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Abstract

Let G be an exceptional simple algebraic group over a field k and
X a projective G-homogeneous variety such that G splits over k(X).
We classify such varieties X.

This classification allows to relate the Rost invariant of groups of
type E7 and their isotropy and to give a two-line proof of the triviality
of the kernel of the Rost invariant for such groups. Apart from this
it plays a crucial role in the solution [S08] of a problem posed by
J.-P. Serre for groups of type E8.
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1 Introduction

Let k denote a field and G an exceptional simple algebraic group over k
of inner type. In the present paper we classify projective G-homogeneous
varieties X such that G splits over the field of rational functions k(X). Such
varieties are called generically split.

Observe that for groups G of classical types, different from type Dn, the
solution of this problem is known. For groups of type An and Cn it is a
consequence of the index reduction formula for central simple algebras, and
for groups of type Bn and Dn corresponding to quadratic forms it follows
from the motivic theory of quadrics developed by Karpenko and Vishik (see
[Vi08], Theorem 5.8 and Remark 5.9). Therefore we concentrate ourselves
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on exceptional groups, though our main result (Theorem 5.5) is valid for all
groups.

In this paper we reduce the problem of the classification of generically
split varieties to a purely combinatorial question related to the divisibility
of integral polynomials. The fact that a given variety is not generically split
(which is the most difficult part of the classification) follows simply from the
non-divisibility of certain rather concrete polynomials. These polynomials
can be computed in terms of a motivic invariant of G, called the J-invariant,
which has been introduced and classified in [PSZ] by Petrov, Semenov, and
Zainoulline.

Apart from the fact that our classification is an important structural the-
orem in the theory of linear algebraic groups, it provides several applications
to J.-P. Serre’s theory of cohomological invariants (see [GMS]). For example,
Corollary 5.10 gives a uniform two-line proof of the triviality of the kernel
of the Rost invariant for groups of type E7. Opposite to the traditional ap-
proach this proof is independent on the classification and concrete realizations
of algebraic groups and uses only the combinatorics of root systems. More-
over, for such groups G our results can be applied to get a refined statement
relating the Rost invariant and isotropy of G (see [PS, Corollary 6.10]).

The most powerful application of our classification is the construction of
cohomological invariants for groups of type E8 given by the second author in
[S08] and the solution of a problem posed by Serre concerning compact Lie
groups of type E8 (see [S08, Section 8]). Theorem 5.5 and its corollaries play
here an essential role.

****
The paper is organized as follows. In Section 2 we describe tools to per-

form computations in the Chow rings of projective homogeneous varieties and
reduce these computations to the combinatorics of root systems. Section 3
introduces the J-invariant of algebraic groups. In Section 4 we relate the
J-invariant and the Tits algebras of a group. In the last section we provide
a classification of generically split projective homogeneous varieties.
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2 Algebraic cycles on projective homogeneous

varieties

In this section we briefly describe the main properties of projective homoge-
neous varieties and their Chow rings (see [Ca72], [De74], [Hi82]).

2.1. Let G be a split semisimple algebraic group of rank n defined over a
field k. We fix a split maximal torus T in G and a Borel subgroup B of G
containing T and defined over k. We denote by Φ the root system of G, by
Π = {α1, . . . , αn} the set of simple roots of Φ with respect to B, by W the
Weyl group, and by S = {s1, . . . , sn} the corresponding set of fundamental
reflections.

Let P = PΘ be the (standard) parabolic subgroup corresponding to a
subset Θ ⊂ Π, i.e., P = BWΘB, where WΘ = 〈sθ, θ ∈ Θ〉 (Bruhat decompo-
sition). Denote

WΘ = {w ∈ W | ∀ s ∈ Θ l(ws) = l(w) + 1},

where l is the length function on W . It is easy to see that WΘ consists of all
representatives in the left cosets W/WΘ which have minimal length.

As Pi we denote the maximal parabolic subgroup PΠ\{αi} of type i and as
w0 the longest element of W . Enumeration of simple roots follows Bourbaki.

Any projective G-homogeneous variety X is isomorphic to G/PΘ for some
subset Θ of the simple roots.

2.2 (Generators of the Chow ring; see [Ko91, Proposition 1.3]). Now consider
the Chow ring of the variety X = G/PΘ. It is known that CH∗(G/PΘ) is
a free abelian group with a basis given by varieties [Xw] that correspond to
the elements w ∈ WΘ. The degree (codimension) of the basis element [Xw]
equals l(wθ) − l(w), where wθ is the longest element of WΘ. We call the
generators [Xw] standard.

Moreover, there exists a natural injective pull-back homomorphism

CH∗(G/P )→ CH∗(G/B)

[Xw] 7→ [Xwwθ ]

2.3 (Pieri formula; see [De74, Corollary 2 of 4.4]). In order to multiply two
basis elements of CH∗(G/B) one of which is of codimension 1 we use the
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following formula (Pieri formula):

[Xw0sα ][Xw] =
∑

β∈Φ+, l(wsβ)=l(w)−1

〈β∨, ω̄α〉[Xwsβ ], (1)

where α is a simple root and the sum runs through the set of positive roots
β ∈ Φ+, sβ denotes the reflection corresponding to β, β∨ the coroot of β, and
ω̄α is the fundamental weight corresponding to α. Here [Xw0sα ] is an element
of codimension 1.

2.4 Example. Let G be of type Dn, Θ = Π \ {α1} and Q = G/P1. Denote
by h the unique standard generator of codimension 1 in CH∗(Q).

A straightforward application of the Pieri formula shows that for i =
0, . . . , n−2 the elements hi are the unique standard generators of codimension
i, for i = n, . . . , 2n− 2 the elements hi are twice the standard generators of
codimension i, and hn−1 is the sum of the standard generators of codimension
n− 1.

Apart from this, one can notice (but this is not necessary for computa-
tions) that Q is a hyperbolic (2n − 2)-dimensional projective quadric. The
Chow ring of such a quadric is of course well-known. The generator h is the
class of its hyperplane section.

2.5 Definition. The Poincaré polynomial of a free Z≥0-graded finitely gen-
erated abelian group A∗ (resp. Fp-vector space for some fixed prime number
p) is, by definition, the polynomial

g(A∗, t) =
∞∑
i=0

ait
i ∈ Z[t]

with ai = rankAi.

The following formula (the Solomon theorem) allows to compute the
Poincaré polynomial of CH∗(X) = CHdimX−∗(X):

g(CH∗(X), t) =
r(Π)

r(Θ)
, r(−) =

m∏
i=1

tei(−) − 1

t− 1
, (2)

where ei(Θ) (resp. ei(Π)) denote the degrees of the fundamental polynomial
invariants of the root subsystem of Φ generated by Θ (resp. Π) and m its
rank (see [Ca72, 9.4 A]). The dimension of X equals deg g(CH∗(X), t).
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The values of degrees of fundamental polynomial invariants are given in
the following table (see [Ca72, p. 155]):

Φ ei(Φ)
Am 2, 3, . . . ,m+ 1

Bm,Cm 2, 4, . . . , 2m
Dm 2, 4, . . . , 2m− 2,m
E6 2, 5, 6, 8, 9, 12
E7 2, 6, 8, 10, 12, 14, 18
E8 2, 8, 12, 14, 18, 20, 24, 30
F4 2, 6, 8, 12
G2 2, 6

There exists a Maple package [St] of Stembridge that provides tools to
compute the Poincaré polynomials of projective homogeneous varieties.

2.6 Example. Let Q be as in Example 2.4. For a group of type Dn the
degrees of fundamental polynomial invariants are: ei = 2i for i = 1, . . . , n−1,
and en = n. Therefore we have

g(CH∗(Q), t) =
(tn−1 + 1)(tn − 1)

t− 1
.

2.7. Let P = P(Φ) denote the weight lattice. We denote as ω̄1, . . . ω̄n the
basis of P consisting of the fundamental weights. The symmetric algebra
S∗(P) is isomorphic to Z[ω̄1, . . . ω̄n]. The Weyl group W acts on P, hence,
on S∗(P). Namely, for a simple root αi

si(ω̄j) =

{
ω̄i − αi, i = j;

ω̄j, otherwise.

We define a linear map c : S∗(P)WΘ → CH∗(G/PΘ) as follows. For a homo-
geneous WΘ-invariant u ∈ Z[ω̄1, . . . , ω̄n]

c(u) =
∑

w∈WΘ, l(w)=deg(u)

∆w(u)[Xw0wwθ ],

where for w = si1 . . . sik we denote by ∆w the composition of derivations
∆si1

◦ . . . ◦ ∆sik
and the derivation ∆si : S

∗(P) → S∗−1(P) is defined by

∆si(u) =
u− si(u)

αi
(see [Hi82, Ch. IV, §1]).
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2.8 (Chern classes; see [BH58, §10]). Let U = Σu(PΘ) denote the set of the
(positive) roots lying in the unipotent radical of the parabolic subgroup PΘ.
Then the elementary symmetric polynomials

∑
u∈U σi(u) are WPΘ

-invariant
and, in fact, coincide with the Chern classes of the tangent bundle TX :

c(TX) = c(
∏
γ∈U

(1 + γ)). (3)

The effective procedures to multiply cycles in the Chow rings of projective
homogeneous varieties and compute the Chern classes of the tangent bundles
are implemented in the Maple package [map]1.

3 J-invariant

In this section we recall the definition and the main properties of a motivic
invariant of a semisimple algebraic group introduced in [PSZ] and called the
J-invariant. We assume that the reader is familiar with Galois cohomology
and twisted forms of algebraic groups as described, for instance, in [Inv,
Ch. VII].

3.1. Let G0 be a split semisimple algebraic group over k with a split maximal
torus T and a Borel subgroup B containing T . Let G = γG0 be the twisted
form of G0 given by a 1-cocycle γ ∈ H1(k,G0).

Let X be a projective G-homogeneous variety and p a prime integer. To
simplify the notation we denote

Ch∗(X) = CH∗(X)⊗ Z/p

and X = X ×Spec k Spec ks, where ks stands for a separable closure of k.
We say that a cycle J ∈ CH∗(X) (resp. J ∈ Ch∗(X)) is rational if it lies
in the image of the natural restriction map res : CH∗(X) → CH∗(X) (resp.
res : Ch∗(X) → Ch∗(X)). We denote as CH

∗
(X) (resp. as Ch

∗
(X)) the

image of this map.

3.2. From now on and till the end of this section we consider the variety
X = γ(G0/B) of complete flags. Let T̂ denote the group of characters of

T and S(T̂ ) ⊂ S∗(P) be the symmetric algebra (see Section 2). By R∗ we

denote the image of the characteristic map c : S(T̂ )→ Ch∗(X) defined above.
It is easy to see that R∗ ⊆ Ch

∗
(X) (see [KM05, Theorem 6.4]).

1Created in collaboration with S. Nikolenko and K. Zainoulline.
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3.3. Let Ch∗(G) denote the Chow ring with Fp-coefficients of the group
(G0)ks . An explicit presentation of Ch∗(G) in terms of generators and rela-
tions is known for all groups and all primes p. Namely, by [Kc85, Theorem 3]

Ch∗(G) = Fp[x1, . . . , xr]/(x
pk1

1 , . . . , xp
kr

r ) (4)

for certain numbers ki, i = 1, . . . , r, and deg xi = di for certain numbers
1 ≤ d1 ≤ . . . ≤ dr coprime to p. A complete list of numbers {dipki}i=1,...,r,
called p-exceptional degrees of G0, is provided in [Kc85, Table II] (see Ex-
ample 3.8(5) for exceptional groups). Taking the p-primary and p-coprimary
parts of each p-exceptional degree one immediately restores the respective
ki’s and di’s.

3.4. Now we introduce an order on the set of additive generators of Ch∗(G),
i.e., on the monomials xm1

1 . . . xmrr . To simplify the notation, we denote the
monomial xm1

1 . . . xmrr by xM , where M is an r-tuple of integers (m1, . . . ,mr).
The codimension (in the Chow ring) of xM is denoted by |M |. Observe that
|M | =

∑r
i=1 dimi.

Given two r-tuples M = (m1, . . . ,mr) and N = (n1, . . . , nr) we say xM ≤
xN (or equivalently M ≤ N) if either |M | < |N |, or |M | = |N | and mi ≤ ni
for the greatest i such that mi 6= ni. This gives a well-ordering on the set of
all monomials (r-tuples) known also as DegLex order.

3.5. Consider the pull-back induced by the quotient map

π : Ch∗(X)→ Ch∗(G)

According to [Gr58, Rem. 2◦] π is surjective with the kernel generated by the
subgroup of the non-constant elements of R∗.

Now we are ready to define the J-invariant of a group G.

3.6 Definition. Let X = γ(G0/B) be the twisted form of the variety of

complete flags by means of a 1-cocycle γ ∈ H1(k,G0). Denote as Ch
∗
(G) the

image of the composite map

Ch∗(X)
res→ Ch∗(X)

π→ Ch∗(G).

Since both maps are ring homomorphisms, Ch
∗
(G) is a subring of Ch∗(G).
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For each 1 ≤ i ≤ r set ji to be the smallest non-negative integer such
that the subring Ch

∗
(G) contains an element a with the greatest monomial

xp
ji

i with respect to the DegLex order on Ch∗(G), i.e., of the form

a = xp
ji

i +
∑

xM�xp
ji
i

cMx
M , cM ∈ Fp.

The r-tuple of integers (j1, . . . , jr) is called the J-invariant of G modulo p
and is denoted by Jp(G). Note that ji ≤ ki for all i.

3.7. We say that a prime number p is a torsion prime of G if Ch∗(G) 6= Fp.
The latter occurs if p|n+ 1 for groups of type An; p = 2 for Bn, Cn, Dn, G2;
p = 2, 3 for E6, E7, F4; p = 2, 3, 5 for E8.

A table of possible values of the J-invariants is given in [PSZ, Section 4].
To illustrate Definition 3.6 of the J-invariant we give the following examples.
For a prime integer p we denote as vp the p-adic valuation.

3.8 Examples.
1) For an adjoint group G of type 1An or Cn let A be the underlying

central simple algebra. Then Jp(G) = (vp(indA)) for all torsion primes p,
and d1 = 1.

2) Let p be a prime integer and A and B be central simple k-algebras that
generate the same subgroup in the Brauer group Br(k). Set G = PGL1(A)×
PGL1(B). Then Jp(G) = (vp(indA), 0).

Indeed, the Chow ring

Ch∗(G) = Fp[x1, x2]/(xp
k1

1 , xp
k2

2 )

with k1 = vp(degA), k2 = vp(degB). Therefore r in the definition of the
J-invariant equals 2. Denote Jp(G) = (j1, j2) and consider the map

res : Pic(XA ×XB)→ Pic(XA ×XB),

where XA (resp. XB) denote the PGL1(A)- (resp. PGL1(B)-) variety of
complete flags and Pic stands for the Picard group modulo p. Denote by hA
(resp. hB) the image of ω̄1 ∈ S(P) in Pic(XA) (resp. Pic(XB)) by means of
the map c defined in Section 2.

Since A and B generate the same subgroup in the Brauer group, the cycle
1× hB + αhA × 1 ∈ Pic(XA ×XB) is rational for some α ∈ F×p (see [MT95]
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or Section 4 below for the description of the Picard groups of projective
homogeneous varieties). The image of this cycle in Ch∗(G) by means of π
equals x2 + αx1 (at least we can choose the generators x1 and x2 in such a
way). Therefore, since x1 < x2 in the DegLex order, j2 = 0. The proof that
j1 = vp(indA) is the same as in [PSZ, Section 7, case An] and we omit it.

3) In [KM08, Section 2] Karpenko and Merkurjev define the notion of a
minimal basis of a finite subgroup of the Brauer group Br(k). Let {a1, . . . , am}
be a minimal basis, and A1, . . . , Am central simple algebras representing
a1, . . . , am. Then by [KM08, Proposition 2.5]

Jp(PGL1(A1)× . . .× PGL1(Am)) = (vp(indA1), . . . , vp(indAm)).

4) If q is an anisotropic n-fold Pfister quadric or its codimension 1 sub-
form, and G the respective group of type D2n−1 or B2n−1−1 resp., then J2(G) =
(0, 0, . . . , 0, 1) with dr = 2n−1 − 1.

5) For exceptional adjoint groups we have:
G p r di, i = 1 . . . r ki, i = 1 . . . r

E6, F4, G2 2 1 3 1
E7, F4 3 1 4 1

E6 3 2 1, 4 2, 1
E7 2 4 1, 3, 5, 9 1, 1, 1, 1
E8 2 4 3, 5, 9, 15 3, 2, 1, 1
E8 3 2 4, 10 1, 1
E8 5 1 6 1

6) If G is a generic group, i.e., the twisted form of a split group by a versal
torsor (over some field extension of the base field), then Jp(G) = (k1, . . . , kr)
(see [PSZ, Example 4.7]).

7) For any G and any prime p if Jp(G) is trivial, i.e., Jp(G) = (0, . . . , 0),
then G splits over a field extension of degree coprime to p.

Next we describe some useful properties of the J-invariant.

3.9 Proposition. Let G be a semisimple algebraic group of inner type over
k, p a prime integer and Jp(G) = (j1, . . . , jr). Then

1. Let K/k be a field extension. Denote Jp(GK) = ((j1)K , . . . , (jr)K).
Then (ji)K ≤ ji, i = 1, . . . , r.

2. Fix an l = 1, . . . , r. Let Ch∗(Gan) = Fp[x′1, . . . , x′r′ ]/(x
pk
′
1

1 , . . . , xp
k′r
r′ ) with

deg x′i = d′i be presentation (4) for the semisimple anisotropic kernel



Generically split projective homogeneous varieties 10

Gan of G. Assume that in this presentation none of x′i has degree dl.
Then jl = 0.

3. Assume that the group G does not have simple components of type E8

and for all primes p the J-invariant Jp(G) is trivial. Then G is split.

Proof. 1. This is an obvious consequence of the definition of the J-invariant.
2. Since Gan is the semisimple anisotropic kernel of G, its Dynkin diagram

is a subdiagram of the Dynkin diagram of G. Therefore by [Kc85, Table II]
we have r′ ≤ r and {d′i, i = 1, . . . , r′} ⊂ {di, i = 1, . . . , r}. On the other hand,

by [PSZ, Corollary 5.19], the polynomials
∏r

i=1

tdip
ji − 1

tdi − 1
and

∏r′

i=1

td
′
ip
j′i − 1

td
′
i − 1

are equal. This implies the claim.
3. By [PSZ, Corollary 6.7] Jp(G) is trivial iff G splits over a field extension

of k of degree coprime to p. So, by our assumptions G splits over field
extensions of coprime degrees. Therefore it is split already over k by [Gi97,
Theorem C].

4 J-invariant and Tits algebras

Let G be a semisimple algebraic group over k of inner type. With each
irreducible representation ρ of G one can associate a unique central simple
algebra A such that there is a homomorphism µ : G → GL1(A) having the
property that µ⊗ ks is isomorphic to the representation ρ⊗ ks (see [Ti71]).
The algebra A is called the Tits algebra of G corresponding to ρ.

Let X be a projective G-homogeneous variety of type Θ ⊂ Π. Consider
the Picard group of X. By Section 2 the group Pic(X) is a free abelian group
with basis ω̄i, i ∈ Π \ Θ. Let αX : Pic(X) → Br(k) be the map sending ω̄i
to the Brauer-class of the Tits algebra corresponding to the fundamental
representation with the highest weight ω̄i.

By [MT95, §2] the following sequence of groups is exact:

0→ Pic(X)
res→ Pic(X)

αX→ Br(k). (5)

This sequence allows to express the group Pic(X) in terms of the Tits
algebras of G.

4.1 Examples.
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1) It is well-known that the Tits algebras of any group G of type G2, F4,
or E8 are split. Therefore the Picard group of any projective G-homogeneous
variety X is rational.

2) Let X be the Severi-Brauer variety SB(A) of a central simple algebra
A of degree n. Then X is the variety of parabolic subgroups of type 1 of the
group G = SL1(A). It is well-known that the Tits algebra of G corresponding
to ω̄1 is A (see [MT95, 2.4.1]). Therefore the map

res : Pic(SB(A))→ Pic(Pn−1) = Z

is the multiplication by expA.
3) Let q be a regular quadratic form of dimension ≥ 5 with trivial discrim-

inant and Q the respective projective quadric. The variety Q is the variety
of parabolic subgroups of G = O+(q) of type 1. Since the Tits algebra of G
corresponding to ω̄1 is split (see [MT95, 2.4.3 and 2.4.5]), the Picard group
of Q is rational.

4) Let G be a group of type E7. There is a central simple algebra A
of index 1, 2, 4, or 8 and exponent 1 or 2 such that A is Brauer-equivalent
to the Tits algebras corresponding to ω̄2, ω̄5, and ω̄7. The Tits algebras for
ω̄1, ω̄3, ω̄4, and ω̄6 are all split (see [Ti71, 6.5]).

4.2 Proposition. Let G be a semisimple algebraic group of inner type over
k, X a projective homogeneous variety of type Θ ⊂ Π, p a prime integer, and
Jp(G) = (j1, . . . , jr). Set li = vp(indAi), where αX(ω̄i) = [Ai], i ∈ Π \Θ.

Then the cycle ω̄p
li

i ∈ Chp
li

(X) is rational. The following partial converse
holds: If G is simple, the cycle ω̄i ∈ Ch1(X), i ∈ Π \ Θ, is rational, and ω̄i
is not equal to any root (modulo p), then li = 0.

Moreover, ji = 0 for all i with di = 1 iff the indices of all Tits algebras
of G are coprime to p.

Proof. Consider the projective homogeneous varietyX×SB(Ai), where SB(Ai)
denotes the Severi-Brauer variety of right ideals of Ai of reduced dimension
1. Let n = degAi. Denote by hi ∈ Pic(SB(Ai)) = Pic(Pn−1) the standard
generator as in Section 2.

By the results of Merkurjev and Tignol (see formula (5)) the cycle α =
ω̄i × 1 − 1 × hi ∈ Pic(X × SB(Ai)) is rational. Since the cycles αp

li =

ω̄p
li

i × 1− 1× hp
li

i ∈ Ch∗(X × SB(Ai)) and hp
li

i ∈ Ch∗(SB(Ai)) are rational,

the cycle ω̄p
li

i × 1 ∈ Ch∗(X × SB(Ai)) is rational as well.
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The projection morphism pr: X × SB(Ai)→ X is a projective bundle by
[PSZ, Corollary 3.4]. In particular, CH∗(X × SB(Ai)) =

⊕n−1
j=0 CH∗−j(X).

Therefore the pull-back pr∗ has a section δ. By the construction of this
section it is compatible with a base change. Passing to the splitting field ks
we obtain that the cycle δ̄(ω̄p

li

i × 1) = ω̄p
li

i ∈ Ch∗(X) is rational.
Conversely, assume that ω̄i is rational modulo p, i.e., ω̄i + pa1 is rational

for some a1 ∈ CH1(X). Denote by C the quotient of the weight lattice
of G by its root lattice. If p does not divide the order of C, then, since
|C|[Ai] = 0 ∈ Br(k), we have li = 0. So, we may assume that p divides
|C|. Then either C is a p-torsion group, and hence pa1 belongs to the root
lattice, and hence is rational, or C/pC is a cyclic group of order p. (This
occurs in cases Al and D2l+1). Then by the assumptions on ω̄i we can take
ω̄i as a generator of C/pC. So, a1 = m1ω̄i + pa2 + b1 for some a2 ∈ CH1(X)
and rational b1. Thus, (1 + pm1)ω̄i + p2a2 is rational. Continuing this way,
we see that ω̄i is rational as an element of CH1(X)/pN for all N . Let now
N = vp(|C|) and |C| = mpN . Then mω̄i + |C|a is rational for some a. But
|C|a is rational for all a. Therefore mω̄i is rational. Since m is coprime to p,
formula (5) implies that m[Ai] = 0 in Br(k), as claimed.

Finally, if the indices of all Tits algebras of G are coprime to p, then all

ω̄i = ω̄p
0

i are rational, and hence by the very definition of the J-invariant all
ji with di = 1 are zero. Conversely, assume that all such ji equal zero. Let
A be a Tits algebra of G such that vp(expA) is maximal and non-zero. By
assumption and since sequence (5) is exact, there is a Tits algebra B of G
such that [A] + p[B] is zero in Br(k). But vp(exp(B⊗p)) is strictly less than
vp(expA) by the choice of A. Contradiction.

4.3 Remark. It is not true in general that li ≤ l whenever ω̄p
l

i is rational.
A counter-example is e.g. a group of type E7 with a Tits algebra of index
more than 2.

It is also not true in general that if G is semisimple, but not simple,
and ω̄i ∈ Ch1(X) is rational, then li = 0. A counter-example is e.g. G =
PGL1(A)× PGL1(B) with [A] = p[B] in Br(k) and ω̄i with αX(ω̄i) = [A].

5 Generically split varieties

5.1 Definition. Let G be a semisimple algebraic group over k and X a
projective G-homogeneous variety. We say that X is generically split, if the
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group G splits (i.e., contains a split maximal torus) over k(X).

5.2 Remark. There are no generically split homogeneous varieties of positive
dimension for groups of outer type.

Indeed, let G be of outer type and X be a projective G-homogeneous
variety of positive dimension. If G comes from a cocycle ξ ∈ H1(k,G0 o
Aut(D)), where G0 is a split group and D is the Dynkin diagram of G, then
there is a natural étale extension L/k corresponding to the image of ξ in
H1(k, Sn), where n is the rank of G. Let m be the number of ∗-action orbits
of the absolute Galois group of k on D (see [Inv]).

The map

CH0(SpecL×Spec k X)→ CH0((SpecL)k(X))

is always surjective. On the other hand, CH0(SpecL×Spec k X) = Zm, since
X is geometrically irreducible, but CH0((SpecL)k(X)) = Zn, since X is gener-
ically split, and n > m, since G is of outer type.

5.3 Remark. If X is generically split, then the Chow motive of X splits
over k(X) as a direct sum of Tate motives. This explains the terminology
“generically split”. One can also call such varieties generically cellular, since
over k(X) they are cellular via the Bruhat decomposition.

5.4 Example. Pfister quadrics and Severi-Brauer varieties are generically
split.

Before formulating the main results of the present paper we recall the
notation from the previous sections. For a varietyX and a prime number p we
denote by Ch∗(X) the Chow group of the variety X×kks with Fp-coefficients;

Ch
∗
(X) stands for the image of the restriction map res : Ch∗(X)→ Ch∗(X),

and g(−, t) ∈ Z[t] for the Poincaré polynomial of the graded group −. Recall
also that for an algebraic group G we denote by Jp(G) = (j1, . . . , jr) ∈ Zr its
J-invariant modulo p, and d1, . . . , dr are p-coprimary parts of p-exceptional
degrees of G defined in 3.3.

5.5 Theorem. Let G0 be a split semisimple algebraic group over k, G = γG0

the twisted form of G0 given by a 1-cocycle γ ∈ H1(k,G0), and X a projective
G-homogeneous variety. If X is generically split, then for all primes p the
following identity on the Poincaré polynomials holds:

g(Ch∗(X), t)

g(Ch
∗
(X), t)

=
r∏
i=1

tdip
ji − 1

tdi − 1
, (6)
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where Jp(G) = (j1, . . . , jr) and di’s are the p-coprimary parts of the p-
exceptional degrees of G0.

Proof. In the proof of this theorem we use results established in our paper
[PSZ].

Let p be a prime integer and Y the variety of Borel subgroups of G. We
fix preimages ei ∈ Ch∗(Y ) of xi ∈ Ch∗(G) (see definition of the J-invariant).
For an r-tuple M = (m1, . . . ,mr) we set eM =

∏r
i=1 e

mi
i .

First we recall the definition of filtrations on Ch∗(Y ) and Ch
∗
(Y ) (see

[PSZ, Definition 5.5]). Given two pairs (L, l) and (M,m), where L and M
are r-tuples and l and m are integers, we say that (L, l) ≤ (M,m) if either
L < M , or L = M and l ≤ m.

The (M,m)-th term of the filtration on Ch∗(Y ) is the subgroup of Ch∗(Y )
generated by the elements eIα, I ≤ M , α ∈ R≤m. We denote as A∗,∗ the
graded ring associated to this filtration. As A∗,∗rat we denote the graded subring
of A∗,∗ associated to the subring Ch

∗
(Y ) ⊂ Ch∗(Y ) of rational cycles with

the induced filtration.
Consider the Poincaré polynomial of Arat with respect to the grading

induced by the usual grading of Ch∗(Y ). Proposition 5.10 of [PSZ] which
explicitely describes an Fp-basis of A∗,∗rat implies that the Poincaré polyno-

mial g(Arat, t) =:
∑dimX

i=0 ait
i (ai ∈ Z) of Arat equals the right hand side of

formula (6).
On the other hand, dim Ch

∗
(Y ) = dimArat and the coefficients bi of the

Poincaré polynomial g(Ch
∗
(Y ), t) =:

∑dimY
i=0 bit

i are obviously bigger than or

equal to ai for all i. Therefore g(Ch
∗
(Y ), t) = g(Arat, t).

Finally, since X is generically split, we have
g(Ch

∗
(Y ), t)

g(Ch
∗
(X), t)

=
g(Ch∗(Y ), t)

g(Ch∗(X), t)
by [PSZ, Theorem 3.7]. This finishes the proof of the theorem.

5.6 Example. Let Q be an anisotropic 2n-dimensional generically split
quadric and G the respective group. It is well-known that the left hand
side of formula (6) equals 1 + tn. Therefore J2(G) = (0, . . . , 0, 1) and by
[PSZ, Last column of Table in Section 4] n = 2l − 1 for some l.

The right hand side of formula (6) depends only on the value of the J-
invariant of G. In turn, the left hand side depends on the rationality of cycles
on X. Available information on cycles that are rational, allows to establish
the following result.
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5.7 Theorem. Let G be a group over a field k of type Φ = F4, E6, E7

or E8 given by a 1-cocycle from H1(k,G0), where G0 stands for the split
adjoint group of the same type as G, and let X be the variety of the parabolic
subgroups of G of type i. Assume that the characteristic of k is different from
any torsion prime of G.

The variety X is not generically split if and only if
Root system Parabolic subgroups J-invariant

1 Φ = F4 i = 4 J2(G) = (1)
2 Φ = E6 i = 1, 6 J2(G) = (1)
3 Φ = E6 i = 2, 4 J3(G) = (j1, ∗), j1 6= 0
4 Φ = E7 i = 1, 3, 4, 6 J2(G) = (j1, ∗, ∗, ∗), j1 6= 0
5 Φ = E7 i = 7 J3(G) = (1)
6 Φ = E7 i = 1, 6, 7 J2(G) = (∗, j2, ∗, ∗), j2 6= 0
7 Φ = E8 i = 1, 6, 7, 8 J2(G) = (j1, ∗, ∗, ∗), j1 6= 0
8 Φ = E8 i = 7, 8 J3(G) = (1, ∗)

(“∗” means any value).

Proof. First we prove using Theorem 5.5 that the cases listed in the table
are not generically split. Indeed, assume the contrary.

Case 1. Using Example 3.8(5) one immediately sees that the right hand
side of formula (6) equals t3 + 1. On the other hand, a straightforward com-
putation using Pieri formula (1) shows that Ch3(X) ⊂ 〈Ch1(X)〉. Another
straightforward computation using formula (3) shows that Ch1(X) is gen-
erated by the first Chern class of the tangent bundle of X, and therefore
is rational. Therefore Ch3(X) is rational as well, and thus the left hand
side of formula (6) does not have a term of degree 3. Contradiction with
Theorem 5.5.

Case 2. By Example 3.8(5) the right hand side of (6) equals t3 + 1. On
the other hand, by (2)

g(Ch∗(X), t) =
16∑
i=0

ti +
12∑
i=4

ti + t8.

In particular, g(Ch∗(X), t) is not divisible by t3 + 1. Contradiction.
Cases 3. and 4. By Example 3.8(5) the right hand side of (6) has a

term of degree 1. On the other hand, a computation by formula (3) shows
that the Picard group Ch1(X) is generated by the first Chern class of the
tangent bundle, and hence is rational. (Alternatively, one can see this from
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exact sequence (5) and Example 4.1(4)). Therefore the left hand side of
formula (6) does not have a term of degree 1. Contradiction.

Case 5. By Example 3.8(5) the right hand side of (6) equals t8+t4+1. On
the other hand, a computation using formula (2) shows that g(Ch∗(X), t) =
(t10−1)(t14−1)(t18−1)

(t−1)(t5−1)(t9−1)
and is not divisible by t8 + t4 + 1. Contradiction.

Cases 6. and 7. Assume first that (Φ, i) 6= (E7, 7). Using Exam-
ple 3.8(5) one immediately sees that the right hand side of formula (6) has
a term of degree 3. On the other hand, a straightforward computation using
Pieri formula (1) and formula (3) shows that

Ch3(X) ⊂ 〈c1(TX), c2(TX), c3(TX)〉.

Therefore Ch3(X) is rational, and thus the left hand side of formula (6) does
not have a term of degree 3. Contradiction with Theorem 5.5.

Consider now the case E7 with i = 7. A straightforward computation us-
ing the Pieri formula shows that Ch3(X) = 〈Ch1(X)〉. If J2(G) = (0, 1, ∗, ∗),
then by Proposition 4.2 and sequence (5) Ch1(X) is rational. Therefore
Ch3(X) is rational, and the same considerations as in the previous para-
graph lead to a contradiction.

Otherwise J2(G) = (1, 1, ∗, ∗). The expression
g(Ch∗(X), t)

(t+ 1)(t3 + 1)
is a poly-

nomial which has negative coefficients. Hence, by formula (6) the polynomial
g(Ch

∗
(X), t) has negative coefficients. Contradiction.

Case 8. Using Example 3.8(5) one immediately sees that the right hand
side of formula (6) has a term of degree 4. On the other hand, a straight-
forward computation using Pieri formula (1) and formula (3) shows that
Ch4(X) ⊂ 〈ci(TX), i = 1, . . . , 4〉. Therefore Ch4(X) is rational, and thus the
left hand side of formula (6) does not have a term of degree 4. Contradiction
with Theorem 5.5.

Next we show that all other varieties not listed in the table are generically
split. Let G and X be an exceptional group and a G-variety of maximal
parabolic subgroups of type s not listed in the table. Consider Gk(X). The
vertex s in the Tits diagram of the Gk(X) is circled.

Then using Proposition 3.9(1,2) and the classification of Tits indices
[Ti66] one can see case-by-case that for all primes p the J-invariant of the
semisimple anisotropic kernel (Gk(X))an is trivial. Therefore this anisotropic
kernel is trivial by Proposion 3.9(3) and the group G splits over k(X).
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It turns out that if the group G is given by a cocycle with values in a
split simple simply connected group, then the converse of Theorem 5.5 holds.
More generally, one can show:

5.8 Theorem. Let G0 be a split simple algebraic group over k of type dif-
ferent from An and Cn. If G0 has type Dn, we assume that G0 = SO2n. Let
G = γG0 be the twisted form of G0 given by a 1-cocycle γ ∈ H1(k,G0), and
X a projective G-homogeneous variety. Assume that the characteristic of k
is different from any torsion prime of G.

Then the following conditions are equivalent:

1. X is generically split;

2. For all primes p

g(Ch∗(X), t)

g(Ch
∗
(X), t)

=
r∏
i=1

tdip
ji − 1

tdi − 1
, (7)

where Jp(G) = (j1, . . . , jr) and di’s are the p-coprimary parts of the
p-exceptional degrees of G0.

Proof. Implication 1)⇒ 2) follows from Theorem 5.5.
Next we prove the opposite implication.
Cases Bn and Dn+1. Assume that G0 has type Bn or Dn+1 and p = 2.

Let Θ denote the type of the homogeneous variety X, s = max{i, αi ∈ Θ}
(for notation see Section 2), and Y denote the projective G-homogeneous
variety of maximal parabolic subgroups of type s. By [CPSZ, Theorem 2.9]

g(Ch∗(X), t)

g(Ch∗(Y ), t)
=
g(Ch

∗
(X), t)

g(Ch
∗
(Y ), t)

.

(Formally speaking, Theorem 2.9 of [CPSZ] is proved for groups of type Bn,
but absolutely the same proof works for groups of type Dn+1 that are given
by a cocycle from SO2(n+1)).

On the other hand, by [Vi08, Corollary 2.12] the group Chi(Y ) is rational
for all i < n − s + 1. Therefore by formula (7) ji = 0 for all i such that
2i− 1 < n− s+ 1. Denote Jp(Gk(Y )) = (j′1, j

′
2, . . . , j

′
r). By Proposition 3.9(1)

j′l ≤ jl for all l. Therefore j′i = 0 if 2i − 1 < n − s + 1. On the other hand,
by Proposition 3.9(2) and [PSZ, Table in Section 4] j′i = 0 for all i > [n−s+1

2
].
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Therefore Jp(Gk(Y )) is trivial, hence by Proposition 3.9(3) Gk(Y ) is split. By
the Tits classification [Ti66] Gk(X) is split as well.

Exceptional types. For homogeneous varieties of maximal parabolic
subgroups the statement immediately follows from the proof of Theorem 5.7.
The same considerations as in that proof also show the validity of the state-
ment of the present theorem for general exceptional homogeneous varieties.

5.9 Remark. Let G0 and G be groups of type Bn or Dn+1 as in the previous
theorem. Let X be the variety of maximal parabolic subgroups of G of type
s and J2(G) = (j1, . . . , jr). It follows from the proof that X is generically
split iff ji = 0 for all 1 ≤ i ≤ [n+1−s

2
].

As mentioned in the introduction this classification of generically split
varieties has diverse applications. Below we give a two-line proof of the
triviality of the kernel of the Rost invariant for groups of type E7 (cf. [Ga01]).

5.10 Corollary (Kernel of the Rost invariant). Let G0 denote a split simply
connected group of type E7 over an arbitrary field k. Suppose η ∈ H1(k,G0)
and the Rost invariant of η is trivial. Then η = 0.

Proof. Consider the twisted form G of G0 given by η and the varieties Xi of
maximal parabolic subgroups of G of type i (i = 1, . . . , rankG).

The Rost invariant of ηk(Xi) is still zero. On the other hand, the cocycle
ηk(Xi) is equivalent to a cocycle with values in the semisimple anisotropic
kernel (Gk(Xi))an. Since the rank of (Gk(Xi))an is at most 6, ηk(Xi) is trivial
by [Ga01, Theorem 0.5 a),b)], i.e., Gk(Xi) is split.

Thus, for all i the varieties Xi are generically split. Their classification
(Theorem 5.7) immediately implies that for all primes p the J-invariant of G
modulo p is trivial. Therefore G is split by Corollary 3.9(3), i.e., η = 0.
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