric power S2Q can be identified with the variety of pairs [〈v1〉, 〈v2〉] of
lines (satisfying the same property), with the induced action of Γ. Consider
the open subset U defined by the condition bq(v1, v2) 6= 0 (bq stands for the
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polarization of q). Clearly, the embedding U → S2Q is surjective on k-points
(otherwise the subspace 〈v1, v2〉 defines a totally isotropic subspace over k).
So it is enough to check that U is R-trivial.

Consider the open subvariety W of Gr(2, V ) consisting of planes H ⊂
V ⊗k ks such that q|H is nonsingular. For every such a plane there exists (up
to scalar factors) exactly one hyperbolic basis {v1, v2} over ks. Therefore,
the map from U to W sending [〈v1〉, 〈v2〉] to 〈v1, v2〉 is an isomorphism. But
any open subvariety of Gr(2, V ) is R-trivial, and we are done.

We shall use in the sequel the following observation.

2.6 Lemma. Let H ⊂ K ⊂ G be algebraic groups over k. Suppose that the
map H1(k,H) → H1(k,K) is surjective. Then the morphism G/H → G/K
is surjective on k-points.

Proof. An element x of G/K(k) is represented by an element g ∈ G(ks)
satisfying the condition γ(σ) = g−1 · σg lies in K(ks) for all σ ∈ Γ. But γ
is clearly a 1-cocycle with coefficients in K. Therefore by assumption, there
exists some h ∈ K such that h−1γ(σ) · σh = (gh)−1 · σ(gh) is a 1-cocycle with
coefficients in H. But then gh represents an element of G/H(k) which goes
to x under the morphism G/H → G/K.

3 Twisted forms of a Cayley plane

In the present section we prove the injectivity of the degree map in the case
when X is a twisted form of a Cayley plane.

3.1. Let J denote a simple exceptional 27-dimensional Jordan algebra over
k, and NJ its norm (which is a cubic form on J). An invertible linear map
f : J → J is called a similitude if there exists some α ∈ k∗ (called the
multiplier of f) such that NJ(f(v)) = αNJ(v) for all v ∈ J . The group
G = Sim(J) of all similitudes is a reductive group whose semisimple part
has type 1E6, and every group of type 1E6 with trivial Tits algebras can be
obtained in this way up to isogeny (see [Ga01, Theorem 1.4]). The (twisted)
Cayley plane OP2(J) is the variety of all parabolic subgroups of type P1 in
Sim(J). Over the separable closure ks this variety can be identified with the
variety of all lines 〈e〉 spanned by elements e ∈ Js = J ⊗k ks satisfying the
condition e× e = 0 (see [Ga01, Theorem 7.2]).
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The goal of the present section is to prove

3.2 Theorem. C̃H0(OP2(J)) = 0.

We start the proof with the following easy reduction.

3.3. By Proposition 2.3 it is enough to prove that (SpOP2(J)) ×k K is R-
trivial for any prime p and any finite field extension K/kp. Changing the
base we may assume K = kp. Moreover, we may assume that the algebra
J is not reduced (otherwise OP2(J) is a rational homogeneous variety and,
hence, is R-trivial).

Assume p 6= 3, then OP2(J)(kp) 6= ∅ and, hence, is R-trivial. Indeed,
choose any cubic étale subalgebra L of J (see [Inv, Proposition 39.20]).
It splits over kp and, therefore, L ⊗k kp contains a primitive idempotent
e. As an element of J ⊗k kp it satisfies the condition e × e = 0 (see [SV,
Lemma 5.2.1(i)]). So we may assume p = 3.

3.4. From now on p = 3 and the field k is prime-to-p closed. By definition
S3(OP2(J)) is the variety of all unordered triples [〈e1〉, 〈e2〉, 〈e3〉], where ei

are the elements of Js = J ⊗k ks satisfying the conditions ei × ei = 0, with
the natural action of Γ. Denote by U the open subvariety of OP2(J) defined
by the condition

NJs(e1, e2, e3) 6= 0,

where N is the polarization of the norm.
The embedding U → S3(OP2(J)) is surjective on k-points. Indeed, if

[〈e1〉, 〈e2〉, 〈e3〉] is stable under the action of Γ and NJs(e1, e2, e3) = 0, then
〈e1, e2, e3〉 gives by descent a k-defined subspace V of J such that N |V = 0.
But then J is reduced by [SV, Theorem 5.5.2], which leads to a contradiction.
So it is enough to show that U is R-trivial.

3.5. Choose a cubic étale subalgebra L in J . Over the separable closure this
algebra can be represented as

L⊗k ks = kse1 ⊕ kse2 ⊕ kse3,

where e1, e2, e3 ∈ Js are primitive idempotents. We have ei × ei = 0, i =
1, 2, 3; the norm NJs(e1, e2, e3) = NL⊗kks(e1, e2, e3) is non-trivial and the
triple [e1, e2, e3] is invariant under the action of Γ (so is L). Hence, the triple
[〈e1〉, 〈e2〉, 〈e3〉] is a k-rational point of U .
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By [SV68, Proposition 3.12] the group G acts transitively on U . There-
fore, we have

U ' G/ StabG([〈e1〉, 〈e2〉, 〈e3〉]).
The stabilizer is defined over k, since it is invariant under the action of Γ.
Moreover, it coincides with StabG(L). Indeed, one inclusion is obvious, and
the other one follows from the fact that e1, e2, e3 are the only elements e
of L ⊗k ks satisfying the condition e × e = 0 up to scalar factors (see [SV,
Theorem 5.5.1]).

3.6. Consider the Springer decomposition J = L ⊕ V of J with respect to
L. The pair (L, V ) has a natural structure of a twisted composition, and
there is a monomorphism Aut(L, V ) → Aut(J) sending a pair (ϕ, t) (where
ϕ : L → L, t : V → V ) to ϕ ⊕ t : J → J (see [Inv, § 38.A]). Note that
Aut(L, V ) coincides with the stabilizer of L in Aut(J).

3.7 Lemma. The following sequence of algebraic groups is exact

1 −→ Aut(L, V ) −→ StabG(L) −→ RL/k(Gm) −→ 1,

f 7→ f(1)

where RL/k stands for the Weil restriction.

Proof. Exactness at the middle term follows from 3.6 and the fact that the
stabilizer of 1 in G coincides with Aut(J) (see [SV, Proposition 5.9.4]). To
prove the exactness at the last term observe that a ks-point of RL/k(Gm) is a
triple of scalars (α0, α1, α2) ∈ k∗s ×k∗s ×k∗s . We have to find f ∈ StabG(L)(ks)
which sends 1 to diag(α0, α1, α2).

Assume first that α0α1α2 = 1. Choose a related triple (t0, t1, t2) of ele-
ments of GO+(Od, NOd

) (Od is the split Cayley algebra) such that µ(ti) = αi,
i = 0, 1, 2 (see [Inv, Corollary 35.5]). Now the transformation f of J defined
by ε0 c2 ·

· ε1 c0
c1 · ε2

 7→

 α0ε0 t2(c2) ·
· α1ε1 t0(c0)

t1(c1) · α2ε2


lies in Sim(J) by [Ga01, (7.3)], stabilizes L⊗k ks = diag(ks, ks, ks) and sends
1 ∈ Js to diag(α0, α1, α2).

In general case set α′i = αi(α0α1α2)
− 1

3 (i = 1, 2, 3), find f ′ such that
f ′(1) = diag(α′1, α

′
2, α

′
3), and define f to be the product of f ′ and the scalar

transformation of Js with the coefficient (α0α1α2)
1
3 (which is an element of

StabG(L)(ks)).
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3.8. Since H1(k, L∗) = 1 (by Hilbert ’90), the map H1(k,Aut(L, V )) →
H1(k, StabG(L)) is surjective. By Lemma 2.6 the morphism

G/Aut(L, V ) → G/ StabG(L) ' U

is surjective on k-points. Therefore, it suffices to show that G/Aut(L, V ) is
R-trivial.

3.9. Consider the morphism

ψ : G/Aut(L, V ) → G/Aut(J).

By [Kr05, Corollary 3.14] it suffices to show that

1. ψ is surjective on k-points;

2. G/Aut(J) is R-trivial;

3. The fibers of ψ (which are isomorphic to Aut(J)/Aut(L, V )) are uni-
rational and R-trivial.

3.10. In order to prove surjectivity of ψ on k-points it is enough by Lemma 2.6
to prove surjectivity of the map H1(k,Aut(L, V )) → H1(k,Aut(J)). The set
H1(k,Aut(L, V )) classifies all twisted compositions (L′, V ′) which become
isomorphic to (L, V ) over ks and H1(k,Aut(J)) classifies all (exceptional 27-
dimensional) Jordan algebras J ′. It is easy to verify that the morphism sends
(L′, V ′) to the Jordan algebra L′⊕V ′ and, hence, the surjectivity follows from
the fact that any Jordan algebra admits a Springer decomposition (cf. [Inv,
Proposition 38.7]).

3.11. Let W be the open subvariety of J consisting of elements v with
NJ(v) 6= 0. Then G acts transitively on W (see [SV, Proposition 5.9.3])
and the stabilizer of the point 1 coincides with Aut(J). So G/Aut(J) ' W
is clearly R-trivial.

3.12. Consider the variety Y of all étale cubic subalgebras of J . By [Inv,
Proposition 39.20(1)] there is a map from an open subvariety J0 of regular
elements in J to Y (sending a to k[a]), surjective on k-points. Therefore Y
is unirational and R-trivial 24-dimensional irreducible variety.

The group Aut(J) acts on Y naturally. Let L′ be any k-point of Y . The
stabilizer of L′ in Aut(J) is equal to Aut(L′, V ′) (J = L′⊕V ′ is the Springer
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decomposition). So the orbit of L′ is isomorphic to Aut(J)/Aut(L′, V ′) and,
in particular, has dimension 24. Therefore, it is open and, since L′ is arbi-
trary, the action is transitive. So Aut(J)/Aut(L, V ) ' Y is unirational and
R-trivial and the proof of the theorem is completed.

4 The case of E7/P7

In the present Section we prove the injectivity of the degree map for twisted
forms of a projective homogeneous variety corresponding to an exceptional
group of type E7 and a parabolic subgroup of type P7.

4.1. Let B denote a 56-dimensional Brown algebra over k. It defines (up to
a scalar factor) a skew-symmetric form b on B and a trilinear map t from
B × B × B to B such that (B, t, b) is a Freudenthal triple system (see [Ga01,
Definition 3.1] and [Ga01, § 4]). An invertible linear map f : B → B is
called a similitude if there exists some α ∈ k∗ (called the multiplier of f)
such that b(f(u), f(v)) = αb(u, v) and t(f(u), f(v), f(w)) = αf(t(u, v, w))
for all u, v, w ∈ B. The group G = Sim(B) of all similitudes is a reductive
group whose semisimple part has type E7 and every group of type E7 with
trivial Tits algebras can be obtained in this way up to isogeny (cf. [Ga01,
Theorem 4.16]).

An element e is called singular (or strictly regular following [Fe72]) if
t(e, e,B) ⊆ 〈e〉. In this case t(e, e, v) = 2b(v, e)e for every v ∈ V . An equiva-
lent definition is that t(e, e, e) = 0 and e ∈ t(e, e,B) (see [Fe72, Lemma 3.1]).
An algebra B is called reduced if it contains singular elements. There do ex-
ist anisotropic groups of type E7 with trivial Tits algebras over certain fields
(see [Ti90]).

4.2. Let X(B) be the variety obtained by Galois descent from the variety of
all parabolic subgroups of type P7 in Sim(B ⊗k ks). It can be identified with
the variety of lines 〈e〉 spanned by singular elements e ∈ B ⊗k ks (see [Ga01,
Theorem 7.6]).

The goal of this section is to prove

4.3 Theorem. C̃H0(X(B)) = 0.

We start with the similar reduction as in the case of E6.
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4.4. Assume first that G has Tits index E66
7,1 (see [Ti66, Table II]). Its

anisotropic kernel is of type D6 and, since G has trivial Tits algebras, the
anisotropic kernel corresponds to a 12-dimensional nondegenerate quadratic
form q with split simple factors of its Clifford algebra. A straightforward
computation (see [Br05, Thm. 7.4]) shows that

M(X(B)) 'M(Q)⊕M(Y )(6)⊕M(Q)(17),

where Q is the projective quadric corresponding to q, Y is a twisted form of
the maximal orthogonal grassmanian of a split 12-dimensional quadric, and
M denotes Chow motive. Therefore, C̃H0(X(B)) = C̃H0(Q) = 0, where the
last equality is due to Swan.

4.5. By Proposition 2.3 it is enough to prove that (SpX(B))×kK is R-trivial
for any prime p and any finite field extension K/kp. After the base change it
suffices to prove it for K = kp. Moreover, we may assume B is not reduced
(otherwise X(B) is rational and, hence, R-trivial).

Assume p 6= 2, then B ⊗ kp is reduced by [Fe72, Corollary 3.4] and,
therefore, X(B)(kp) 6= ∅. So we may assume p = 2.

From now on p = 2 and k = kp. Since B is not reduced, the group G has
Tits index either E133

7,0 or E66
7,1 (see [Ti71, 6.5.5] and [Ti66, Table II]). By 4.4

we may assume G is anisotropic (has index E133
7,0 ).

4.6. By definition S2(X(B)) is the variety of all unordered pairs [〈e1〉, 〈e2〉],
where ei are singular elements of B⊗kks, with the natural action of Γ. Denote
by U the open subvariety of X(B) defined by the condition b(e1, e2) 6= 0.

4.7 Lemma. The embedding U → S2(X(B)) is surjective on k-points.

Proof. Consider the diagonal action of G on X(B)×X(B) (we may assume
in this proof that G is simple). Over ks this action has four orbits: the
minimal orbit which is the diagonal and, hence, is isomorphic to Gs/P7, the
open dense orbit which is isomorphic to the quotient Gs/L(P7), where L(P7)
denotes the Levi part of P7, and two locally closed orbits. Indeed, there is
a one-to-one correspondence between the orbits of the Gs-action and double
coset classes P7\Gs/P7 given by mutually inverse mapsGs·(x, y) 7→ P7x

−1yP7

and P7wP7 7→ Gs · (1, w). Observe that the minimal orbit corresponds to the
class of the identity and the open dense orbit to the class of the longest
element w0 of the Weyl group of Gs.
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Consider the diagonal action of G on S2(X(B)). Over ks the subset U
is the open dense orbit in S2(X(B)) (see 4.8). Assume that there exists
a k-rational point on S2(X(B)) \ U . Then the stabilizer H of this point
is a subgroup of G defined over k. Observe that over ks the connected
component of the identity H0 is the stabilizer of one of the non-open orbits
for the action of G on X(B)×X(B) considered above, i.e., it can be identified
with the intersection of two parabolic subgroups H0

s = P7 ∩ wP7w
−1, where

w is the double coset representative corresponding to the orbit. By [DG,
Exposé XXVI, Theorem 4.3.2] H0

s is reductive iff H0
s is the Levi subgroup of

P7, i.e., iff P7wP7 = P7w0P7. Therefore, H0
s is non-reductive and so is H. The

latter implies that G must have a unipotent element over k. But according
to [Ti86, p. 265], if G is anisotropic and char k 6= 2, 3 this is impossible, a
contradiction.

According to the lemma it suffices to show that U is R-trivial.

4.8. The Brown algebra B ⊗k ks is split, that is isomorphic to the Brown
algebra of matrices of the form (

F Jd

Jd F

)
,

where Jd is the split Jordan algebra. Set

e1 =

(
1 0
0 0

)
, e2 =

(
0 0
0 1

)
.

The pair [〈e1〉, 〈e2〉] is stable under an arbitrary semiautomorphism of B⊗kks

(see [Ga01, Proof of Theorem 2.9]) and, in particular, under the action of Γ.
Therefore, [〈e1〉, 〈e2〉] is a k-rational point of U . Moreover, 〈e1, e2〉 defines by
descent the (k-defined) étale quadratic subalgebra L of B.

By [Fe72, Proposition 7.6] G acts transitively on U . Therefore,

U ' G/ StabG([〈e1〉, 〈e2〉]).

This stabilizer clearly coincides with StabG(L) (one inclusion is obvious, and
another one follows from the fact that e1, e2 are the only singular elements
of L⊗k ks up to scalar factors).

4.9 Lemma. There is an exact sequence of algebraic groups

1 −→ Aut(B) −→ StabG(L) −→ RL/k(Gm) −→ 1.

f 7→ f(1)
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Proof. This follows from the fact that the stabilizer of 1 in G coincides with
Aut(B). Indeed, we have an obvious injection Aut(B) → StabG(1). To
prove the surjectivity we can assume that k is separably closed. Let f be
an element of G preserving 1. Since a decomposition into a sum of two non-
orthogonal singular elements is unique by [Fe72, Lemma 3.6] and 1 = e1 +e2,
the element f must preserve the pair [e1, e2]. By [Fe72, Lemma 7.5] f has a
form ηλ

π , where η is a similitude of J with a multiplier ρ, π is a permutation on
{1, 2}, λ ∈ k∗, and ηλ

π acts on B by formulae [Fe72, (15)]. Now it follows that
λ−1ρ−1 = 1 and λ2ρ = 1 and therefore λ = ρ = 1. So f is an automorphism
of B, as claimed. The surjectivity of the last map also follows from [Fe72,
Lemma 7.5].

4.10. Since H1(k, L∗) = 1, the map H1(k,Aut(B)) → H1(k, StabG(L)) is
surjective. By Lemma 2.6 the morphism

G/Aut(B) → G/ StabG(L) ' U

is surjective on k-points. Therefore, it suffices to show that G/Aut(B) is
R-trivial.

4.11. Let W be an open subvariety of B consisting of elements v such that
b(v, t(v, v, v)) 6= 0. Then G acts transitively on W (it follows easily from
[Fe72, Theorem 7.10] or [SK77, p. 140]) and the stabilizer of the point 1
coincides with Aut(B). So G/Aut(B) ' W is R-trivial, and we have finished
the proof of 4.3.

5 Other homogeneous varieties

In this section using the results of [Me] and [Ti66] we finish the proof of the
theorem of the introduction. We start with the following

5.1 Lemma. Let X and Y denote projective homogeneous varieties over a
field k. Assume X is isotropic over the function field of Y and Y is isotropic
over the function field of X. Then the groups of zero-cycles of X and Y are
isomorphic.

Proof. The fact that X is isotropic over k(Y ) is equivalent to the existence
of a rational map Y 99K X. Hence, we have two composable rational maps
f : Y 99K X and g : X 99K Y , and the compositions f ◦g and g◦f correspond
to taking a k(X)-point on X and a k(Y )-point on Y respectively.
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Consider the category of rational correspondences RatCor(k) introduced
in [Me]. The objects of this category are smooth projective varieties over k
and morphisms Mor(X, Y ) = CH0(Yk(X)). The key property of this category
is that the CH0-functor factors through it. Namely, CH0 is a composition
of two functors: the first is given by taking a graph of a rational map (any
rational map gives rise to a morphism in RatCor(k)), the second is the
realization functor (see [Me, Thm. 3.2]).

The maps f and g give rise to the morphisms [f ] and [g] in RatCor(k).
By definition the compositions [f ◦g] and [g ◦f ] give the identity maps in the
category RatCor(k). Hence, the realizations [f ]∗ and [g]∗ give the respective
mutually inverse isomorphisms between CH0(X) and CH0(Y ).

The next lemma finishes the proof of the theorem of introduction.

5.2 Lemma. Let X be an anisotropic projective G-homogeneous variety,
where G is a group of type F4 or 1E6 with trivial Tits algebras. Then
C̃H0(X) = 0.

Proof. According to Lemma 2.2 it is enough to prove the lemma over fields
kp, where p = 2 or 3.

Assume p = 2 and k = k2. Let G be a group of type 1E6. Consider a
Jordan algebra J corresponding to the group G. Since the base field k is
prime-to-2 closed, the algebra J is reduced ([Inv, Theorem 40.8]) and, hence,
comes from an octonion algebra O. Consider the variety Y of norm zero
elements of O (which is an anisotropic Pfister quadric). Since G has trivial
Tits algebras, there are only two Tits diagrams allowed for G and its scalar
extensions, namely, 1E0

6,6 and 1E28
6,2 (see [Ti71, 6.4.5]). Since X is anisotropic

(by the hypothesis), extending the scalars to k(X) adds additional circles
to the respective Tits diagram and, hence, changes it. Therefore, Gk(X)

(equivalently Jk(X)) must be split. The fact that Gk(Y ) (equiv. Jk(Y )) is split
is obvious (see [Inv, Corollary 37.18]). All this means that the varieties Xk(Y )

and Yk(X) are isotropic. By Lemma 5.1 we obtain C̃H0(X) = C̃H0(Y ) = 0,
where the last equality holds by [Sw89].

In the case G is a group of type F4 there are three possible Tits diagrams,
namely, F52

4,0 (anisotropic), F21
4,1 (isotropic) and F0

4,4 (split case). Consider first
the case when X is the variety of parabolic subgroups of type P4. Let Z be
the Pfister form corresponding to the invariant f5. We claim that Xk(Z) and
Zk(X) are isotropic. Obviously, k(X) splits Z. The invariants g3 and f5 are
trivial for the respective Jordan algebra Jk(Z). By [PR94, p. 205] this implies
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that the group Gk(Z) is isotropic, i.e., corresponds to the diagram F21
4,1. Then,

the variety Xk(Z) is isotropic as well. Again by Lemma 5.1 and [Sw89] we

conclude that C̃H0(X) = C̃H0(Z) = 0.
Assume now that X is the variety of parabolic subgroups of type different

from P4. Then there are only two Tits diagrams for G which are interesting
for us, namely, F21

4,1 and F0
4,4. Following the same arguments as for the group

of type 1E6 we prove that C̃H0(X) = 0.
Assume p = 3 and k = k3. In this case there are two Tits diagrams

allowed for G, namely, 1E78
6,0 and 1E0

6,6 (resp. F52
4,0 and F0

4,4). Consider the

pair X and Y = OP2(J). Again the obvious arguments with Tits diagrams

show that Xk(Y ) and Yk(X) are isotropic. We obtain C̃H0(X) = C̃H0(Y ) = 0,
where the last equality holds by Theorem 3.2.
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