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Abstract

Using the Gille-Merkurjev norm principle we compute in a uni-
form way the image of the degree map for quadrics (Springer’s theo-
rem), for twisted forms of maximal orthogonal Grassmannians (the-
orem of Bayer-Fluckiger and Lenstra), for E6- (Rost’s theorem), and
E7-varieties.
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1 Introduction

Let G be a simple algebraic group over a field k and X a projective G-
homogeneous variety. Consider the degree map

deg : CH0(X) → Z.

The goal of the present paper is to provide a method to compute the image
of this map (see [PSZ08] for the computation of its kernel).

This problem has a long history starting probably with the Springer the-
orem which says that an anisotropic quadratic form remains anisotropic over
odd degree field extensions. This statement is equivalent to the fact that the
image of the degree map when X is an anisotropic quadric equals 2Z.

To stress the difficulty of the above problem note that a computation
of the degree map for the varieties of Borel subgroups of groups of type E8

implies Serre’s Conjecture II for fields of cohomological dimension ≤ 2 [Gi97].
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Moreover, the above problem generalizes Serre’s question, whether the
map

H1(k,G0) →
∏

H1(Ki, G0)

has trivial kernel when Ki are finite field extensions of k such that gcd[Ki : k] = 1
and G0 is a split group.

The image of the degree map is known in the following cases: X is a
quadric (Springer’s theorem), X is a twisted form of a maximal orthogonal
Grassmannian (theorem of Bayer-Fluckiger and Lenstra [BFL90]), X is the
variety of Borel subgroups of a group of type F4, E6 (a theorem of Rost,
where cohomological invariants of Albert algebras are used), and E7 (Gille’s
theorem [Gi97], where the norm principle is used). Note also that there are
numerous papers of M. Florence, R. Parimala, B. Totaro, and many others
concerning closely related problems.

In the present paper we apply the Gille-Merkurjev norm principle [Gi97],
[Me96], [BM02] and give a uniform proof of the above results. Apart from
this, we compute the image of the degree map for the varieties of parabolic
subgroups of type 7 of groups G of type E7 and prove that anisotropic groups
of type E7 remain anisotropic over odd degree field extensions. Note that this
property is used in [PS07, Corollary 6.10] to relate the Rost invariant of G
and its isotropity.

2 Norm principle and strategy of the proof

2.1. Let k be a perfect field with char k 6= 2, 3, Γ = Gal(k̄/k) the absolute
Galois group, G a connected reductive algebraic group over k, G′ = [G, G]
the commutator subgroup, ∆ its Dynkin diagram, and ∆0 its Tits index (see
[Ti65]).

2.2 (Special cocharacters). Let G1 be a reductive algebraic group over k and

1 → G1 → G
f→ T = Gm → 1 (1)

an exact sequence. The cocharacter group T∗ can be canonically identified
with the group Z. A cocharacter ϕ ∈ T∗ is called f -special, if there is a
k-homomorphism g : Gm → G such that f ◦ g = ϕ.

2.3 (Set X(ϕ)). Denote Z ′ = G/G′, C the center of the simply connected
cover of G′, Z the center of G, and µ the center of G′.
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We can represent the homomorphism f as a composition G → Z ′ → T .
In particular, there is the induced homomorphism α : Z ′Γ

∗ → T∗ between the
cocharacter groups. The exact sequence

1 → µ → Z → Z ′ → 1

induces a homomorphism β : Z ′Γ
∗ → µ(−1)Γ, and the canonical epimorphism

C → µ induces a map γ : CΓ
∗ → µ(−1)Γ, where µ(−1) is the Tate twist, i.e.,

µ(−1) = Hom(µn, µ) for any n with µn = 1. For a cocharacter ϕ ∈ T∗ we
define a subset X(ϕ) ⊂ CΓ

∗ as the set γ−1(β(α−1({ϕ}))).

2.4 (Set Ω(ϕ)). From now on we assume that the Dynkin diagram ∆ has
no multiple edges. Following [Me96, (5.8)] we identify C∗ and the character
group C∗ and consider X(ϕ) as a subset of C∗. Let ω̄i denote the i-th
fundamental weight of the simply connected cover of G′ (Enumeration of
simple roots follows Bourbaki). Define now Ω(ϕ) as the set of all subsets
Θ ⊂ ∆ such that the elements {

∑
i∈I ω̄i|C , I ⊂ ∆ \Θ a Γ-orbit} generate a

subgroup of C∗Γ that intersects X(ϕ).

2.5 (Type of a parabolic subgroup). It is well-known that there is a bijective
correspondence between the conjugancy classes of parabolic subgroups of G′

k̄

and the subsets of the set ∆ of simple roots.
The type of a parabolic subgroup is the corresponding subset of ∆. Under

this identification the Borel subgroup has type ∅. If P is a maximal parabolic
subgroup of type ∆\{αi}, where αi is the i-th simple root, then for simplicity
of notation we say that P is of type i.

2.6 (Tits homomorphism). Let

β : C∗Γ → Br(k)

be the Tits homomorphism for the simply connected cover of G′ defined in
[Ti71]. In order to compute the sets Ω(ϕ) we need to know the restrictions
of the fundamental weights ω̄i to C and their images under the Tits homo-
morphism.

Below we describe them for groups of type 1Dn, E6, and E7. We use
graphical notation, where the algebra over a vertex i of the Dynkin diagram
stands for the image β(ω̄i|C). Apart from this, the restriction ω̄i|C is trivial
iff the respective algebra is k.
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Type Dn: A simply connected group of inner type Dn has the form Spin(A, σ),
where A is a central simple algebra of degree 2n with an orthogonal involution
σ of the first kind with trivial discriminant.

For the character group C∗ of the center of Spin(A, σ) we have

C∗ = {0, χ, χ+, χ−},

where χ (resp. χ+, χ−) is the restriction of the fundamental weight ω̄1 (resp.
ω̄n−1, ω̄n) to the center.

Let C±(A, σ) be the direct summands of the Clifford algebra C0(A, σ) =
C+(A, σ)⊕ C−(A, σ). We have

•C+(A,σ)

•A •k •A or k •k or A

vvvvvvvvvvv

HH
HH

HH
HH

HH
H

•C−(A,σ)

We associate the Tits algebras to the last two vertices n − 1 and n in
such a way that for ε = + (resp. ε = −) the algebra Cε(A, σ) splits over the
field of rational functions of the projective homogeneous variety of maximal
parabolic subgroups of type Pn−1 (resp. Pn). The latter are two irreducible
components of the variety of 2n2-dimensional isotropic right ideals I of A
with respect to σ.
Type E6: The Tits algebra is a certain central simple algebra A of index 1,
3, 9, or 27 and of exponent 1 or 3.

•A •A⊗2

•k •A •A⊗2

•k
Type E7: The Tits algebra is a certain central simple algebra A of index 1,
2, 4, or 8 and of exponent 1 or 2.

•k •k •k •A •k •A

•A

Under the above assumptions the following lemmas hold:

2.7 Lemma ([Me96, Lemma 3.4]). Let K/k be a finite field extension lying
in the algebraic closure k̄ and let ϕ ∈ T∗. If the cocharacter ϕ is fK-special,
then the cocharacter [K : k]ϕ is f -special.
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2.8 Lemma ([Me96, Theorem 5.6]). For a cocharacter ϕ ∈ T∗ the following
conditions are equivalent:

1. ϕ is f -special;

2. there exists a parabolic subgroup of G defined over k whose type is
contained in Ω(ϕ).

2.9 Lemma ([Me96, Proposition 5.8]). Let β : C∗Γ → Br(k) be the Tits
homomorphism for the simply connected cover of G′. Assume that the Dynkin
diagram ∆ has no multiple edges. If a cocharacter ϕ ∈ T∗ is f -special, then
0 ∈ β(X(ϕ)).

2.10 Theorem. Let X be an anisotropic smooth projective variety over k
and p a prime number. In the above notation assume that the following
conditions hold:

1. For any field extension K/k and for any coprime to p cocharacter ϕ, if
0 ∈ βK(X(ϕ)) ⊂ Br(K) and G′ has a parabolic subgroup defined over
K whose type is contained in Ω(ϕ), then X(K) 6= ∅;

2. For any field extension K/k and for any coprime to p cocharacter ϕ if
X(K) 6= ∅, then there exists a parabolic subgroup of G′ of type contained
in Ω(ϕ) defined over K.

Then deg(CH0(X)) ⊂ pZ.

Proof. Let K/k be a field extension. We show first the following

Claim. X(K) 6= ∅ if and only if any coprime to p cocharacter ϕ is fK-special.

Indeed, if X(K) 6= ∅, then by item 2 there is a parabolic subgroup of
G′ defined over K whose type is contained in Ω(ϕ). By Lemma 2.8 ϕ is
fK-special.

Conversely, if ϕ is fK-special, then by Lemma 2.9 we have 0 ∈ βK(X(ϕ)),
and by Lemma 2.8 there is a parabolic subgroup of G′ defined over K of type
contained in Ω(ϕ). Therefore by item 1 we have X(K) 6= ∅.

Let now K/k be a finite field extension such that X(K) 6= ∅. To finish
the proof of the theorem it sufficies to show that [K : k] is divisible by p.
Assume the converse.

Since X(K) 6= ∅, by Claim any coprime to p cocharacter ϕ is fK-special.
By Lemma 2.7 the cocharacter [K : k]ϕ is f -special. Therefore by Claim
X(k) 6= ∅. Contradiction.
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3 Applications

3.1 Corollary (Springer’s theorem). Let A be a central simple k-algebra of
degree 2n ≥ 4 with an orthogonal involution σ of the first kind. Let X be
the variety of isotropic with respect to σ right ideals of A of dimension 2n.
Assume X is anisotropic.

Then deg(CH0(X)) ⊂ 2Z. In particular, if X is an anisotropic smooth
even-dimensional projective quadric, then deg(CH0(X)) = 2Z.

Proof. ([Me96, Lemma 6.2]). There is the following exact sequence of groups:

1 → G1 = Spin(A, σ) → G = Γ(A, σ)
f→ Gm → 1,

where Γ(A, σ) is the Clifford group and f is the spinor norm homomorphism.
Let p = 2. It is easy to check that for any odd cocharacter ϕ the set

X(ϕ) = {χ}, where χ is the restriction of ω̄1 to the center C.
Let K/k be a field extension. If 0 ∈ βK(X(ϕ)), then the algebra AK

is split (see 2.6). Thus, σK corresponds to a quadratic form, and XK is a
projective quadric. If additionally G′

K has a parabolic subgroup defined over
K of type contained in Ω(ϕ), then it easy to see that this quadratic form is
isotropic, and thus X(K) 6= ∅.

Finally, if X(K) 6= ∅, then G′ has a parabolic subgroup of type ∆ \ {α1},
where α1 is the first simple root. But ∆ \ {α1} ∈ Ω(ϕ).

Thus, we checked all conditions of Theorem 2.10.

3.2 Corollary (Bayer-Fluckiger and Lenstra). Let A be a central simple
algebra of degree 2n ≥ 4 with an orthogonal involution σ of the first kind.
Let Y be the variety of 2n2-dimensional isotropic right ideals of A and

X = Y × Spec(k[t]/(t2 − disc(σ)).

Assume X is anisotropic. Then deg(CH0(X)) ⊂ 2Z.

Proof. ([Me96, 6.3]). Consider the following exact sequence of groups:

1 → G1 = O+(A, σ) → G = GO+(A, σ)
f→ Gm → 1,

where f is the multiplier map.
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Let p = 2. Denote as χ+ (resp. χ−) the restriction of the fundamental
weight ω̄n−1 (resp. ω̄n) to the center. It is easy to check that for any odd
cocharacter ϕ we have

X(ϕ) =

{
∅, disc(σ) 6= 1;

{χ+, χ−}, disc(σ) = 1.

Finally, if 0 ∈ βK(X(ϕ)), then disc(σK) = 1. Then the variety YK is the
disjoint union of varieties of parabolic subgroups of G′

K of types ∆ \ {αn−1}
and ∆ \ {αn}. If additinally G′ has a parabolic subgroup defined over K of
type contained in Ω(ϕ), then the Tits index ∆0 of G′

K contains at most one
of the roots αn−1, αn (see 2.6). Therefore in this case X(K) 6= ∅.

To finish the proof of the corollary it remains to notice that condition 2
of Theorem 2.10 is obvious.

Using similar arguments one can show the following well-known state-
ment. Opposite to the traditional approach our proof does not use cohomo-
logical invariants of Albert algebras.

3.3 Corollary (M. Rost). Let G1 be a simply connected algebraic group of
type 1E6 over k and X the variety of its parabolic subgroups of type 1 (resp.
6). Assume X is anisotropic. Then CH0(X) ⊂ 3Z.

Proof. If G1 has a non-trivial Tits algebra, then the statement is obvious,
since for a field extension K/k condition X(K) 6= ∅ implies that the Tits
algebras of (G1)K are split.

Assume that G1 has trivial Tits algebras. Let J be an Albert algebra
associated with G1 (see [Ga01a]). A k-linear map

h : J → J

is called a similarity if there exists αh ∈ k× (the multiplier of h) such that

N(h(j)) = αhN(j)

for all j ∈ J , where N stands for the cubic norm on J . Then G1 coincides
with the similarities of this Jordan algebra with multiplier 1. Let G be
the group of all similarities. Then G is a reductive group and there is the
following exact sequence of algebraic groups:

1 → G1 → G
f→ T = Gm → 1,
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where the map f is defined on k-points as h 7→ αh.
Let p = 3 and let ϕ ∈ T∗ = Z be a cocharacter coprime to 3. We check

now the conditions of Theorem 2.10.
First we compute X(ϕ). In our situation G′ = [G, G] = G1, Z ′ = T =

Gm, µ = µ3, C = µ3, Z = Gm, and the group

C∗ ' C∗ = Z/3 = {0, ω̄1|C , ω̄6|C = −ω̄1|C},

where ω̄i|C denotes the restriction of the i-th fundamental weight of G1 to
the center, i = 1, 6. Therefore, X(ϕ) = {ω̄1|C} or X(ϕ) = {ω̄6|C} (it depends
on ϕ mod 3).

Let K/k be a field extension. Assume first that G′
K is isotropic and

the type of a parabolic subgroup P of G′ defined over K is contained in
Ω(ϕ). If the parabolic subgroup of G′ of type 1 is not defined, then by Tits’s
classification [Ti65, p. 58] the Tits index of G′ equals ∆0 = ∆\{α2, α4}. But
the restrictions to the center of the 2-nd and of the 4-th fundamental weights
are trivial (see [Ti90, p. 653] or 2.6). This contradicts to the assumption that
the type of P is contained in Ω(ϕ).

Finally, condition 2 of Theorem 2.10 is obvious.

3.4 Remark. If the Tits algebras of G1 are trivial, then the image of the
degree homomorphism CH0(X) → Z equals 3Z.

3.5 Corollary. Let G1 be a simply connected algebraic group of type E7 over
k and X the variety of maximal parabolic subgroup of G1 of type 7. Assume
X is anisotropic. Then CH0(X) ⊂ 2Z.

Proof. Let (A, σ, π), where A is a central simple k-algebra with a symplectic
involution σ and π : A → A a linear map, be a gift associated with G1

(see [Fe72], [Ga01a] and [Ga01b]). An invertible element h ∈ A is called a
similarity if there exists αh ∈ k× (the multiplier of h) such that

σ(h)h = αh · 1

and
π(hah−1) = αhhπ(a)h−1

for all a ∈ A. Then G1 coincides with the similarities of this gift with
multiplier 1. Let G be the group of all similarities. Then G is a connected
reductive group and there is the following exact sequence of algebraic groups:

1 → G1 → G
f→ T = Gm → 1,
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where the map f is defined on k-points as h 7→ αh.
Let p = 2 and let ϕ be an odd cocharacter.
First we compute X(ϕ). In our situation G′ = [G, G] = G1, Z ′ = T =

Gm, µ = µ2, C = µ2, and Z = Gm. Thus, the maps α and γ from 2.3 are
the identity maps. The map β : Z ′

∗ = Z → µ2(−1) = Z/2 from 2.3 is the
usual factor-map. Therefore, X(ϕ) = {χ}, where as χ we denote a unique
non-trivial element of C∗ ' C∗.

Let K/k be a field extension. Assume that 0 ∈ βK(X(ϕ)), G′
K is isotropic

and the type of a parabolic subgroup of G′ defined over K is contained in
Ω(ϕ). The first assumption implies that the Tits algebra A of G1 is split.

If the parabolic subgroup of G′ of type 7 is not defined, then by Tits’s
classification [Ti65, p. 59] the Tits index of G′ equals ∆0 = ∆\{α1}. But the
restriction to the center of the 1-st fundamental weight is trivial (see [Ti90,
p. 653]). Therefore we have X(K) 6= ∅.

Finally, condition 2 of Theorem 2.10 is obvious.

3.6 Remark. If the Tits algebras of G1 are trivial, then the image of the
degree homomophism CH0(X) → Z equals 2Z.

3.7 Corollary. A group G1 as in the statement of the previous corollary does
not split over an odd degree field extension.
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