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Chapter 1

Introduction

Types and categories In the early 20th century Russell concerned himself with the
paradox that now carries his name, which says the following: If we consider all possible sets,
then the “set” {x | x ̸∈ x} can not be a set itself. As a solution he proposed in [59] that each
variable should not exist in a “vacuum”, but instead be assigned a type. This would make it
clear that the totality {x | x ̸∈ x} could not be of the same type as the x it contains and
thus the paradox is resolved, which could be seen as the birth of type theory. However his
theory of types has still some shortcomings from the current point of view, that is we do
not have the ability to form types in the context of a term of a given type. However such
definitions lie at the heart of mathematics, as if we are for example given a field k, that is
näıvely k : field where field is the type of fields, we want to be able to create a type Vec(k)
of vector spaces over this field k.

A type theory emerging some time later, in the 1970s, pioneered by Martin-Löf
addresses this: He proposed his intuitionistic theory of types which precisely allows one
to form dependent types of the above form and further. He further proposed that this
intuitionistic type theory ought to be seen as a foundation of mathematics. Even later, in the
2010s Homotopy type theory is developed [64] which features another approach to dependent
types. We will get into further details about differences in these two approaches later.

Since its introduction in [22] for topological purposes category theory started to enter all
areas of mathematics. One of its first impacts in mathematical logic came through Lawvere
’s thesis [42] in which he subsumed many mathematical theories as what he called algebraic
theories and then showed how these algebraic theories are connected to certain categories.
This result led him to stipulate the “category of categories” (if such object exists) as a
foundation for all mathematics. Later in [41] he continued on this path by introducing
hyperdoctrines, a concept purely built from categorical notions which should serve as an
abstraction from theories. He already notes in [41, p.12] that

“Any (single-sorted) theory formalized in higher-order logic yields a hyperdoctrine [...]”

Thus the natural question arising from this observation is whether such correspondences
between categorical constructs and (typed) theories can also be found in other settings. This
was answered positively by Lambek and Scott in [40] where they linkey cartesian closed
categories to typed λ-calculi and type theories (in their sense) and topoi. However, their
type theories do not include dependent types.

For type theories with dependent types the attempts of categorisation can be associated
to one of the two following sorts, depending on their underlying motivation.

• Based on Martin-Löf’s approach which realises dependent types as types formed in
contexts, which are finite lists of variables in their respective types, the categories realising
such type theories are usually developed in the framework of fibred category theory. The
most general notion in this sort of attempts are the comprehension categories of Jacobs
[34, 33, 35] in which the contexts are the objects of the base categories and the types
that can be formed in these contexts are realised as the object of the category above
their respective contexts in the base category of the fibration. They may be seen as a
generalisation of the preceding display map categories introduced by Taylor in his thesis
[62].
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2 Chapter 1 – Introduction

• Similiar to the approach developed in [64] which realises dependent types as dependent
function types into an universe type, types dependent on variables of another type are
realised as additional structure on objects extraneous to the category. Examples of this
approach are Cartmell’s categories with attributes [9],Pitts’ type categories [51], and
many more. The approach we will focus on mostly is that of the categories with family
arrows of Petrakis [48].

Many attempts have been made to reconcile different approaches of these two sorts. Blanco
showed in [5] that categories with attributes due to Cartmell are equivalent to discrete
comprehension categories. A recent paper by Ahrens et al. [1] showed that all approaches
are equivalent to a discrete notion of a comprehension category. However, one question
remained.

Question A. What categorical notion of the second above sort captures the non-discrete
cases of comprehension categories?

We will show that the categories with family arrows of Petrakis and an extension of
those due to Ehrhardt [20] are the required categories.

Computability and categories As there are many different theoretical notion of com-
putability, Turing computability, Kleene computability, the theory of partial continuous
functionals to name a few, the desire arose to have a unified theory allowing one to speak
about these models and compare their features in one common language. An early approach
were partial combinatory algebras, whose connections to topoi were examined by Longley
in his thesis[44].

Independently, and in order to make categories appropriate for computability, others
tried to find an appropriate primitive notion of partiality for arrows in categories. One of
the earliest approaches are dominical categories due to Di Paola and Heller [18], which
were generalised by Rosolini to p-categories in his thesis [58], were further generalised to
restriction categories by Cockett and Lack in [11, 12, 13]. Surprisingly each of these
categories can be embedded into the category of partial arrows of a category with a base of
computability1

Later Longley introduced another candidate for a general theory of computability, his
theory of (higher) computability models [43, 45], which abstract partial combinatory algebras.
He furthermore extended the notion of the category of assemblies to computability models
hence a way to go from computability models to categories had been established. Petrakis
then noticed in [50] that categories with a base of computability induce computability models.

Thus the following questions arise:

Question B. What categorical structure does the category of computability models carry and
can it be associated to a type theory as mentioned before?

Question C. What properties do the mappings

{Computability models} 7→ {Categories + bases of computability},
{Categories + bases of computability} 7→ {Computability models}

have? Do they constitute an equivalence of categories?

We will at least determine which structure the category of computability models must
not carry and give intermediate results concerning question C.

1These are called dominions by Rosolini in [58].
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Chapter a

(2-)categorical prerequisites

a.1 Notation for categorical notions

We will not reiterate all basic notions of category theory here and instead refer the reader
to [2] (a reprint available online is [3]) for the standard constructions of category theory,
namely products, coproducts, limits, colimits and such. However we shall make the following
notational conventions which may differ from the usual notation:

• We denote the identity on an arbitrary object c in a category C as 1c. We also adopt
this convention for sets. For a category C we denote the identity functor on C as idC .

• We denote the von Neumann-ordinals using blackboard bold numbers, that is

0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, . . . .

• We denote the standard simplices as [0], [1], [2], . . . , and regard them as linear orders
(categories) where the morphisms are given by the edges and are always orientied upwards,
that is

[0] = 0, [1] = 0 1, [2] = 0 1,

2

. . .

• We denote monic arrows in a category with “↪→” and epic arrows with “↠”.

• We denote the pullback of a morphism g : c1 → c2 along a morphism f : c3 → c2 with
f−1g and the object corresponding to the pullback with f−1(c1). We denote in diagrams
that a square is a pullback square with a “⌟” as follows:

f−1(c1) c1

c3 c2.

g−1f

f−1g

⌟
g

f

For any span c3
f ′
←−− c

g′−−→ c1 making the obvious square commute we denote the unique
arrow c→ f−1(c1) obtained from the universal property of the pullback with ⟨f ′, g′⟩.

• Dually, we denote the pushout of a morphism g : c1 → c2 along a morphism f : c1 → c3
with f∗g and the object corresponding to the pushout with f∗(c1). We denote in diagrams
that a square is a pushout square with a “⌟” as follows:

c1 c2

c3 f∗(c2)

f

g
⌟

f∗g

g∗f

For any cospan c3
f ′
−−→ c

g′←−− c1 making the obvious square commute we denote the unique
arrow f∗(c2)→ c obtained from the universal property of the pullback with [f ′, g′].

This notation differs from the usual i−1(c3) and c2 +c1 c3 used in most texts, but is used by
Rosolini in [57] and as we will later concern ourselves with sets and presheaves, the notation
is chosen to reflect the connection to inverse image and direct image.

5



6 Chapter a – (2-)categorical prerequisites

a.2 Notions of fibrations

For this we first recall some terminology regarding 2-categories. For an introduction to
2-categories we refer to [36]. For us a 2-category will always be locally small, and such
2-categories are simply categories C enriched over Cat.

Notation (for 2-categories):

• We denote 2-categories using the same script as for normal categories, that is C ,D ,E , . . . .

• The different types of n-cells in a 2-category are labelled as such:

0-cells are denoted using uppercase latin letters like X, Y, Z, . . . ,
1-cells are denoted using lowercase latin letters like f, g, h, . . . ,
2-cells are denoted using lowercase greek letters like α, β, γ, · · · .

• Both the composition of 1-cells and the vertical composition of 2-cells are denoted using
“◦”.

• If α : e ⇒ e′, where e, e′ : X → Y and β : h′ ⇒ h, where h, h′ : D → X are 2-cells, then
the result of the horizontal composition is denoted α • β. Visually:

D X Y
h′

h

e′

e

β α = D Y.

e′◦h′

e◦h

β•α

In the special case that either α or β are identity transformations 1h (or 1e), we use the
notation h • α (or β • e respectively) instead.

Definition a.2.1 (Cartesian 2-cells in a 2-category). Let C be a 2-category, α : e⇒ e′

(where e, e′ : X → Y ) be a two-cell and p : Y → E be a one-cell. We say that α is p-cartesian
if for all f : D → X the 2-cell α • f is a (p ◦=)-cartesian arrow in the category C (D, Y ).

The above definition of p-cartesian 2-cells can be further unpacked by analysing what it
means for α • f to be (p ◦=)-cartesian. It means that if we are given a 2-cell ξ : e′′ ⇒ e ◦ f
resulting in the cospan

e′′

e′ ◦ f e ◦ f

ξ

α•f

(1)

and a 2-cell γ such that

p ◦ e′′

p ◦ e′ ◦ x p ◦ e ◦ x

p•ξγ

p•α•f

(2)

(where we already used that (p ◦=)(α • f) = p • α • f and (p ◦=)(ξ) = p • ξ) we get a 2-cell
ζ such that

e′′

e′ ◦ f e ◦ f

ξ
ζ

α•f
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commutes. Now to unravel this a bit. To give a functor ξ as in (1) amounts to giving a
triangle

D Y

X

e′′

f e′
ξ

and giving a γ as in (2) amounts to giving a 2-cell as in

D Y

X Y E.

e′′

f p
γ

e′ p

where the equalities means that (p • α • f) ◦ γ = p • ξ.



Chapter b

Type theories with dependent types

We are going to give a brief exposition of the two kinds of type theories with dependent
types that underlie the different approaches to dependent function-objects in categories. This
material is taken from [30] and [64], albeit sometimes adapted to our notational conventions.

b.1 Dependent types out of contexts

Assume we are given an infinite supply x1, x2, x3, . . . of metavariables ranging over elements
of types, σ1, σ2, . . . as metavariables for type-terms. Then a context Γ is a (possible empty)
sequence of the form x1 : σ1, x2 : σ2, . . . where each σi contains only xj for j < i freely for all
i. Such a calculus has six elementary assertions, namely

⊢ Γ ctxt Γ is a valid context
Γ ⊢ σ type σ is a type in context Γ
Γ ⊢M : σ M is a term of type σ in context Γ
⊢ Γ = ∆ ctxt Γ and ∆ are definitionally equal contexts
Γ ⊢ σ = τ type σ and τ are definitionally equal types in context Γ
Γ ⊢M = N : σ M and N are definitionally equal terms of type σ in context Γ.

The rules to form contexts are as follows:

C-Emp
⊢ [] ctxt

Γ ⊢ σ type
C-Ext⊢ Γ, x : σ ctxt

where the variable x in the second rule has to be fresh.

⊢ Γ = ∆ ctxt Γ ⊢ σ = τ type
C-Ext-Eq⊢ Γ, x : σ = ∆, y : τ ctxt

Here the variables x, y have to be fresh.
The following rule asserts our metatheoretical assertion that contexts are build up from

only variables.
⊢ Γ, x : σ,∆ ctxt

Var
Γ, x : σ,∆ ⊢ x : σ

The following groups of three rules assert that equality of contexts, types and terms is an
equivalence relation.

• For contexts:
⊢ Γ = ∆ ctxt C-Eq-S⊢ ∆ = Γ ctxt

⊢ Γ ctxt C-Eq-R⊢ Γ = Γ ctxt

and
⊢ Γ = ∆ ctxt ⊢ ∆ = Θ ctxt C-Eq-T⊢ Γ = Θ ctxt

• For types:
Γ ⊢ σ type

Ty-Eq-R
Γ ⊢ σ = σ type

Γ ⊢ σ = τ type
Ty-Eq-S

Γ ⊢ τ = σ type

and
Γ ⊢ σ = τ type Γ ⊢ τ = ρ type

Ty-Eq-T
Γ ⊢ σ = ρ type

8



b.2 Dependent types as function types 9

• For terms:

Γ ⊢M : σ Tm-Eq-R
Γ ⊢M = M : σ

Γ ⊢M = N : σ Tm-Eq-S
Γ ⊢ N = M : σ

and
Γ ⊢M = N : σ Γ ⊢ N = O : σ Tm-Eq-T

Γ ⊢M = O : σ

The equalities between context and types interact according to the following rules:

Γ ⊢M : σ ⊢ Γ = ∆ ctxt Γ ⊢ σ = τ type
Tm-Conv

∆ ⊢M : τ

and
⊢ Γ = ∆ ctxt Γ ⊢ σ type

Ty-Conv
∆ ⊢ σ type

Hofmann also demands the following two rules: (Here □ is either of the judgements M :
σ,M = N : σ, σ type, σ = τ type.

Γ,∆ ⊢ □ Γ ⊢ ρ type
Weak

Γ, x : ρ,∆ ⊢ □

Γ, x : ρ,∆ ⊢ □ Γ ⊢ U : ρ
Subst

Γ,∆[U/x] ⊢ □[U/x]
Here □[U/x] and ∆[U/x] refers to the usual capture-free substitution one is familiar with
from logic, that is bound variables are renamed to avoid free variables in U becoming bound.

However these additional rules are not of great importance for us, for the example of a
comprehension category generated from such a type theory it is only of relevance to us that
we can define our equivalence relation on context through this definitional equality and that
this equivalence is well-behaved with types.

b.2 Dependent types as function types

On the other hand the type theories with dependent types as introduced in [64] are defined
differently. They do not use contexts, but instead rely on type universes. So we are now
reduced to only four judgements instead of the previous six and we no longer have contexts,
thus our primitive judgements look like this:

⊢ σ type σ is a type
⊢M : σ M is a term of type σ
⊢ σ = τ type σ and τ are definitionally equal types.
⊢ t = s : σ t and s are definitionally equal terms of type σ

However we demand the existence of special types, our universes Ui for i = 0, 1, . . .. Note
that these indices i are not canonically identified with some type N of natural numbers. We
demand that

⊢ Ui type ⊢ Ui : Ui+1

⊢ A : Ui
⊢ A type

for all i. In the same fashion as [64] we will write ⊢ A : U if ⊢ A : Ui for some i.

• Product types : We want to be able to form product types for all types.

⊢ A type ⊢ B type

⊢ A×B type

⊢ A = A′ type ⊢ B = B′ type

⊢ A×B = A′ ×B′ type
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The following rules ensure that these product types behave like we would the cartesian
product in a category to behave.

⊢ t1 : A ⊢ t2 : B

⊢ ⟨t1, t2⟩ : A×B
⊢ t : A×B
⊢ pr1(t) : A

⊢ t : A×B
⊢ pr2(t) : B

⊢ t1 = t′1 : A ⊢ t2 = t′2 : B

⊢ ⟨t1, t2⟩ = ⟨t′1, t′2⟩ : A×B

⊢ t = t′ : A×B
⊢ pr1(t) = pr1(t

′) : A
⊢ t = t′ : A×B

⊢ pr2(t) = pr2(t
′) : B

• Function types:

⊢ A type ⊢ B type

⊢ A→ B type

⊢ A = A′ type ⊢ B = B′ type

⊢ A→ B = A′ → B′ type

The following rules ensure that the terms of these function type behave like functions.
First we postulate that we can apply function terms to terms of the domain type:

⊢ A type ⊢ B type ⊢ f : A→ B ⊢ a : A

⊢ f(a) : B

⊢ A type ⊢ B type ⊢ f = g : A→ B ⊢ a = a′ : A

⊢ f(a) = g(a′) : B

Secondly we postulate that we can obtain functions by λ-abstraction:

⊢ A type ⊢ B type ⊢ b : B ⊢ x : A

⊢ λx.b : A→ B

⊢ A type ⊢ B type ⊢ b = b′ : B ⊢ x : A

⊢ λx.b = λx.b′ : A→ B

where x and y are both variables. We demand that the term b contains at most the
variable x freely. Then x is bound in λx.b.

The usual rules governing this term formation are demanded, that is α-conversion,β-
reduction and η-expansion.

⊢ A type ⊢ B type ⊢ t : B ⊢ x : A ⊢ y : A
α-conv⊢ λx.t = λy.t : A→ B

⊢ A type ⊢ B type ⊢ t : B ⊢ a : A
β-red

⊢
(
λx.t

)
(a) = t[x/a] : B

⊢ A type ⊢ B type ⊢ f : A→ B ⊢ x : A η-exp
⊢ λx.f(x) = f : A→ B

Here t[x/a] is simply the term where all occurrences of x are replaced by a.

We additionally demand all the rules turning definitional equality of types and terms into
an equivalence relation as before. In this framework the dependent types are then simply
modelled as types A → Ui where A is a type. This theory is developed further in [64] by
adding types

∏
a:A B(a),

∑
a:A B(a) for types A,B : A→ Ui, but we will not reproduce this

here as it was merely our intent to highlight the different approaches to dependent function
types that motivate categories with family arrows and comprehension categories.



Part I

Equivalences between categories with
dependent arrows and comprehension

categories
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In this part we will compare two approaches to categories for dependent structures motivated
by two different approaches to dependent types in type theory. There already exists a
survey by Ahrens et al. (cf. [1]) which compares most of the established approaches, namely
Comprehension categories, categories with families1 and type categories and the categories
they are organized in, where comprehension categories are the most abstract notion. Building
on this we compare comprehension categories to categories with family arrows, and their
generalisations introduced by Petrakis in [48] and 2-family arrows introduced by Ehrhardt in
[20]. Categories with family arrows and their more abstract notions can be summarized in
the cube

(dep,Σ)C (2-dep,Σ)C

depC 2-depC

(fam,Σ)C (2-fam,Σ)C

famC 2-famC

where each category is the category of one of those notions (these will be explained later)
and the arrows are inclusions.

In this cube each direction corresponds to adding an abstraction, that is

• going up the y-axis (‘ ↑’) corresponds to adding dependent arrows,

• going along the x-axis (‘→’) corresponds to adding arrows between family arrow (that is
“2-dimensional” structure) and

• going along the z-axis (‘↗’) corresponds to adding Σ-objects. (Again, all these notions
will be explained in the succeding chapters.)

On the other hand are the comprehension categories of Jacobs which build on (discrete/Gro-
thendieck) fibrations and higher structure built using these. The notions already explored in
the literature falling into this approach can be summarized as the normal nodes in

HComprCstr
disc HComprCstr

dFibb sas

ComprCdisc ComprCstr
spl

dFib Fib

The nodes highlighted in red correspond to new notions that will be introduced in the
following chapters, but first we will elaborate on the already established notions and the
2-equivalences between the corresponding nodes in the two cubes.

1Coraglia and Di Liberti introduced a notion of generalised categories with families in [15], whose
biequivalence to comprehension categories was shown in [14], which were not mentioned in this survey paper.
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Chapter 2

(2-)fam-categories and fibrations

In this chapter we recall the basic notions of categories with (2-)family arrows due to Petrakis
and Ehrhardt as well as the notions of (Grothendieck) fibrations due to Grothendieck
and Gray. The equivalence results are a trivial extension of the known equivalence of split
Grothendieck fibrations and functors into the category of categories (modulo size issues) to a
2-dimensional framework.

2.1 Categories with family arrows

Definition 2.1.1 (fam-categories – [48]). A fam-category is a category C that comes
equipped with a collection fHom(c) of family arrows for each c ∈ C . These family arrows are

usually denoted with greek letters λ, µ, et cetera. In diagrams they are denoted as c
λ−−→ ·.

• For each c, c′ ∈ C there is a composition operation ◦ : fHom(c)× Hom(c′, c)→ fHom(c′),
such that the following two conditions are fulfilled:

(fam1) for all λ ∈ fHom(c) we have that λ ◦ 1c = λ.

c c .
1c

λ

λ

(fam2) for all λ ∈ fHom(c) we have that λ ◦ (f ◦ g) = (λ ◦ f) ◦ g.

c d e .
f

(λ◦g)◦f

g◦f

λ◦(g◦f)

g
λ◦g

λ

Examples 2.1.2. 1. One can establish a fam-category structure on Sets by letting fHom(S)
for any set by the set of families (Bs)s∈S where the Bs are sets. The composition operation
is then given by mapping

(
(Bs)s∈S, f : T → S

)
to the family (Bf(t))t∈T .

2. One can turn every category into a fam-category by setting fHom(c) = C0, the collection
of objects of the category, for every c ∈ C . The composition is then simply defined by
mapping (d, f) to d for every object d and every morphism f of C .

3. If C is locally small one can define fHom(C ) = [C op, Sets], and the composition is simply
defined by (G,F ) 7→ G ◦ F . Thus Cat is a fam-category.

4. (Pitts) Families in a topos Let C be a topos with subobject classifier (⊤,Ω): If a ∈ C
set

fHom(a) :=
⋃
b∈C

Hom(a× b,Ω).

13
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The composition is defined by the rule
(
(b, e), g) 7→

(
b, e× (g × 1b)

)
c× b

c b

a a× b b

Ω.

prbprc

g×1b

(b,e)◦g

g 1b

e

pra prb

2.1.3 Dependent function types yield fam-categories. Given a type theory T as in
[64] (a quick recapitulation can be found in b.2) one can define a fam-category CT as follows
(see [48, 20]):

• Its objects are types A : U . The morphisms from A to B are given by terms t : A→ B.
The identity on A is λx.x for some variable x : A. The composition of t : A→ B, s : B → C
is given by λx.s

(
t(x)

)
.

• The family arrows of A are given as the families of types over A, that is

fHom(A) =
∞⋃
i=0

{t : A→ Ui}.

The composition of t : A→ Ui and s : B → A is given by

λx.t
(
s(x)

)
.

The properties of fam-categories follow immediately from the axioms of such type theories.

Definition 2.1.4 (fam-functors and fam-natural transformations). Let C and D
be fam-categories. A fam-functor F : C → D is a functor F : C → D of the underlying
categories together with an assignment rule

Fc : fHom(c)→ fHom
(
F (c)

)
, λ 7→ Fc(λ)

such that

(fam3) for all c, d ∈ C , f : c→ d and λ ∈ fHom(d) the following holds:

Fc(λ ◦ f) = Fc(λ) ◦ F (f).

A fam-natural transformation η : F ⇒ G of fam-functors F,G : C → D is a natural transfor-
mation of the underlying functors F,G such that

(fam4) for every c ∈ C and λ ∈ fHom(c)

F (c) G(c)
ηc

Fc(λ)

Gc(λ)

commutes, that is Gc(λ) ◦ ηc = Fc(λ) .
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Usually we will omit the subscript in Fa, as it is evident from the family arrow it is
applied to.

For general examples see [20, 48], we only give an example corresponding to the categories
arising from type theory.

2.1.5 Maps between type theories yield fam-functors. If T, S are type theories with
respective type universes U ,V and we are given a rule F that assigns

• to each type A : U a type F (A) : V such that each type universe Ui gets mapped to a
type universe Vjand

• to each term t : A a term F (t) : F (A)

such that definitional equality is respected, we obtain a fam-functor F : CT → CS by

A 7→ F (A),
(
t : A→ B 7→ F (t) : F (A)→ F (B)

)
,
(
t : A→ Ui 7→ F (t) : F (A)→ F (Ui)

)
.

Definition 2.1.6 (The category of fam-categories). Let famC be the 2-category whose

• objects are categories with family arrows.

• 1-maps are fam-functors and

• 2-maps are fam-natural transformations.

2.1.7 Some remarks about size issues. In the above definition of the categroy famC one
encounters the usual question of size issues one gets when defining “categories of categories”.
Namely, if one does not restrict the size of the collection of objects and arrows paradoxes like
the one of Russell might arise. Thus if we form categories of categories throughout this
paper we restrict ourselves to the case that these are locally small.

However, this is not sufficient for the present definition, as we additionally need to
control the size of the totality of family arrows, hence we extend the local smallness to the
family-arrows, that is for each c ∈ C for a given object c of some fam-category C we demand
that fHom(c) be some form of set. We do not need the full power of set theory for the
equivalences in the following sections and chapter, but we need to be able to form unions
indexed by objects, that is we need to be able to form the collection∐

c∈C

fHom(c)

given a fam-category C . Additionally we will require in the following a form of comprehension
of sets, namely given a functor p : E → C we need to be able to form collections (sets) of the
form

{e ∈ E | p(e) = c}

where c is some object of C .

2.2 Discrete fibrations

Definition 2.2.1 (discrete (op-)fibrations). A functor p : E → B is a discrete fibration
if for each e ∈ E and each f : b→ p(e) in B there is a unique g : e′ → e such that p(g) = f .
It is called a discrete opfibration if for each e ∈ E and each f : p(e) → b in B there is a
g : e→ e′ such that p(g) = f .

Definition 2.2.2 (Maps of discrete fibrations). Let p : E → B and q : E ′ → B′ be two
discrete fibrations. A map p → q is a pair (F̂ , F ) of a functor F : B → B′ and another
functor F̂ : E → E ′ which lies over F in the following sense:
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• The diagram

E E ′

B B′

F̂

p q

F

commutes and the lift of f : b′ → b along e ∈ E with p(e) = b gets mapped by F̂ to the
lift of F (f) along F̂ (e).

Furthermore a transformation of maps (F̂ , F )⇒ (Ĝ, G) is a pair (η̂, η) of a natural transfor-
mation η : F ⇒ G and a transformation η̂ : F̂ ⇒ Ĝ living over η in the following sense:

• we have that q • η̂ = η • p, that is

E E ′

B B′

F̂

Ĝ
p q

F

G

η̂

η

commutes.

Remark 2.2.3. Actually the second condition on maps of discrete fibrations is superfluous:
if we are given f : b′ → b and a lift f(e) : f ∗(e)→ e along e, then F̂

(
f(e)

)
: F (f ∗(e)→ F (e)

is a lift of F (f) along F (e) and thus the unique lift.

Definition 2.2.4 (Category of discrete fibrations). Let dFib be the 2-category whose

• objects are discrete fibrations,

• 1-maps are pseudo-maps of discrete fibrations,

• 2-maps are transformations of pseudo-maps.

Proposition 2.2.5. Letting famC be the 2-category of fam-categories, fam-functors and
fam-natural transformations as well as dFib be the 2-category of discrete fibrations, maps of
discrete fibrations and transformations of such maps we get a 2-equivalence

famC ≃ dFib .

Proof: We begin by describing the two 2-functors.

p− : famC→ dFib: This functor is given by the following data:

• it maps a given fam-category C to the discrete fibration pC : F → C where C is the
category whose objects are pairs (c, λ) where c ∈ C and λ ∈ fHom(c). The only arrows in
F are arrows f : (c, λ ◦ f)→ (c′, λ) where f : c→ c′ is an arrow in C . The composition
is then defined via the usual composition on C . It is immediate that this composition
satisfies the unity and associativity laws.

• A fam-functor F : C → D is mapped to a map (pF , F ) : pC → pD of fibrations as such:

– the functor pF takes (c, λ) in F to
(
F (c), Fc(λ)

)
.

– An arrow f : (c, λ ◦ f)→ (c′, λ) is taken to F (f) :
(
F (c), Fc(λ ◦ f)

)
→
(
F (c′), Fc′(λ)

)
.

To see that this is well-defined we simply use that Fc(λ ◦ f) = Fc′(λ) ◦ F (f).

It is immediate that this constitutes a functor as the interchangeability of pF with
composition and identity follows from the functoriality of F .
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• A fam-natural transformation η : F → G is taken to a transformation of maps of fibrations
(η, pη) : (F, pF ) → (G, pG) as follows: the maps η̂(c,λ) for (c, λ) ∈ F are given by ηc. It
is immediate that ηc :

(
(F (c), Fc(λ)

)
→
(
G(c), Gc(λ)

)
as by definition of fam-natural

transformations we have Fc(λ) = Gc(λ) ◦ ηc.
It is immediate that this p− is a 2-functor from the definition, a simple calculation proves
that it respects associativity and unity for both 1- and 2-morphisms.

F− : dFib→ famC: In this direction we define the functor as follows:

• Given p : E → B we define our fam-category to have as underlying category B and
the family arrows are given by the fibres, fHom(b) := p−1(b). The precomposition of
λ ∈ fHom(b) with f : b′ → b is given by the domain of the unique lift of f along p and λ.

It is immediate that this constitutes a fam-category as B is a category and for all b ∈ B
and all λ ∈ fHom(b) = p−1(b) we have that λ ◦ 1b = λ, as 1λ : λ→ λ is a lift of 1b along
p and λ and as p is discrete it is the unique arrow with this property. Furthermore
λ ◦ (g ◦ f) = (λ ◦ g) ◦ f as the unique lift of g ◦ f at λ is given by the composition of the
unique lift of g at λ and f at λ ◦ g.

• Given a map (F̂ , F ) : p→ q as in

Ep Eq

Bp Bq

F̂

p q

F

(3)

we obtain our fam-functor FF,F̂ : Bp → Bq as follows: the underlying functor is F : Bp →
Bq and on the family arrows we set (FF,F̂ )b(λ) = F̂ (λ). We then simply compute that

(FF,F̂ )c(λ ◦ f) = F̂ (λ ◦ f) = F̂ (λ) ◦ F (f) where we used the commutativity of (3) for the
last equality as λ ◦ f is the domain of the unique lift of f along λ.

• Given a transformation (η̂, η) : (F̂ , F )⇒ (Ĝ, G) as in

Ep Eq

Bp Bq

F̂

Ĝ
p q

F

G

η̂

η

we define our fam-natural functor F(η̂,η) via

(F(η̂,η))b = ηb.

It is then immediate that

F(Ĝ,G)(λ) ◦ (F(η,η̂))b = Ĝ(λ) ◦ ηb = F̂ (λ)

as Ĝ(λ) ◦ ηb is the lift of ηb along Ĝ(λ) and q, but by definition q(η̂λ) = ηb and F̂ (λ) is
the codomain of η̂λ.

One now computes that F− ◦ p− = idfamC and p− ◦F− = iddFib, hence we have an isomorphism
of 2-categories. Q.e.d.
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2.3 2-fam-categories

Definition 2.3.1 (2-fam-categories – [20]). A fam-category C is a 2-fam-category, if for
each c ∈ C the collection fHom(c) is a category whose morphisms are called 2-family arrows.
A 2-family arrow η ∈ Hom(λ, µ) is pictured as follows:

c .

λ

µ

η

Moreover, For each c, c′ ∈ C , λ, µ ∈ fHom(c′) there must be an operation •c,c′ assigning to
η ∈ Hom(λ, µ) and f : c→ c′ the 2-family-arrow η •c,c′ f ∈ Hom(λ ◦ f, µ ◦ f), such that the
following conditions hold:

(2fam1) Compatibility: For each c, c′, c′′ ∈ C , each λ, µ ∈ fHom(c′′), each η ∈ Hom(λ, µ) and
each f ∈ Hom(c, c′), g ∈ Hom(c′, c′′) the equation on the left holds (which equivalently
means the diagrams on the right commute.)

η •c,c 1c = η c c
1c

λ

µ

λ

µ

ηη•c,c1c

η •c′′,c (g ◦ f)
= (η •c′′,c′ g) •c′,c f

c c′ c′′ .
f

λ◦g◦f

µ◦g◦f

g

λ

µ

η η•c′′,c(g◦f)

(2fam2) Distributivity: For each c, c′ ∈ C , each λ, δ, γ ∈ fHom(c′) and η ∈ Hom(δ, γ), η′ ∈
Hom(γ, λ) as well as f ∈ Hom(c, c′) the equation on the left holds (or equivalently the
diagram on the right commutes).

(η′ ◦ η) •c,c′ f = (η′ •c,c′ f) ◦ (η •c,c′ f) c c′ .
f

λ

δ

γ

η

η′

2.3.2 Arrows between dependent function types. Continuing the motivating example
2.1.3 Ehrhardt extends the family-arrow structure by 2-family arrows as such. Given
t, t′ ∈ fHom(A), that is two terms t : A→ Ui, t′ : A→ Uj we first observe that without loss
of generality j > i and thus Ui : Uj which entails t : A→ Uj. Then Ehrhardt defines

fHom(t, t′) :=
∏
x:A

(
t(x)→ t′(x)

)
.

The composition of ν ∈ fHom(t, t′) and s : B → A he defines as λx.ν
(
s(x)

)
.
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Definition 2.3.3 (2-fam-functors – [20]). Given 2-fam-categories C ,D a 2-fam-functor
F : C → D consists of

• a family functor F : C → D (in the sense of definition 2.1.4),

• A functor F λ,µ : fHom(λ, µ)→ fHom
(
F (λ), F (µ)

)
for every c ∈ C , λ, µ ∈ fHom(c)

such that the following condition holds:

(2fam3) for all arrows f : b→ c in C and all λ, µ ∈ fHom(c), η : λ⇒ µ we have that

F λ,µ(η ◦ f) = F λ,µ(η) ◦ F (f).

Definition 2.3.4 (2-fam natural transformations). Given 2-fam categories C ,D and
2-fam functors F,G : C → D , a 2-fam natural transformation is a fam-natural transformation
in the sense of 2.3.3 of the underlying fam-functors F,G such that the following condition is
met:

(2fam4) For all c ∈ C , λ, µ ∈ fHom(c) and ω ∈ fHom(λ, δ) the equationGλ,µ(ω)◦ηc = F λ,µ(ω)
holds, which is equivalent to the commutativity of

F (c) G(c)

.

ηc

F (λ)

F (µ)

G(µ)

G(λ)
F (ω) G(ω)

Definition 2.3.5 (Category of 2-fam-categories). Let 2-famC be the 2-category whose

• objects are 2-fam-categories,

• 1-maps are 2-fam functors and whose

• 2-maps are 2-fam-natural transformations.

2.4 Grothendieck fibrations

The following notions of cartesian arrows and fibrations were initially introduced by Grothendieck
in [29] and then further elaborated on in [28]. However, we use a slightly different definition
which can be shown to be equivalent to the one introduced by Grothendieck.

Definition 2.4.1 (cartesian arrows, Grothendieck fibrations). Let p : E → B be a
functor. Given an object e ∈ E and an arrow f : b → p(e) in B, we say that an arrow
g : e′ → e is p-cartesian for f and e if both

• p(g) = f and

• for all h : e′′ → e and i : p(e′′)→ b such that p(h) = f ◦ i we get a unique j : e′′ → e′ such
that p(j) = i. As a diagram:

e′′ p(e′′)

e′ b

e p(e).

∃!j

p

i

p(h)

g

p

f

p

h
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A functor p : E → B is a Grothendieck fibration if for each f : b′ → b in B and e ∈ E such
that p(e) = b we obtain a unique arrow g : e′ → e that is p-cartesian for f and e. We call
this g the lift of f along p and e.

2.4.2 Historical remarks. The original definition due to Grothendieck in [29] takes
a completely different approach, which by current standards would fit better to 2-category
theory:

Namely he considers a category F fibred over a base category C to be an assignment
c 7→ Fc mapping each object of C to a category. Additionally Grothendieck demands
that each morphism f : c→ c′ is mapped to a functor f ∗ : Fc′ → Fc that maps each ξ ∈ Fc′

to a pullback ξ ×c′ c For composable pairs f : c → c′, g : c′ → c′′ a natural equivalence
cf,g : (g ◦ f)∗ → f ∗ ◦ g∗, which turns this assignment into a pseudo-functor from C to the
category of categories (although the term pseudo-functor was not used).

Later Gray altered the definition to more closely resemble the definition we use today,
he started assembling the category Fc into a “supercategory” E . Grayalso introduced the
notions of pseudo-functor and of p-cartesian arrows in [27], although the latter is weakened:
In the given definition the condition holds if i is the identity on b, whereas the stronger
notion we use is called strong cartesian (It is also called hypercartesian in [4]).

It is straightforward to show that if p is a fibration then every arrow p-cartesian in the
stronger sense is p-cartesian in the weaker sense and vice versa.

From now on a fibration will always mean Grothendieck fibration.

Examples 2.4.3. 1. Given any category C , the domain functor dom: C → → C (where
C → is the category of arrows and commutative squares of C ) is a Grothendieck fibration.
Given g : b → c ∈ C → and f : a → b in C a dom-cartesian lift of f along g is given by
the commutative square

a c

b c

f

g◦f

1c

g

(4)

in C →, that is (f, 1c) : g ◦ f → g is the desired lift. To see that it is cartesian, let another
commutative square

a′ b′

b c,

i

h h′

g

that is the arrow (h, h′) : i→ g be given such that dom(h, h′) = h = f ◦ j for some j in
C . Thus we obtain the commutative diagram

a′ b′

a

b c.

j

i

h′

f

g

Our remaining task is to find a unique horizontal morphism in the middle splitting this
diagram into two commutative squares such that the lower square is 4. This morphism is
h′, and is necessarily unique.
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2. If the category C has pullbacks, then also cod: C → → C is a fibration. The cartesian lift
of g : b→ c along f : a→ c is the pullback square

g−1(a) a

b c.

f∗g

g∗f
⌟

f

g

We will not elaborate this further, to confirm that one can fill the triangle uniquely one
uses the universal property of the pullback.

2.4.4 Grothendieck fibrations from contexts. This is the quintessential example that
motivated Jacobs to introduce his comprehension categories (which we will discuss later).
For this example one needs a type theory T with contexts as in exempli grata [47, 63]).
However, going forth we will use the notation and definition of [30]. A small recapitulation of
this type theory can be found in b.1 Given such a type theory T Jacobs defines the fibration
pT : ET → BT as follows:

• The base category BT has objects equivalence classes [Γ] of well-formed contexts Γ
(definitional equality suffices for this equivalence) and its morphisms are defined as
such: Given Γ = x1 : σ1, . . . , xn : σn and ∆ = y1 : τ1, . . . , ym : τm and without loss
of generality m ≤ n Jacobs defines a map f : [Γ] → [∆] as ⟨[M1], . . . , [Mm]⟩ such that
Γ ⊢ Mi : τi[M1/y1, . . . ,Mi−1/yi−1]. The equivalence on terms can again be taken to be
definitional equality. Like Jacobs we abbreviate ⟨[M1], . . . , [Mm]⟩ to ⟨[M]⟩.
The composition of ⟨[M]⟩ : Γ→ ∆ and ⟨[N]⟩ : ∆→ Θ is defined as (it can by found in
[30]) 〈[

N1[M/y]
]
, . . . ,

[
Nk[M/y]

]〉
where the Ni[M/y] are formed by replacing yi with Mi (capture-free) for all i = 1, . . . ,m.

The identity on [Γ] is simply ⟨[x1], . . . , [xn]⟩.
• The total category ET has objects [Γ, x : σ] where Γ ⊢ σ type and [Γ] is an object of BT .

Its morphisms are ⟨[M], [N ]⟩ : [Γ ⊢ σ type] → [∆ ⊢ τ type] where ⟨[M]⟩ : [Γ] → [∆] is a
morphism of BT and Γ, x : σ ⊢ N : τ [M/y] (here the substitution with [M] is defined as
for terms above).

Composition and identity are then defined as expected.

• The fibration pT : ET → BT maps [Γ ⊢ σ type] to [Γ] and ⟨[M], [N ]⟩ to ⟨[M]⟩.
For ⟨[M]⟩ : [Γ] → [∆] in BT and [∆ ⊢ τ type] the pT -cartesian lift of ⟨[M]⟩ along
[∆ ⊢ τ type] is defined as

⟨[M], [x]⟩ : [Γ ⊢ τ type]→ [∆ ⊢ τ type].

.

Definition 2.4.5 (Cartesian functors). Let p : E → B and q : E ′ → B′ be Grothendieck
fibrations. A functor F : E → E ′ is cartesian for G : B → B′ if it maps the lift of any arrow
f in B along p and e to the lift of G(f) along q and F (e). One defines a map p→ q to be a
pair (F̂ , F ) where F : B′ → B and F̂ is cartesian for F .

Examples 2.4.6. 1. Continuing our examples from above, given two categories C ,D and
a functor F : C → D , we obtain a functor F→ : C → → D→ cartesian for F and dom in
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the following way:

F→(f : a→ b) = F (f) : a→ b, F

( a′ b′

a b

f ′

h1 h2

f

)
=

F (a′) F (b′)

F (a) F (b).

F (f ′)

F (h1) F (h2)

F (f)

One immediately sees that this is a cartesian functor as our dom-cartesian lift g ◦ f of
f along g is mapped to F (g ◦ f) = F (g) ◦ F (f) which is the dom-cartesian lift of F (f)
along F (g).

2. If F : C → D also preserves pullbacks, the functor F→ as defined above is cartesian for
F and cod.

Definition 2.4.7 (Splittings/cleavages). Let p : E → B be a Grothendieck fibration.
A cleavage) is an assignment routine that assigns to each e ∈ E and each f : b → p(e) in
B an arrow p-cartesian for f and e. We use the same notation as Jacobs and denote this
p-cartesian arrow as f̄(e) : f ∗(e)→ e.

If 1b = 1e : e → e for every e ∈ E and g ◦ f = g ◦ f for all composable g, f in B the
cleavage is called a splitting.

A Grothendieck fibration p : E → B together with a splitting is called a split fibration.

2.4.8 Some remarks regarding the notation. The fact that the morphisms obtained
from a pullback use f ∗, the same notation Grothendieck used for his functors between
the categories can be seen by the adjoint relation

[C op,Cat]ps Fib(C )≃

where the category on the left is the category of contravariant pseudo-functors from C to Cat,
that is the fibrations in Grothendieck’s sense, and the category on the right is the category
of fibrations on C in the modern sense. Then functors f ∗ of Grothendieck get mapped
to the cleavage maps f and vice versa. (Technically one needs the axiom of choice to equip
every fibration with a cleavage but we will not concern ourserlves with this technicality.)

Definition 2.4.9 (Maps of (split) fibrations). Given two (split) fibrations p : E → B
and q : E → B a map p → q is a pair (F̂ , F ) of functors F : B → B′, F̂ : E → E ′ that
preserves cartesianness, namely

• F̂ is cartesian for F .

If the fibration is split, we demand that additionally the splitting is preserved, that is

• for all e ∈ E and f : b→ p(e) in B the following equation holds:

F̂
(
f̄(e)

)
= F (f)

(
F̂ (e)

)
.

Definition 2.4.10 (Transformations of maps of fibrations). Let p : E → B, q : E ′ → B′

be (split) fibrations and (F̂ , F ), (Ĝ, G) : p → q be maps between them. Then a transfor-
mation (F̂ , F )⇒ (Ĝ, G) is a pair (η̂, η) of a natural transformation η : F ⇒ G and natural
transformation η̂ : F̂ ⇒ Ĝ such that

1. q • η̂ = η • p and

2. for all b ∈ B and e ∈ E with p(e) = b we have that η̂e is cartesian for ηb and e.
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If the map is split we instead demand

2.’ ηb(Ĝ(e)) = η̂e for all b ∈ B and e ∈ E with p(e) = b.

Remark 2.4.11. This definition naturally extends the definition of a natural transformation
betweens maps between two fibrations over the same base category, see for example [37,
p. 268] (but note that Johnstone calls morphisms cartesian with respect to p p-prone
morphisms), and the resulting natural transformations are called p-vertical transformations.
Setting F, η to be the identity functor and identity transformation the condition that η̂e = 1b
is then recovered from our notion as then ηb = 1b and thus η̂e = 1b(Ĝ(e)) = 1G(e).

Example 2.4.12. Considering F, F ′ : C → D together with a natural transformation
η : F ⇒F ′ such that all transformation squares are cartesian. We then obtain a transformation
of maps of fibrations

(η̂, η) : (F→, F )⇒(F ′→, F ′), η→f : a→b :=

F (a) F (b)

F ′(a) F ′(b).

ηa

F (f)

⌟
ηb

F ′(f)

To see that this is natural let (h1, h2) : f → g be given, then

F→(f) F→(g)

F ′→(f) F ′→(g)

F→(h1,h2)

η→f η→g

F ′→(h1,h2)

=

F (a) F (b)

F (c) F (d)

F ′(a) F ′(b)

F ′(c) F ′(d).

F (f)

F (h1)

ηa

F (h2)

ηb
F (g)

ηd
F ′(f)

F ′(h1)

F ′(h2)ηc

F ′(g)

As the cube on the right commutes to does the square on the right and the naturality is
proven.

It is immediate that dom •η→ = η • dom from the above definition of η→, and that η→f is
cartesian for ηb and f follows from the definition of η.

In the above scenario we say that η̂ lies over η.

Lemma 2.4.13 (Categories of Grothendieck fibrations). Let Fib be the 2-category
whose

• objects: are Grothendieck fibrations,

• 1-maps: are pseudo-maps of Grothendieck fibrations and whose

• 2-maps: are transformations of such pseudo-maps

We additionally obtain a subcategory Fibspl whose objects are those Grothendieck fibrations
are split and whose 1-maps are split maps.

Proof: It is immediate that Fib is a well-defined category, however, it is not immediate that
the splittings of fibrations are preserved by horizontal compositions of transformations. So
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assume we are given split fibrations, maps of split fibrations and transformations of split
maps as in

E1 E2 E3

B1 B2 B3.

p1

F̂1

Ĝ1
p2

F̂2

Ĝ2
p3

F1

G1

F2

G2

α̂

α

β̂

β

From the definition of the horizontal composition of natural transformations we know that

(β̂ ◦ α̂)e = β̂Ĝ1(e)
◦ F̂2(α̂e) and (β ◦ α)b = βG1(b) ◦ F2(αb).

Similarly we can compute for an arbitrary splitting that g ◦ f(e) = g(e) ◦ f
(
g∗(e)

)
. This

allows us to compute

(β ◦ α)b
(
(Ĝ2 ◦ Ĝ1)(e)

)
= βG1(b) ◦ F2(αb)

(
(Ĝ2 ◦ Ĝ1)(e)

)
= βG1(b)

(
(Ĝ2 ◦ Ĝ1)(e)

)
◦ F2(αb)

(
β∗
G1(b)

(
(Ĝ2 ◦ Ĝ1)(e)

))
= β̂G1(e) ◦ F2(αb)

(
β∗
G1(b)

(
(Ĝ2 ◦ Ĝ1)(e)

))
(5)

= β̂G1(e) ◦ F2(αb)
(
(F̂1 ◦ Ĝ1)(e)

))
(6)

= β̂G1(e) ◦ F̂2

(
αb

(
Ĝ1(e)

))
= β̂G1(e) ◦ F̂1

(
α̂e

)
= (β̂ ◦ α̂)e.

Here in going from (5) to (6) we used that βG1(b) : F2(G1(b))→ G2(G1(b)) and thus βG1(b) =

β̂Ĝ1(e)
: F̂2(Ĝ1(e))→ Ĝ2(Ĝ1(e)) (as (β̂, β) is a transformation of split maps), hence β∗

G1(b)

(
(Ĝ2◦

Ĝ1)(e)
)
= (F̂2 ◦ Ĝ1)(e). Q.e.d.

Proposition 2.4.14. There is a 2-equivalence

Fibspl ≃ 2-famC .

Proof: We begin by describing the two 2-functors.

p− : 2-famC→ Fibspl: This functor is given by the following data:

• it maps a given 2-fam-category C to the fibration pC : F → C where F is the category
whose objects are pairs (c, λ) where c ∈ C and λ ∈ fHom(c). The arrows in F are arrows
(f, η) : (c, µ)→ (c′, λ) where f : c→ c′ is an arrow in C and µ : η⇒λ ◦ f is an arrow in
fHom(c). The composition is then defined via (g, θ) ◦ (f, η) =

(
g ◦ f, (η ◦ f) ◦ θ

)
. It is

immediate that this composition satisfies the unity and associativity laws.

The splitting is defined via

f : b→ c 7→ f = (f, 1(c,λ)) : (b, λ ◦ f)→ (c, λ).

• A 2-fam-functor F : C → D is mapped to a map (pF , F ) : pC → pD of fibrations as such:

– the functor pF takes (c, λ) in F to
(
F (c), Fc(λ)

)
.
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– An arrow (f, η) : (c, λ)→ (c′, µ) is taken to F (f), F λ,µ(η) :
(
F (c), Fc(λ)

)
→
(
F (c′), Fc′(µ)

)
.

To see that this is well-defined we simply use that Fc′(µ ◦ f) = Fc(µ) ◦ F (f) and thus
F λ,µ(η) : Fc(λ)→ Fc(µ ◦ f)

It is immediate that this constitutes a functor as the interchangeability of pF with
composition and identity follows from the functoriality of F . The splittings are also
preserved as

pF (f, 1λ ◦ f) =
(
F (f), Fc(1λ ◦ f)

)
= (F (f), 1F (λ◦c))

.

• A 2-fam-natural transformation η : F → G is taken to a transformation of maps of
fibrations (pη, η) : (F, pF ) → (G, pG) as follows: the maps (pη)(c,λ) for (c, λ) ∈ F are
given by ηc. It is immediate that ηc :

(
(F (c), Fc(λ)

)
→
(
G(c), Gc(λ)

)
as by definition of

2-fam-natural transformations we have Fc(λ) = Gc(λ) ◦ ηc. This last property also shows
that (pη)λ is the split of ηc at λ ∈ fHom(c).

It is immediate that this p− is a 2-functor from the definition, a simple calculation proves
that it respects associativity and unity for both 1- and 2-morphisms.

F− : Fibspl → 2-famC: In this direction we define the functor as follows:

• Given p : E → B we define our fam-category to have as underlying category B and
the family arrows are given by the fibres, fHom(b) := p−1(b). The precomposition of
λ ∈ fHom(b) with f : b′ → b is given by f ∗λ and the 2-maps η : λ⇒µ in fHom(b) are
given by the vertical morphisms η : λ → µ in E . To precompose a vertical morphism
η : λ⇒µ in fHom(b) we note that we have the situation

f ∗(λ) b′

f ∗(µ) b′

µ b

p

1b′

f

f(µ)

p

f
η◦f(λ)

p

(7)

thus we get a unique g : λ ◦ f = f ∗(λ) : f ∗(µ) = µ ◦ f making the triangle on the left
commute. We set η ◦ f := g.

It is immediate that this constitutes a 2-fam-category as B is a category and (fam1) as
well as (fam2) follow from the conditions imposed on splittings, so B is a fam-category.
To see that it is also a 2-fam category note that for any η : λ⇒µ in fHom(b) we have that
η ◦ 1b = η, for this we simply observe that in (7) the map 1f∗(µ) makes the left triangle
commute. A similar observation also yields η ◦ (g ◦ f) = (η ◦ g) ◦ f .

• Given a map (F̂ , F ) : p→ q as in

Ep Eq

Bp Bq

F̂

p q

F

(8)

we obtain our 2-fam-functor FF,F̂ : Bp → Bq as follows: the underlying functor is F : Bp →
Bq and on the family arrows we set (F(F,F̂ ))b(λ) = F̂ (λ). On the 2-family arrows we set

Fλ,µ

(F,F̂ )
(η) = F̂ (η). We then simply compute that (FF,F̂ )c(λ ◦ f) = F̂ (λ ◦ f) = F̂ (λ) ◦ F (f)

where we used the commutativity of (8) for the last equality as λ ◦ f is the domain of the
unique lift of f along λ. A similar computation yields F λ,µ(η ◦ f) = F λ◦f,µ◦f (η) ◦ F (f).
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• Given a transformation (η̂, η) : (F̂ , F )⇒ (Ĝ, G) as in

Ep Eq

Bp Bq

F̂

Ĝ
p q

F

G

η̂

η

we define our 2-fam-natural functor F(η,η̂) via

(F(η,η̂))b = ηb.

It is then immediate that

F(G,Ĝ)(λ) ◦ (F(η,η̂))b = Ĝ(λ) ◦ ηb = F̂ (λ)

as Ĝ(λ) ◦ ηb is the lift of ηb along Ĝ(λ) and q, but by definition q(η̂λ) = ηb and F̂ (λ) is
the codomain of η̂λ.

One now computes that F− ◦ p− = id2-famC and p− ◦ F− = idFibspl (up to renaming of objects
in E /family arrows), hence we have a 2-equivalence of 2-categories. Q.e.d.



Chapter 3

Σ-objects and comprehension categories

Both Petrakis and Ehrhardt extend their notions of fam-categories and 2-fam-categories
to include specific objects associated to a family arrow over an object c in the (2-)fam-category
C . On the side of fibred categories this additional structure corresponds to comprehension
categories which were introduced by Jacobs in [33].

We give a brief exposition of these notions and then extend the equivalence result of the
previous chapter.

3.1 Σ-objects in (2-)fam-categories

First we give the definition of Σ-objects.

Definition 3.1.1 ((fam,Σ)-categories - [48]). A fam-category C is a (fam,Σ)-category if
it additionally comes equipped with

(FΣ1) for each c ∈ C an operation assigning to each λ ∈ fHom(a) an object
∑

c λ (which is
called the Sigma-object of λ) together with first-projection arrows

prλ1 :
∑
c

λ→ c.

(FΣ2) For each c, c′ ∈ C an operation that assigns f ∈ Hom(c′, c) to
∑

c f :
∑

c′ λ◦f →
∑

c λ
such that ∑

c′ λ ◦ f
∑

c λ

c′ c

⌟

Σλf

prf
∗λ

1 prλ1
f

is a pullback square. Here the following strictness conditions must hold:

• For all c ∈ C the diagram

∑
a(λ ◦ 1a

∑
a λ

a a

⌟

∑
λ 1a

pra,λ◦1a1 pra,λ1

1a

commutes, that is
∑

λ 1c = 1∑
c λ
.

• For all composable f, g the diagram

∑
c(λ ◦ f) ◦ g

∑
b(λ ◦ f)

∑
a λ

c b a.

⌟

∑
(λ◦f) g

pr
c,(λ◦f)◦g
1

∑
λ(f◦g)

⌟

∑
λ f

prb,λ◦f1 pra,λ1

g f

27
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commutes, that is ∑
λ

(f ◦ g) =
(∑

λ

f
)
◦
∑
(λ◦f)

g

Examples 3.1.2. 1. Considering the category Sets with the fam-structure as discussed
above setting ∑

S

(Bs)s∈S =
∐
s∈S

Bs for all sets S and all (Bs)s∈S ∈ fHom(S),

pr
(Bs)s∈S

1 (s, x) = x for all (s, x) ∈
∐
s∈S

Bs∑
T

f(t, x) =
(
f(t), x

)
for all f : T → S.

turns it into a (fam,Σ)-category.

2. If we consider Cat with the fam-structure as above we can let
∑

C F be the Grothendieck
category whose

• objects are pairs (c, x) where c ∈ C , x ∈ F (c) and whose

• morphisms f : (c, x)→ (c′, y) are morphism f : c→ c′ in C such that F (f)(x) = y.

• The composition is defined as in C and the identities are as in C , that is 1(c,x) = 1c.

The first projection functor is then defined by (c, x) 7→ c, f 7→ f . For each functor
F : C → D the functor

∑
C F :

∑
C S ◦ F →

∑
D S is defined by∑

C

F (c, x) =
(
F (c), x) and

∑
C

F (f) = f.

3. A type category in the sense of Pitts [51] C is a category with terminal object 1 and
pullbacks equipped with the following additional structure:

a) For each object c ∈ C a collection typeC (c) of c-indexed types in C .

b) For each object c ∈ C operations assigning to each c-indexed type λ an object
∑

c λ
called the total object of λ together with a morphism prλ1 :

∑
c λ → c called the

projection-morphism of λ.

c) For each morphism f : c → c′ in C an operation assigning to each c′-indexed type
λ a c-indexed type f ∗λ called the pullback of λ along c, together with a morphism
Σf :

∑
c′ f

∗λ→
∑

c λ making the following a pullback square in C :

∑
c′ f

∗λ
∑

c λ

c c′

⌟

Σf

prf
∗λ

1
prλ1

f

The following strictness conditions are imposed on these operations:

1∗cλ = λ and Σ1c = 1∑
c λ
,

g∗
(
f ∗(λ)

)
= (f ◦ g)∗λ and (Σf) ◦ (Σg) = Σ(f ◦ g).

Type categories can be translated into (fam.Σ)-categories using the following “dictionary”.
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Type categories (fam,Σ)-categories

c-indexed type family arrow
Total object of λ Sigma-object of λ
projection-morphism first-projection arrow
pullback of λ along c f ∗λ vs. λ ◦ f composition operation

3.1.3 Continuing the motivating example 2.3.2. If we return to our motivating example,
that is the fam-category obtained by a type theory as in [48] Petrakis endows this category
CT with Σ-objects as follows: Given t : A → Ui we set

∑
A t :=

∑
x:A t(x), the dependent

sum type.
The projection is defined via (a, b) 7→ a.
For given f : A → B and t : A → Ui the term

∑
t f is given by the definiting equation

(a, b) 7→ (f(a), b). (Details on the introduction of functions between dependent sum types
can be found in [64, §1.6]).

Definition 3.1.4 ((fam,Σ)-functors). Let C ,D be (fam, Σ)-categories. A (fam, Σ)-functor
C → D consists of a fam-functor F : C → D in the sense of definition 2.1.4 subject to the
following additional condition

(FΣ3) For all a ∈ C and all λ ∈ fHom(a) the following equation holds:

F
(∑

a

λ
)
=
∑
F (a)

Fa(λ).

(FΣ4) For all a, b ∈ C and all λ ∈ fHom(a), f : b→ a the following equation holds:

F
(∑

λ

f
)
=
∑
Fa(λ)

F (f).

We call the functor a weak (fam,Σ)-functor if instead we have the following:

(wFΣ3) For all a ∈ C and all λ ∈ fHom(a) we have an isomorphism

F
∼=
λ : F

(∑
a

λ
) ∼=−−→

∑
F (a)

Fa(λ)

such that pr
Fa(λ)
1 ◦F∼=

λ = F (prλ1).

(wFΣ4) For all a, b ∈ C and all λ ∈ fHom(a), f : b→ a the diagram

F
(∑

b λ ◦ f
)

F
(∑

b λ
)

∑
F (b) Fb(λ ◦ f)

∑
F (a) Fa(λ)

F (b) F (a)

F (
∑

λ f)

F
∼=
λ◦f

F (prλ◦f1 )

F
∼=
λ

F (prλ1 )
pr

Fb(λ◦f)
1

pr
Fa(λ)
1F (f)

∑
Fa(λ) F (f)

commutes.

Definition 3.1.5 ((fam, Σ)-natural transformations). Let C ,D be (fam, Σ)-categories,
F,G : C → D be (fam, Σ)-functors. Then a (fam, Σ)-natural transformation F ⇒ G is a
fam-natural transformation of the underlying fam-functors satisfying the following conditions:
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(FΣ5) For all c ∈ C and all λ ∈ fHom(c) we have η∑
c λ

=
∑

Fc(λ)
ηc.

In case F,G are weak fam-functors we define a weak (fam,Σ)-natural transformation to be a
fam-natural transformation η : F ⇒ G such that:

(wFΣ5) For all c ∈ C and all λ ∈ fHom(c) we are given an isomorphism ηλ :
∑

F (c) Fc(λ)→∑
G(c)G(λ) such that the following diagram commutes:

F
(∑

c λ
)

G
(∑

c λ
)

∑
F (c) Fc(λ)

∑
G(c)Gc(λ).

F
∼=
λ

η∑
c λ

G
∼=
λ∑

Gc(λ)
ηc

Definition 3.1.6 (Category of (fam,Σ)-categories). (see 3.1.5) The 2-category (fam,Σ)C
has

• objects: (fam,Σ)-categories

• 1-maps: (fam,Σ)-functors between those categories and

• 2-maps: (fam,Σ)-natural transformations.

Definition 3.1.7 ((2-fam,Σ)-categories – [20]). A 2-fam-category C is a (2-fam,Σ)-
category if the underlying category is a (fam,Σ)-category and the following data is given: for
each c ∈ C , λ, µ ∈ fHom(c) and η : λ ⇒ µ an arrow

∑
λ,µ η :

∑
c λ →

∑
c µ. The following

conditions must hold:

(2FΣ1) For all c, c′ ∈ C , f : c′ → c with λ, µ ∈ fHom(c), η : λ⇒µ the diagram

∑
c λ ◦ f

∑
c′ λ

∑
c µ ◦ f

∑
c′ µ

c c′

∑
λ f

∑
λ◦f,µ◦f η•f

prc,λ◦f1

∑
λ,µ f

prc
′,λ

1
∑

µ f

prc,µ◦f
1

prc
′,µ

1

f

must commute.

(2FΣ2) For all c ∈ C and λ, µ, ν ∈ fHom(c) and η : λ⇒ µ, η′ : µ⇒ ν the equations∑
λ,µ

η ◦
∑
ν,λ

η′ =
∑
ν,µ

(η ◦ η′) and
∑
λ,λ

1λ = 1∑
c λ

hold.

3.1.8 Further continuation of the motivating example 3.1.3. Ehrhardt has checked
that the Σ-structure on CT given above extends to the 2-fam-structure we gave earlier if one
sets ∑

t,s

η := λx.λy.
(
x.η(x)(y)

)
for t, s ∈ fHom(A) and η ∈ fHom(t, s).

Remark 3.1.9. Usually, we omit the indices in •c,c′ and only write •. The operation • will
be called “horizontal composition” from now on.
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Examples 3.1.10. 1. If M is a monoid, and C is a fam-category, we can define a 2-
fam-structure on C by letting Hom(λ, µ) := M for λ, µ ∈ fHom(c) and c ∈ C0. The
compositions • are defined by the rule m • f := m. The compatibility and distributivity
properties are immediate to show.

2. All fam-categories in Examples 2.1.2 have their 2-analogue (see [20, §3.1]).

Definition 3.1.11 ((2-fam,Σ)-functors). Let C ,D be (2-fam,Σ)-categories. A (2-fam,Σ)-
functor from C to D is a 2-fam functor and the following additional conditions hold:

(2FΣ3) F is a (fam, Σ)-functor of the underlying (fam, Σ)-categories.

(2FΣ4) For all c ∈ C , λ, µ ∈ fHom(c), η : λ⇒ µ the following rectangle commutes:

F
(∑

λ,µ

η
)
=

∑
F (λ),F (µ)

F λ,µ(η).

We call F a weak (2-fam,Σ)-functor if

(w2FΣ3) F is a weak (fam,Σ)-functor of the underlying (fam,Σ)-categories, that is we only

are given an isomorphism F
∼=
λ :

∑
F (c) Fc(λ)→ F

(∑
c λ
)
instead of an equality.

(w2FΣ4) For all c ∈ C , λ, µ ∈ fHom(c), η : λ⇒ µ we have that the squares

∑
F (c) Fc(λ) F

(∑
c λ
)

∑
F (c) Fc(µ) F

(∑
c µ
)

F
∼=
λ

∑
Fc(λ),Fc(µ)

Fλ,µ(η) F
(∑

λ,µ(η)
)

F
∼=
µ

commute.

Definition 3.1.12 ((2-fam, Σ)-natural transformation). Let C ,D be two (2-fam, Σ)-
categories and F,G : C → D be two (2-fam, Σ)-functors. A (2-fam,Σ)-natural transformation
η : F ⇒G is simply a 2-fam natural transformation F ⇒G that is also a (fam,Σ)-natural
transformation of the underlying (fam,Σ)-categories.

Analogously we define a weak (2-fam,Σ)-natural transformation η : F ⇒G to be a 2-
fam natural transformation F ⇒G that is a weak (fam,Σ)-natural transformation of the
underlying (fam,Σ)-categories.

Definition 3.1.13 (Categories of (2-fam,Σ)-categories). The category (2-fam,Σ)Cwk is
defined through the following data:

• Objects are (2-fam,Σ)-categories,

• 1-maps are weak (2-fam,Σ)-functors and whose

• 2-maps are (2-fam,Σ)-natural transformations.

We also get the subcategory (2-fam,Σ)C with the same objects and 2-maps, but with only
strict (2-fam,Σ)-functors.

3.2 Comprehension categories

Definition 3.2.1 (Comprehension categories – [35]). A comprehension category consists
of a functor P : E → B→ for categories E ,B (where B→ is the arrow category) such that
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(CC1) The functor p := cod ◦P : E → B is a Grothendieck fibration

E B→

B

P

p cod

(CC2) P maps arrows cartesian with respect to P0 := dom ◦P to arrows cartesian with
respect to cod.

A comprehension category is split if the fibration p admits a splitting and discrete if the
fibration p is discrete.

Definition 3.2.2 (Pseudo-maps of comprehension categories). Let P : E → B→

and P ′ : E ′ → B′→ be comprehension categories. A pseudo-map from P to P ′ is given
by a map (F,G) : p → p′ of Grothendieck fibrations together with a natural isomorphism
ϕ : P ′ ◦F ⇒ G→ ◦P (where G→ is the lift of G to the arrow categories) lying over the identity
transformation of F . This data can be visualised as

E E ′

B→ B′→

B B′

P

p

F

P ′

p′

cod

G→

cod
G

ϕ
∼

and

G
(
P0(e)

)
P ′
0

(
F (e)

)
G(e).

P (e)

ϕe

F (P ′(e))

(Technically the transformation ϕ would have two components, but as it lies over the identity
transformation on G the second component is always the identity, so we identify ϕc with
its first component.) If the transformation η is the identity we speak of a strict map. If
the underlying comprehension categories are split with splittings Sp, Sp′ respectively and the
(strict/pseudo-)map of comprehension categories preserves the splitting then we call those
(strict/pseudo-)maps split.

3.2.3 Some historical remarks. Comprehension categories were introduced by Jacobs
in [34] in this manuscript the strict morphisms were already introduced, as is mentioned in
[33, p. 55]. However in the published version [35] these morphisms are no longer mentioned.
Jacobs student Blanco then compared the category of comprehension categories and
strict morphisms with other categories for dependent types in [5]. In his thesis Jacobs also
introduced pseudo-maps of fibrations [33, 4.1.4 Definition], so they are not due to [16] as
claimed in [1].

Later Jacobs linked comprehension categories with weakening and contraction comonads
in [32], a relation that is further elaborated on in [14]. In the latter paper the authors also
introduce the notion of a lax map of comprehension categories [14, 3.4 Definition], which we
will not consider here, in these the natural isomorphism η need not be invertible.

3.2.4 Continuing the categories from contexts of 2.4.4. Continuing the motivating
example the functor P then takes [Γ ⊢ σ type] to the projection

[Γ, x : σ] 7→ [Γ], ⟨[M], [N ]⟩ 7→ ⟨[M]⟩.

One can add 2-arrows between pseudomaps of comprehension categories to obtain a
2-category ComprC of comprehension categories, pseudomaps and transformations.
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Definition 3.2.5 (Transformations of pseudo-maps). A transformation (F,G, η) ⇒
(F ′.G′, η′) consists of a 2-map of fibrations (α̃, α) : (F,G)→ (F ′, G′) in the sense of definition
2.4.10 such that for every A ∈ E we have

η′λ ◦ P ′(α̃λ) = αP (λ) ◦ ηλ

for all λ ∈ E .

Remark 3.2.6. When they were introduced by Coraglia and Emmenegger in [14] the
condition on transformations on pseudo-maps instead read as

E E ′

B→ B′→

F ′

F

P P ′

G′→

α̃

η′

=
E E ′

B→ B′→

F

P P ′

G′→

G→

η

α→

that is η′ ◦ (P ′ • α̃) = (α→ • P ) ◦ η : P ′ ◦ F ⇒G′→ ◦ P . However as both η and η′ lie over 1G
and 1G′ respectively we obtain that in the diagrams

P ′
0

(
Fλ)

)
P ′
0

(
F ′(λ)

)
G′→(P0(λ)

)
p(
(
F (λ

)
p
(
F ′(λ)

)
p
(
F ′(λ)

)P ′(Fλ)

P ′(α̃λ)

P ′(F ′(λ))

η′λ

G(P (λ))

p(α̃λ) 1p(F ′(λ))

P ′
0

(
F (λ)

)
G→(P0(λ)

)
G′→(P0(λ)

)
p
(
F (λ)

)
p
(
F (λ)

)
p
(
F ′(λ)

)
ηλ

P ′(F (λ))

α→
P (λ)

G→(P (λ)) G′→(P (λ))

1p(F (λ)) p(αλ)

the compositions in the upper and lower row must coincide. However for the lower row this
is always the case so only the condition

η′λ ◦ P ′(α̃λ) = αP (λ) ◦ ηλ

for λ ∈ E remains.

Examples 3.2.7. 1. The most trivial example is where P is simply the identity on B→.
It is immediate that this is constitutes a comprehension category, as the arrows in B→

cartesian with respect to cod are simply pullback squares

f−1(b) a

b c

g∗f

⌟
f∗g f

g

in C .

2. Another (class of) example(s) is given by another notion introduced to model dependent
types, namely display map categories due to Taylor (cf. [62]). These are categories C
together with a collection D of morphisms in C . This collection is supposed to be closed
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in the following sense: given an arrow d : a→ c in D and an arbitrary arrow f : b→ c,
then the pullback

f−1(a) a

b c

f∗d

d∗f
⌟

d

f

exists in C and d∗f is in D. If we then consider the category C →(D) with objects from
D, then the inclusion C →(D) ↪→ C → constitutes a comprehension category.

3. A category with attributes (cf. [9, §3.2]) is a category C together with

• a presheaf Ty : C op → Sets

• a functor (−,−) :
∑

C Ty→ C

• a natural transformation p : (−,−)→ prTy1

such that the naturality square of p are pullbacks,

(c′, f−1(a)) (c, a)

c′ c.

(f,a)

⌟
pf−1(a) pa

f

This can be turned into a comprehension category P : C → B→ such that p is a discrete
fibration in the following way: we consider∑

C Ty C →

C

P

prTy
1

cod

where P sends (c, a) ∈
∑

C Ty to p(c,a) : (c, a) → c. By the prerequisite this P sends
cartesian arrows to cartesian squares and thus is a comprehension category.

Blanco showed in [5, Theorem 2.3] that if we consider ComprCdisc, the subcategory of
ComprC where the p are discrete fibrations then this category is equivalent to CwA, the
category of categories with attributes. This 1-categorical result immediately extends to
the 2-categorical framework by chosing the appropriate 2-arrows between categories with
attributes. As Cartmell does not give such 2-arrows we simply take those obtained
from the translation to comprehension categories so that the 1-equivalence extends to a
2-equivalence CwA ≃ CompModdisc.

Definition 3.2.8 (Categories of comprehension categories). The 2-category ComprC
consists of the following data:

• Its objects are comprehension categories.

• Its 1-maps are pseudo-maps of comprehension categories.

• Its 2-maps are transformations of pseudo-maps.

It has the following subcategories:

• ComprCspl, this category has as object the split comprehension categories and as 1-maps
the pseudo-maps that respect those splittings,

• ComprCstr which has as 1-maps only the strict maps of comprehension categories,

• ComprCdisc which has as objects the discrete comprehension categories.
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Obviously one can combine these above modifiers to for example obtain ComprCstr
disc etcetera.

Theorem 3.2.9. There is a 2-equivalence

ComprCspl ≃ (2-fam,Σ)Cwk .

We divide the proof of this theorem into three parts (lemmata):

1. Firstly we show that there exists a 2-functor ComprCspl → (2-fam,Σ)Cwk.

2. Then we show that there exists a 2-functor in the reverse direction.

3. Lastly we show that these functors constitute a 2-equivalence.

Lemma 3.2.10. There is a 2-functor ComprCspl → (2-fam,Σ)Cwk.

Proof: This functor takes a comprehension category P : E → B→ to the (2-fam,Σ)-category
defined by the following datum:

• The 2-fam-category is given as in the proof of Theorem 2.4.14

• The Σ-structure is given by
Σb(λ) := P0(λ)

and the projection arrow is given by P (λ). Given f : b → b′ and λ ∈ fHom(b′), that is
p(λ) = b′, the arrow Σc(f) :

∑
b′ c ◦b f →

∑
b c is given by

P0

(
f(λ)

)
: P0

(
f ∗(λ)

)
→ P0(λ).

Given an arrow g : λ→ λ′ in fHom(b) the arrow
∑

λ,λ′ g is given as

P0(g).

It is immediate that this constitutes a (2-fam,Σ)-category. On the functors we do the
following: a pseudo-map (F,G, ϕ) : (P : C → B→) → (P : C ′ → B′→) of comprehension
categories is mapped to the weak (2-fam,Σ)-functor defined as follows:

• The underlying 2-fam-functor H is given as in the proof of Theorem 2.4.14 using (F,G),
that is H(c) := G(c) and Hc(λ) := F (λ).

• For every λ ∈ fHom(b) for an arbitrary b ∈ B the arrow H
∼=
λ is defined as ϕλ : G

(
P0(c)

)
→

P ′
0

(
F (c)

)
.

One can check that this fulfils the conditions of a weak (2-fam,Σ)-functor as the underlying
functor is a (fam,Σ)-functor, which follows by the following argument: we have to show that
for all b ∈ B, f : a→ b, λ, µ ∈ fHom(b), η : λ⇒µ we have the commutativity of∑

H(a) Ha(λ ◦ f) H
(∑

b λ
)

∑
H(b) Hb(λ) H

(∑
b λ
)

H
∼=
λ

∑
Ha(λ) H(f) H

(∑
λ f

)
H

∼=
µ

and

∑
H(b) Hb(λ) H

(∑
b λ
)

∑
H(b) Hb(µ) H

(∑
b µ)
)
.

H
∼=
λ

∑
Hc(λ),Hc(µ)

Hλ,µ(η) H(
∑

λ,µ η)

H
∼=
µ

The commutativity of the first square follows from ϕ being a natural iso ϕ : G→ ◦P → P ′ ◦F
over the identity on G, as this yields the commutative diagram

G
(
P0(λ)

)
G
(
P0(λ ◦ f)

)
P ′
0

(
F (λ)

)
P ′
0(
(
F (λ ◦ f)

)
G(b) G(b)

G(P (λ))

ϕλ

G(P0(f))

G(P (λ◦f))

ϕλ◦f

P (F (λ))

P (F (λ)) P ′(F (λ◦f))
1Gb
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Using the definition of the Σ-objects we see that the top square is the desired one.
The commutativity of the second square follows in the same fashion from the commutative

diagram

G
(
P0(λ)

)
G
(
P0(µ)

)
P ′
0

(
F (λ)

)
P ′
0(
(
F (µ)

)
G(b) G(b).

G(P (λ))

ϕλ

G(P0(η))

G(P (µ))

ϕµ

P (F (λ))

P (F (λ)) P ′(F (µ))
1Gb

Finally, given a transformation of pseudo-maps (α̃, α) : (F,G, η)⇒(F ′, G′, η′) we get the
weak (2-fam,Σ)-natural transformation α : H⇒H ′. As in the proof of proposition 2.4.14 it
follows that this α is a 2-fam-natural transformation. It remains to show that this is also a
weak (fam,Σ)-natural transformation, that is to show the commutativity of

H
(∑

c λ
)

H ′(∑
c λ
)

∑
H(c) Hc(λ)

∑
H′(c) H

′
c(λ).

α∑
c λ

H
∼=
λ H′∼=

λ∑
Hc(λ)

αc

Filling in the definitions of H and H ′ and the Σ we have to show that commutativity of

F
(
P0(λ)

)
F ′(P0(λ)

)
P ′
0

(
F (λ)

)
P ′
0

(
F ′(λ)

)
.

αP0(c)

ηλ η′λ

P ′(αc)

But this commutes due to α being a transformation of pseudo-maps. Q.e.d.

Lemma 3.2.11. There is a 2-functor (2-fam,Σ)Cwk → ComprCspl.

Before we prove this lemma, we make a few quick observations regarding the split fibration
that we associated to a 2-fam-category in 2.4.14, namely the cartesian morphisms. In the
definition of comprehension categories it is required that the functor P takes cartesian
morphisms to cartesian squares, so we need to know what the cartesian morphisms with
respect to the split fibration pC stemming from a 2-fam-category look like.

Lemma 3.2.12. Given a 2-fam-category C , the arrows cartesian with respect to pC and
some morphism C and some λ are the morphisms (f, η) ∈ F such that η is an isomorphism.

Proof: We first show that any such (f, η) is indeed cartesian with respect to pC . So assume
(f, η) : (c, λ) → (c′, µ) is cartesian with respect to f and µ. As (f, 1µ◦f) : (c, λ) → (c′, µ)
fulfils pC (f, 1µ◦f) = f = pC (f, η) there must be a (h, ξ) : (c, µ ◦ f) → (c, λ) such that
(f, 1µ◦f = (f, η) ◦ (h, ξ) — as (f, η) is pC -cartesian with respect to f and c′, µ) and also a
(h′, ξ′) : (c, λ)→ (c, µ ◦ f) such that (f, η) = (f, 1µ◦f ) ◦ (h′, ξ′) as (f, 1µ◦f ) is pC -cartesian with
respect to f and (c′, µ). Thus we have the commutative diagram

(c, µ ◦ f)

(c, λ) (c′, µ).

(f,1µ◦f )
(h,ξ)(h′,ξ′)

(f,η)
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With a standard argument stemming from the uniquness we get that

(h′, ξ′) ◦ (h, ξ) = 1(c,µ◦f) and (h, ξ) ◦ (h′, ξ′) = 1(c,λ).

Additionally we can compute from the commutativity of the triangles that both f ◦ h′ = f =
f ◦ h and (1µ◦f • h′) ◦ ξ′ = η and thus ξ′ = η. This helps in the computation as

(h, ξ) ◦ (h′, ξ′) =
(
h ◦ h′, (ξ • h′) ◦ ξ′

)
and thus (ξ • h′) ◦ ξ′ = 1(c,λ) and h ◦ h′ = 1c. Conversely we compute (ξ′ • h) ◦ ξ = 1(c,µ◦f) and
h′ ◦h = 1(c,µ◦f) from the composition (h′, ξ′)◦ (h, ξ). So we immediately get (ξ •h′)◦η = 1(c,λ)
as ξ′ = η from earlier computations and

η ◦ (ξ • h) = ξ′ ◦ (ξ • h′)

=
(
ξ′ • (h ◦ h′)

)
◦ (ξ • h′)

=
(
(ξ′ • h) • h′) ◦ (ξ • h′)

=
(
(ξ′ • h) ◦ ξ

)
• h′

= 1(c,µ◦f) • h′

= 1(c,λ).

Thus η is an isomorphism with inverse ξ • h.
If (f, η) : (c, λ)→ (c′, µ) is given where η : λ⇒µ ◦ f is an isomorpism we immediately see

that (f, η) is pC -cartesian with respect to f and (c′, µ). Namely, given (g, β) : (d, ν)→ (c′, µ)
such that there exists h : d → c with f ◦ h = g we define (h, (η−1 • h) ◦ β) : (d, ν) → (c, λ).
This is well-defined as β : ν → µ ◦ g and η−1 • h : λ : µ ◦ (f ◦ h)⇒λ and µ ◦ (f ◦ h) = µ ◦ g.

A simple computation then yields

(f, η) ◦
(
h, (η−1 • h) ◦ β

)
=
(
g, (η • h) ◦ (η−1 • h) ◦ β

)
=
(
g, (η ◦ η−1) • h ◦ β) = (g, β).

This (h, (η−1 • h) ◦ β) is obviously unique with this property. Q.e.d.

Proof of 3.2.11: We map a (2-fam,Σ)-category B to the comprehension category P : C →
B→ given by the following data:

• The categories E ,B and the functor p : E → B are defined as in the proof of 2.4.14.

• The functor P : C → B→ takes (b, λ) ∈ C to the arrow prλ1 :
∑

b λ→ b and (f, η) : (c, λ)→
(d, µ) to

∑
µ f ◦

∑
λ,µ◦f η. This can be visualized as

∑
c λ

∑
c µ ◦ f

∑
d µ

c c d.

prλ1

∑
λ,µ◦f η

prλ
′◦f

1

∑
µ f

prµ1

1c

f

It is again straightforward to check that this is indeed a comprehension category: Given
(f, η) : (c, λ)→ (d, µ) that is pC -cartesian with respect to f and (d, µ) the resulting square

∑
b λ

∑
d µ

c d

∑
λ f◦

∑
λ,µ◦f η

prλ1
prµ1

f
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is cartesian as
∑

λ,µ◦f η is an isomorphism. This follows as∑
λ,µ◦f

η ◦
∑
µ◦f,λ

η−1 =
∑
λ,λ

(η ◦ η−1) =
∑
λ,λ

1λ = 1∑
c λ

and similarly
∑

µ◦f,λ η
−1 ◦

∑
λ,µ η = 1∑

d µ.
We define our splitting to take each f to (f, 1λ◦f ) as defined above. Applying P to (f, 1λ◦f

yields the usual pullback square obtained from pulling a family arrow back along a morphism.
Now if we are given a weak (2-fam,Σ)-functor F : B → B′ of (2-fam,Σ)-categories,

then our split pseudomap between the associated comprehension categories is defined as
(pF , F, ϕ) : (p : C → B)→ (p′ : C ′ → B′) where F is the given functor and pF is defined as
in the proof of Theorem 2.4.14. The natural isomorphism ϕ : P ′ ◦ F ⇒G→ ◦ P is defined via

ϕ(b,λ) := F
∼=
λ :

∑
F (c) F (λ) F

(∑
c λ
)

P ′(G(b, λ)
)

G→(P (b, λ)
):= :=

for all (b, λ) ∈ E . To verify that this is a split pseudomap of comprehension categories we
need to check the following:

1. The square

C C ′

B→ B′→

G

P P ′

F→

commutes up to ϕ and this ϕ is natural.

2. The splittings are preserved, that is G(f, 1λ◦f ) is the splitting of G(g).

That the given square commutes up to ϕ is immediate from the definition of ϕ from F
∼=
λ .

That ϕ is natural stems from the condition (wFΣ4) The second point is immediate from the
definition of the splittings.

Lastly, given a weak (2-fam,Σ)-natural transformation η : F ⇒F ′ we map it to a trans-
formation of pseudo-maps in the following way: we consider (α̂, η) : (pF , F, ϕ)⇒(pF ′ , F ′, ϕ′)
where α̂ is defined via

α̂(b,λ) := (ηb, 1Fc(λ)) : G(b, λ) =
(
F (b), Fb(λ)

)
→ (F ′(b), Fb′(λ)

)
.

Here we used that (2fam4), that is Fb(λ) = F ′
b(λ) ◦ ηb. It is immediate that this constitutes a

natural transformation α̂ : G⇒G′ and by calculation we have that p′ • α̂ = η • p′ as for all
(b, λ) ∈ E

(p′ • α̂)(b,λ) = p′
(
α̂(b,λ)

)
= p′

(
(ηb, 1Fb(λ))

)
= ηb = ηp(b,λ) = (η • p)(b,λ).

It remains to check that (ϕF )(b,λ) ◦ P ′(α̂(b,λ)) = ηP (b) ◦ ϕ′
(b,λ). A straightforward computation

yields

(ϕF )(b,λ) ◦ P ′(α̂(b,λ)) := F
∼=
λ ◦ P ′(α̂(b,λ)) (definition of ϕF )

= F
∼=
λ ◦ P ′((ηb, 1Fb(λ))

)
(definition of α̂)

= F
∼=
λ ◦

∑
F ′
b(λ)

ηb (definition of P ′)

= η∑
b λ
◦ F ′∼=

λ (as η weak nat. trafo)

= ηP (b,λ) ◦ ϕ′
(b,λ) (by the definitions.)

Q.e.d.
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Lemma 3.2.13. The two above functors consitute a 2-equivalence.

Proof: To see the equivalence first note that if we are given a (2-fam,Σ)-category B, applying
the two functors equals to applying the identity. Additionally if we are given a weak (2-
fam,Σ)-functor F : B → B′ applying the two functors is again the same as applying the
identity, thus the composition of the two given functors equals the identity, and the same for
weak 2-fam-natural transformations.

In the reverse direction, assume we are given a comprehension category P : C → B→.
Applying the functors yields the comprehension category given as follows:

• The underlying category D is the category B.

• The category E has as objects pairs (b, c) where b ∈ B and c ∈ p−1(b). The arrows
of this category are pairs (f, µ) : (b, c) → (b′, c′) where f : b → b′ is a map in B and
µ : c→ domSp(f, c

′) is a map in C .

• The functor Q : D → B→ takes (b, c) to P (c) and (f, µ) : (b, c)→ (b′, c′) to
(
P0(Sp(f, c))◦

P0(µ), f
)
. This can be visualised as

P0(c) P0

(
domSp(f, c)

)
P0(c

′)

b b b′.

P0(µ)

P (c) P (domSp(f,c))

P0

(
Sp(f,c)

)
⌟

P (c′)

1b f

So it is immediate that cartesian arrows get taken to pullbacks as all cartesian arrows
satisfy µ = 1domSp(f,c) and thus the square on the left above is trivial.

The isomorphism (P : C → B→) → (Q : D → B→) is then defined as follows: It is the
identity on B and takes c in C to

(
p(c), c

)
as well as f : c → c′ to

(
p(f), t

)
, where t is

obtained in the following manner: first we take the cartesian lift Sp(f, c
′) of p(f) obtained by

the splitting and the use the unique filler from the cartesianness of Sp(f, c), as illustrated in
the diagram below.

dom(Sp(f, c)) p(c)

c p(c)

c′ p(c′).

Sp(f,c)

t

p

p(f)

f

p

p(f)

p

This is a strict, split map of comprehension categories as the diagram

f
(
p(f), t

)
P (f) P (f) P0(Sp(p(f), p(c))) ◦ P0(t)

where we used that Sp(p(f), p(c)) = f and P0(f) ◦P0(t). It is immediate that this assignment
is both invertible and natural. Q.e.d.

We summarize the correspondences of the different “ingredients” in both (2-fam,Σ)-
categories and comprehension categories in a table.



40 Chapter 3 – Σ-objects and comprehension categories

(2-fam,Σ)-categories comprehension categories

objects objects of the base category
family arrows over c objects of the total category over c
precomposition λ ◦ f splitting of f and λ
Σ-objects and projection comprehension functor P

By restricting to strict maps and discrete fibrations each we also get the following
equivalences:

Corollary 3.2.14. There are 2-equivalences

ComprCstr
spl ≃ (2-fam,Σ)C,

ComprCdisc ≃ (fam,Σ)Cwk,

ComprCstr
disc ≃ (fam,Σ)C .

It is worth noting that every discrete fibration is split as there is exactly one lift given an
arrow f : a→ b and λ over b, so the category ComprCdisc,spl is the same as ComprCdisc.



Chapter 4

Dependent arrows in fam-categories

In this chapter we review the extension of categories with family arrows due to Petrakis
and compare it to the dependent products Pitts extends his type categories by. We then
introduce iterated discrete fibrations and show that these are equivalent to dependent arrows
under the previously established equivalence

{categories with family arrows} ↔ {discrete fibrations}.

4.1 dep-categories

Definition 4.1.1 (dep-categories). A dep-category C is a fam-category C in the sense
of definition 2.1.1 such that for each c ∈ C and each λ ∈ fHom(c) we are given a collection
dHom(λ) of dependent arrows. A dependent arrow Φ ∈ dHom(λ) for λ ∈ fHom(c) is depicted
in a diagram as follows:

c λ

Φ

Additionally a map that assigns to each Φ ∈ dHom(λ) and each f : c′ → c a dependent arrow
Φ[f ] ∈ dHom(λ ◦ f) is required, meeting the following conditions:

(dep1) For each c ∈ C , λ ∈ fHom(c) and Φ ∈ dHom(λ) the equation Φ[1c] = Φ holds.

c c
1c λ

Φ

Φ

(dep2) For each c ∈ C , λ ∈ fHom(c), f : c′′ → c′, g : c′ → c and Φ ∈ dHom(λ) we have
Φ[g ◦ f ] =

(
Φ[g]

)
[f ].

c′′ c′ c
f g λ

Φ[g]

(Φ[g])[f ]

4.1.2 The diagrammatical language. We want to make a few remarks on the diagram-
matical language we chose. Both Petrakis and Ehrhardt depict their dependent arrows
as living above their respective family arrows as in

c ·λ
Φ

We instead chose the approach of having the dependent arrow pointing at the family arrow
itself while starting at the object over which the family arrow exists, that is as

c λ

Φ

41
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However, this means that commutative diagrams carry more information that one might
expect at first glance. If we for example consider

c′ c
f

η

λ

Ψ

Φ

the commutativity of this diagram not only means λ ◦ f = η but also Φ[f ] = Ψ, even though
the arrows Φ[f ],Ψ do not point at the same target.

Examples 4.1.3. 1. Every fam-category can be turned into a dep-category by defining

dHom(a, λ) = 1

for every a ∈ C , λ ∈ fHom(a). The conditions are trivially satisfied.

2. In the category Sets with the fam-category structure as before we can define the dependent
arrows as such:

dHom
(
S, (Bs)s∈S

)
=
∏
s∈S

Bs =
{
Φ: S → Sets | ∀s∈SΦ(s) ∈ Bs

}
.

The applications are defined as such: for Φ ∈
∏

s∈S Bs and f : T → S define Φ(f) as Φ: f .
It is immediate that this lies in dHom(T, (Bf(t))t∈T ) as Φ(f(t)) ∈ Bf(t) for every t ∈ T by
design. The strictness conditions are immediate from the definition of the application.

Pitts also endows type categories (that is (fam,Σ)-categories with a terminal object) with
dependent arrows, albeit in a different manner. Before we give Pitts definition of dependent
products we need to make a few technical remarks about the pullback of projections.

1. The collection typeC (c) can be made into a subcategory of C /c as such: Each c-indexed
type λ gets mapped to prλ1 , and an arrow λ→ λ′ is simply an arrow f :

∑
c λ→

∑
c λ

′

such that prλ
′

1 ◦f = prλ1 .

2. If we have a c-indexed type λ then we can define a functor (prλ1)
∗ : C /c → C /

∑
c λ as

follows:

• Each f : d→ c gets mapped to
∑

d f :
∑

d f
∗λ→

∑
c λ.

• Each g : f → f ′, that is g such that

d d′

c
f

g

f ′

commutes gets mapped to the arrow g̃ := ⟨g ◦ prf
∗λ

1 ,
∑

c f⟩ which arises from∑
d f

∗λ

∑
d′(f

′)∗λ
∑

c λ

d d′ c.

∑
d f

prf
∗λ

1

g̃ ∑
d′ f

′

⌟
pr

(f ′)∗λ
1 prλ1

g f
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3. If we have an arrow f : d→ c, then we obtain a functor f ∗ : typeC (c)→ typeC (d) (where
these are made categories as described above) in the following manner:

• Every λ gets mapped to f ∗λ, using the identification this means that prλ1 gets mapped
to prf

∗λ
1 .

• Every g : λ→ λ′ that is g :
∑

c λ→
∑

c λ
′ such that prf

∗λ′

1 ◦g = prf
∗λ

1 gets mapped to

ĝ := ⟨prf
∗λ

1 , g ◦
∑

d f⟩ which arises from

∑
d f

∗λ
∑

c λ

∑
d′ f

∗λ′ ∑
c λ

′

d c

ĝ

prf
∗λ

1

∑
d f

g

⌟

∑
c f

′

prf
∗λ′

1 prλ
′

1

f

where the outer square commutes due to prf
∗λ′

1 ◦g = prf
∗λ

1 .

Definition 4.1.4 (Type categories with dependent products - [51]). A type category
C has dependent products if it is endowed with the following exrta structure: for each object
c ∈ C , λ ∈ typeC (c) and λ′ ∈ typeC

(∑
c λ
)
there is a c-indexed type

∏
(λ, λ′) ∈ typeC (c)

and a morphism apλ,λ′ : (prλ1)
∗∏(λ, λ′)→ λ′ satisfying the following properties:

1. Adjointness property: for any f : c′ → c in C and g : (prλ1)
∗(f) → prλ

′
1 in C /

∑
c λ

there is a unique morphism in C /c which we call cur(g) : f → pr
∏

(λ,λ′)
1 such that

apλ,λ′ ◦(prλ1)∗
(
cur(g)

)
= g.

2. Strictness property: For any morphism f : c′ → c in C we have

f ∗
∏

(λ, λ′) =
∏(

f ∗λ,
(∑

c

f
)∗
λ′
)
,(∑

c

f
)∗
(apλ,λ′) = apf∗λ,(

∑
c λ)

∗λ′ .

Pitts himself used these type categories with dependent products as the classifying cate-
gories of dependently typed equational logic with dependent product types. We demonstrate
that these dependent products differ greatly from dependent arrows as in dep-categories by
exhibiting that Sets also has dependent product types in this manner.

Proposition 4.1.5. Sets is a type category with dependent products.

Proof: For this we first note that in this definition the types λ are given as λ : S → Sets,
that is each element s ∈ S gets mapped to a set. With this definition∑

S

λ :=
∐
s∈S

λ(s) =
{
(s, x) | x ∈ λ(s)

}
,

f ∗λ := λ ◦ f,

Σλf :
∑
T

λ ◦ f →
∑
S

λ

(t, x) 7→
(
f(t), x

)
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for every f : T → S. We then define the dependent arrow structure as follows: for λ : S →
Sets, λ′ :

∑
S λ → Sets define

∏
(λ, λ′) : S → Sets via s 7→

∏
x∈λ(s) λ

′(s, x). Define the
application arrow

apλ,λ′ :
∑
∑

S λ

(∏
(λ, λ′) ◦ prλ1

)
→
∑
∑

S λ

λ′ via
(
(s, x′), (ax)x∈λ(s)

)
7→
(
(s, x′), ax′

)
.

To prove that this makes Sets a type category with dependent arrows we need to show
the adjunction and strictness conditions. Before we do this we need to understand the
functors (prλ1)

∗ : Sets /S → Sets /
∑

S λ and f ∗ : type(S)→ type(T ) for f : T → S better. By
definition we know that for any g : U1 → S we have that (prλ1)

∗(g) = Σλ(g) :
∑

U1
λ◦g →

∑
S λ.

For h : g1 → g2 we have that (prλ1)
∗(g) :

∑
λ g1 →

∑
λ g2 is the unique arrow arising from the

pullback diagram ∑
U1

λ ◦ g1

∑
U2

λ ◦ g2
∑

S λ

U1 U2 S.

∑
λ g1

pr
λ◦g1
1

(prλ1 )
∗h ∑

λ g2

pr
λ◦g2
1

prλ1

h g2

Thus we can compute that

(prλ1)
∗(h)(u, x) =

(
h(u), x

)
for all (u, x) ∈

∑
U1

λ ◦ g1.

Conversely we have for all λ : S → Sets that f ∗(λ) = λ ◦ f : T → Sets. If h : λ→ λ′, that is
h :
∑

S λ→
∑

S λ
′ and prλ

′
1 ◦h = prλ1 , then f ∗(h) is defined through the pullback diagram∑

T λ ◦ f
∑

S λ

∑
T λ′ ◦ f

∑
S λ

′

T S.

prλ◦f1

f∗(h)

∑
λ f

h∑
λ′ f

prλ
′◦f

1
prλ1

f

Thus we compute that

f ∗(h)(t, u) =
(
t, h2

(
f(t), u

))
for all (t, u) ∈

∑
T

λ ◦ f

where h2

(
f(t), u

)
arises from h(s, u) =

(
h1(s, u), h2(s, u)

)
for all (s, u) ∈

∑
S λ.

Lemma 4.1.6. Let C be a type category and X ∈ C , λ, λ′ ∈ typeC (X). Then∑
∑

X λ

(prλ1)
∗λ′ =

∑
∑

X λ′

(prλ
′

1 )
∗λ.

Proof: We do this by using that both∑∑
X λ(pr

λ
1)

∗λ′ ∑
X λ′

∑
X λ X

∑
λ prλ1

pr
(prλ1 )∗λ′

1
prλ

′
1

prλ1

and

∑∑
X λ′(prλ

′
1 )

∗λ
∑

X λ

∑
X λ′ X

∑
λ prλ

′
1

pr
(prλ

′
1 )∗λ

1
prλ1

prλ
′

1
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are pullback squares. So we get unique arrows f, g making the diagrams

∑∑
X λ′(prλ

′
1 )

∗λ

∑∑
X λ(pr

λ
1)

∗λ′ ∑
X λ′

∑
X λ X

f

pr
(prλ

′
1 )∗λ

1

∑
λ prλ

′
1

∑
λ prλ1

pr
(prλ1 )∗λ′

1
prλ

′
1

prλ1

and ∑∑
X λ(pr

λ
1)

∗λ′

∑∑
X λ′(prλ

′
1 )

∗λ
∑

X λ

∑
X λ′ X

∑
λ prλ1

pr
(prλ1 )∗λ′

1

g ∑
λ prλ

′
1

pr
(prλ

′
1 )∗λ

1
prλ1

prλ
′

1

commute. Thus g ◦ f = 1∑∑
X λ′ (pr

λ′
1 )∗λ and f ◦ g = 1∑∑

X λ(pr
λ
1 )

∗λ′ Q.e.d.

Remark 4.1.7. In the instance where we will use this, that is C = Sets, a small notational
hiccup occurs. Here for λ, λ′ : S → Sets we get that∑

∑
S λ

(prλ1)
∗λ′ =

{(
(s, x), y

)
| s ∈ S ∧ x ∈ λ(s) ∧ y ∈ λ′(s)

}
,

∑
∑

S λ′

(prλ
′

1 )
∗λ =

{(
(s, y), x

)
| s ∈ S ∧ y ∈ λ′(s) ∧ x ∈ λ(s)

}
.

We will from now on always tacitly identify the both.

Adjunction condition For this let f : T → S, λ : S → Sets, λ′ :
∑

S λ → Sets be given.
Additionally let g : (prA1 )

∗(f)→ prλ
′

1 be given, that is an arrow g making the triangle∑
T λ ◦ f

∑∑
S λ λ

′

∑
S λ

g

∑
λ f

prλ
′

1
(9)

commute. Then we must obtain a unique cur(g) : T →
∑

S λ making

T
∑

S

∏
(λ, λ′)

S

f

cur(g)

pr
∏

(λ,λ′)
1

(10)

commute. This cur(g) is defined in the following way: From the commutativity of (9) we
know that g(t, x) =

(
(f(t), x), g2(t, x)

)
where g2(t, x) ∈ λ′(f(t), x). We then set

cur(g)(t) :=
(
f(t),

(
g2(t, x)

)
x∈λ(f(t))

)
.
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It is immediate that this definition makes (10) commute as

pr
∏

(λ,λ′)
1

(
cur(g)(t)

)
= pr

∏
(λ,λ′)

1

(
f(t),

(
g2(t, x)

)
x∈λ(f(t))

)
= f(t)

for all t ∈ T . To verify the equation apλ,λ′ ◦(prλ1)∗(cur(g)) = g we simply compute that for
all (t, u) ∈

∑
T λ ◦ f

apλ,λ′ ◦(prλ1)∗(cur(g))(t, u) = apλ,λ′

(
cur(t), u

)
= apλ,λ′

(
f(t), (g2(t, x))x∈λ(f(t)), u

)
= apλ,λ′

(
f(t), g2(t, u), u)

)
= g(t, u).

It is immediate that cur(g) is the only function with this property and thus necessarily
unique.

Strictness conditions We have to check that for any f : T → S we have that∏
(λ, λ′) ◦ f =

∏
(λ ◦ f, λ′ ◦

∑
λ

f),(∑
λ

f
)∗
(apλ,λ′) = apλ◦f,λ′◦(

∑
λ f) .

This can by verified via(∏
(λ, λ′) ◦ f

)
(t) =

∏
x∈λ(f(t))

λ′(f(t), x) = ∏
x∈λ(f(t))

(
λ′ ◦

∑
λ

(f)
)
(t, x)

=
∏

(λ ◦ f, λ′ ◦
∑
λ

f)(t) (for all t ∈ T )

and (∑
λ

f
)∗
(apλ,λ′)

(
(t, x), (ay)y∈λ(f(t))

)
=
(
(t, x), ap2

λ,λ′

(∑
λ

f(t, x), (ay)y∈λ(f(t))
))

=
(
(t, x), ax

)
= apλ◦f,λ′◦(

∑
λ f)

(
(t, x), (ay)y∈λ(f(t))

)
for all

(
t, x), (ay)y∈λ(f(t))

)
∈
∑∑

T λ◦f

(∏
(λ, λ′) ◦ prλ◦f1

)
. Q.e.d.

Definition 4.1.8 (dep-functors, dep-natural transformations). A dep-functor F : C →
D is a fam-functor F : C → D in the sense of definition 2.1.4 together with a rule Fλ that
assigns to each Φ ∈ dHom(λ) a Fλ(Φ) ∈ dHom

(
Fc(λ)

)
. This is required to satisfy:

(dep3) For each f : c′ → c, λ ∈ fHom(c) and Φ ∈ dHom(λ) we have Fλ◦f
(
Φ[f ]

)
= Fλ(Φ)

[
F (f)

]
.

A dep-natural transformation η : F ⇒ G is a fam-natural transformation η : F ⇒ G in the
sense of 2.1.4 such that additionally

(dep4) for all c ∈ C , λ ∈ fHom(c)} and Φ ∈ dHom(λ) we have
[
Gλ(Φ)

]
(ηc) = Fλ(Φ).

All of the above allows us to define the 2-category depC of dep-categories, dep-functors
and dep-natural transformations.

Definition 4.1.9 (Category of dep-categories). The cateogry depC has

• as objects categories with dependent arrows in the sense of definition 4.1.1,

• as 1-maps dep-functors in the sense of definition 4.1.8 and

• as 2-maps dep-natural transformations in the sense of 4.1.8.
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4.2 Iterated discrete fibrations

Definition 4.2.1. We define the 2-category dFibb via the following data:

• its objects are pairs (q, p) of composable functors q : G → E , p : E → B such that both p
and p ◦ q are discrete fibrations.

• A 1-map is a triple (F̃ , F̂ , F ) : (q, p)→ (q′, p′) such that (F̂ , F ) : p→ p′ and (F̃ , F ) : p◦q →
p′ ◦ q′ are maps of discrete fibrations.

• A 2-map is a triple (η, η̂, η̃) : (F̃ , F̂ , F ) → (G̃, Ĝ, G) such that (η̂, η) : (F̂ , F ) ⇒ (Ĝ, G)
and (η, η̃) : (F, F̃ )⇒ (G, G̃) are transformations of maps of discrete fibrations.

Remark 4.2.2. Similar to pullbacks discrete fibrations fulfil a pasting property, that is given
two functors

G
q−−→ E

p−−→ B

such that p is a discrete fibration, the following are equivalent:

• q is a discrete fibration.

• p ◦ q is a discrete fibration.

This can be motivated by the fact that if all categories involved are small, then p is a discrete
fibration if and only if

E1 B1

E0 B0

p1

cod cod

p0

is a pullback (cf. [56]), thus we obtain the pasting diagram

G1 E1 B1

G0 E0 B0.

q1

cod

p1

cod cod

q0 p0

However this can also be checked for categories that are not small. Thus we could equivalently
demand that (F̂ , F ) and (Ĝ, G) are maps of the respective fibrations, analogously with the
transformations.

Proposition 4.2.3. There is a 2-equivalence

depC ≃ dFibb .

Proof. We give the two functors in each direction.

(q, p)− : depC→ dFibb

Given a dep-category C , we define two functors pC : F → C , qC : D → F where F is the
category of family arrows of C , that is its objects are family arrows λ and its arrows are
f : λ ◦ f → λ where f : c′ → c (and λ ∈ fHom(c)). Similarly D is the category of dep-arrows,
that is its objects are Φ and the arrows are f : Φ ◦ f → Φ for f : c′ → c (where Φ lies over
λ ∈ fHom(c)).

The two discrete fibrations are then defined as follows:

p(λ) = c for λ ∈ fHom(c), p(f) = f,

q(Φ) = λ for Φ ∈ dHom(λ), q(f) = f.
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It is immediate that these constitute functors, the associativity and unity follow from (fam1-2)
and (dep1-2) respectively. They are also discrete fibrations, the unique lift of f : c′ → c along
p and λ is f : λ ◦ f → λ, and the unique lift of this f along p ◦ q and Φ is f : Φ ◦ f → Φ.

Given a dep-functor F : C → D , this functor is mapped to (F̃ , F̂ , F ) : (q, p)C → (q, p)D
whereˆ̃F, F are defined as follows:

F̂ (λ) = Fc(λ) for λ ∈ fHom(c), F̂ (f) = F (f),

F̃ (λ) = F λ(Φ) for Φ ∈ dHom(λ), F̃ (f) = F (f).

The functoriality of ˆ̃F, F immediately follow from the functoriality of F . To see that
(F̂ , F ) : pC → pD and (F̃ , F ) : pC ◦ qC → pD ◦ qD are maps of discrete fibrations we remark
that

(pD ◦ F̂ )(λ) = F (c) = F
(
pC (λ)

)
and (pC ◦ F̂ )(f) = F (f) = F

(
pC (f)

)
as well as

(pC ◦ qC ◦ F̃ )(Φ) = F (Φ) = F
(
(pD ◦ qC )(Φ)

)
and (pC ◦ qC ◦ F̃ )(f) = F (f) = F

(
(pD ◦ qC )(f)

)
Similarly, for a dep-natural transformation η : F ⇒G we define a map

(η̃, η̂, η) : (F̃ , F̂ , F )⇒(G̃, Ĝ, G), η̂λ := ηc =: η̃Φ.

This choice works as ηc : F̂ (λ)→ Ĝ(λ) because F̂ (λ) = Fc(λ) = Gc(λ) ◦ ηc = Ĝ(λ) ◦ ηc where
we used that F is a fam-functor for the second to last equality. A similar computation also
yields the same for F̃ (Φ) and G̃(Φ).

It is straightforward to compute that these choices for η̂, η̃ make (η, η̂, η̃) a 2-map in dFibb.

C− : dFibb→ depC

In the reverse direction we map (q : G → E , p : E → B) in dFibb to the dep-category B
defined as follows:

• The underlying category is B.

• For each b ∈ B the family arrows are defined via fHom(b) := p−1(b).

• For each b ∈ B, λ ∈ fHom(b) the dependent arrows are defined via dHom(λ) := q−1(λ).

• For f : c → c′ we define λ : f to be the domain of the unique lift of f along p and λ.
Furthermore we define Φ[f ] to be the domain of the unique lift of f along p ◦ q and Φ.

It is straightforward to check that this constitutes a dep-category, one only needs to use that
the lifts of identities are identities and the lift of compositions is obtained by composing the
lifts.

A map (F̃ , F̂ , F ) : (q, p)→ (q′, p′) is then mapped to the dep-functor F : B → B′ where
Fb(λ) := F̂ (λ), F λ(Φ) := F̃ (Φ). It is immediate that this constitutes a fam-functor as

Fc(λ ◦ f) = F̂ (λ ◦ f) = F̂ (λ) ◦ F (f)

which follows from the fact that (F̂ , F ) : p→ p′ is a map of discrete fibrations, thus it interacts
well with lifts. In a diagram:

(
λ ◦ f λ

) (
F̂ (λ ◦ f) F̂ (λ)

)
(
c′ c

) (
F (c′) F (c)

)
.

p

fℓ

p

F̂

p′

F̂ (fℓ)

p′

f F F (f)
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Here fℓ is the lift of f along p and λ and as F̂ (fℓ) is the lift of F (f) along p′ and F̂ (λ). A
similar argument proves the same statement for F λ and p ◦ q. Hence F is a dep-functor.

Finally, if we are given a 2-map (η̃, η̂, η) : (F̃ , F̂ , F )⇒(G̃, Ĝ, G) we obtain a dep-natural
transformation η : F ⇒G. We only need to check that Gc(λ) ◦ ηc = Fc(λ) for which we use
that Gc(λ) = Ĝ(λ), Fc(λ) = F̂ (λ), then the statement follows from the commutativity of

E E ′

B B′

p

F̂

Ĝ p′

F

G

η̂

η

which itself stems from (η̂, η) : p→ p′ being a map of discrete fibrations.

At last we show that these functors constitute a 2-isomorphism. A straightforward
computation shows that applying C−◦(q, p)− to a dep-category C yields the same dep-category,
analogously one computes the same for dep-functors and dep-natural transformations.

Conversely, applying (q, p)− ◦ C− to a pair (q : G → E , p : E → B) yields (q, p) itself, the
same holds for 1-maps and 2-maps in dFibb. Q.e.d.



Chapter 5

(dep,Σ)-categories and higher comprehension
categories

In this chapter we recall the definition of Petrakis how to extend the dependent arrow
structure to an existing Σ-object structure. We then propose a notion of higher discrete
comprehension categories which are equivalent to these categories of Petrakis .

5.1 (dep,Σ)-categories

Definition 5.1.1 ((dep,Σ)-categories). A (dep,Σ)-category is a (fam,Σ)-category C that
is also a dep-category together with a dependent arrow prλ2 ∈ dHom(λ ◦ prλ1) for every family
arrow λ subject to the following condition:

(DΣ1) for each f : a→ b and each λ ∈ fHom(b) we have

[
prλ2
](∑

λ

f
)
= prλ◦f2 .

This can be expressed through the commutativity of

∑
a λ ◦ f

∑
b λ

·

∑
λ f

λ◦f◦prλ◦f1
λ◦prλ1 prλ◦f2prλ2

Definition 5.1.2 ((dep,Σ)-functors). Let C ,D be (dep,Σ)-categories. We define a (dep,Σ)-
functor from C to D to be a functor F : C → D that is both a dep-functor as well as a
(fam,Σ)-functor and fulfils the following condition:

(DΣ2) For all family arrows λ ∈ fHom(c) the equality F (prλ2) = pr
Fc(λ)
2 holds.

We call F a weak (dep,Σ)-functor if it is a weak (fam,Σ)-functor and a dep-functor such that
the following holds:

(wDΣ2) For all λ ∈ fHom(c) for some c the equation
[
pr

Fc(λ)
2

]
(F

∼=
λ ) = Fλ(pr

λ
2) holds.

This definition is inspired by the way Petrakis assigns to each (fam,Σ)-category a (dep,Σ)-
category. The following result is due [48, Thms 4.6 & 5.4].

Theorem 5.1.3. Every (fam,Σ)-category can be turned into a (dep,Σ)-category by setting

dHom(λ) :=

Φ: c→
∑
c

λ

∣∣∣∣∣∣∣∣∣
c

∑
c λ

c

Φ

1c
prλ1

commutes


50
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and letting prλ2 be the arrow defined through the commutative diagram

∑
c λ

∑
∑

c λ

λ ◦ prλ1
∑

c λ

∑
c λ c.

1∑
c λ

1∑
c λ

prλ2

pr
λ◦prλ1
1

pr
λ◦prλ1
1

prλ1

prλ1

Thus (dep,Σ)-functors should be defined in a way that this assignment routine becomes
a functor between the respective categories. We observe that if we are given two (fam,Σ)-
categories C ,D and a (fam,Σ)-functor F : C → D then F (Φ) is a dep-arrow in D for every

dep-arrow Φ in C . Furthermore using F
(∑∑

c λ
λ ◦ prλ1

)
=
∑∑

F (c) Fc(λ)
Fc(λ) ◦ prFc(λ)

1 we can

observe that F (prλ2) makes the diagram

∑
F (c) Fc(λ)

∑
∑

F (c) Fc(λ)

Fc(λ) ◦ prFc(λ)
1

∑
F (c) Fc(λ)

∑
F (c) Fc(λ) F (c)

1∑
F (c) Fc(λ)

1∑
c λ

F (prλ2 )

pr
Fc(λ)◦pr

Fc(λ)
1

1

pr
Fc(λ)◦pr

Fc(λ)
1

1

pr
Fc(λ)
1

pr
Fc(λ)
1

commute and thus pr
Fc(λ)
2 = F (prλ2). This allows us to define our (dep,Σ)-functor via

c 7→ F (c), λ 7→ Fc(λ), Φ 7→ F (Φ).

It is immediate from the definition that this assignment respects both identities and compo-
sition, hence we have the desired functor (fam,Σ)C→ (dep,Σ)C.

For the case of weak (fam,Σ)-functors we need to work a little harder, as we only are
given the isomorphisms F

∼=
λ : F (

∑
c λ)→

∑
F (c) Fc(λ), thus from our Φ: c→

∑
c λ such that

prλ1 ◦Φ = 1c we do not immediately get that F (Φ) is a dep-arrow in the induced structure
instead we have to consider F

∼=
λ ◦ F (Φ) as the following diagram highlights:

F (c) F
(∑

c λ
) ∑

F (c) Fc(λ)

F (c).

F (Φ)

1F (c)

F
∼=
λ

F (prλ1 )

pr
Fc(λ)
1

This also leads to further “complications” with the second-projection pr
Fc(λ)
2 . For this we
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need to consider the diagram

F (
∑

c λ)
∑

F (c) Fc(λ)

F
(∑

∑
c λ

λ ◦ prλ1
) ∑

F (
∑

c λ)

F∑
c λ
(λ ◦ prλ1)

∑
∑

F (c) Fc(λ)

Fc(λ) ◦ prFc(λ)
1

F
(∑

c λ
) ∑

F (c) Fc(λ)

F
∼=
λ

F (prλ2 ) pr
Fc(λ)
2

F
∼=
λ◦prλ1

F (pr
λ◦prλ1
1 )

pr
F∑

c λ(λ◦prλ1 )

1

⌟

∑
Fc(λ)◦pr

Fc(λ)
1

F
∼=
λ

pr
Fc(λ)◦pr

Fc(λ)
1

1

F
∼=
λ

in which the left triangle and bottom inner square (but not the top square a priori) commute.

Note that we also used that F∑
c λ
(λ ◦ prλ1) = Fc(λ) ◦ prFc(λ)

1 ◦F∼=
λ . To see that the outer square

commutes we compute

pr
Fc(λ)◦prFc(λ)

1
1 ◦ prFc(λ)

2 ◦F∼=
λ = 1∑

F (c) Fc(λ) ◦ F
∼=
λ (defining property of pr

Fc(λ)
2 )

= F
∼=
λ ◦ F (1∑

c λ
) (properties of identities)

= F
∼=
λ ◦ F (pr

λ◦prλ1
1 ◦ prλ2) (defining property of prλ2)

= F
∼=
λ ◦ F (pr

λ◦prλ1
1 ) ◦ F (prλ2) (functoriality of F ).

As
[
pr

Fc(λ)
2

]
(F

∼=
λ ) is defined as the unique arrow F (

∑
c λ)→

∑
F (

∑
c λ)

F∑
c λ
(λ ◦ prλ1) making

the required triangles in the pullback diagram commute. So by showing that F
∼=
λ◦prλ1

◦ F (prλ2)

makes them commute we obtain the desire
[
pr

Fc(λ)
2

]
(F

∼=
λ ) = F

∼=
λ◦prλ1

◦ F (prλ2).

The equality pr
F∑

c λ(λ◦prλ1 )

1 ◦F∼=
λ◦prλ1

◦ F (prλ2) = 1F (
∑

c λ)
is immediate as

pr
F∑

c λ(λ◦prλ1 )

1 ◦F∼=
λ◦prλ1

◦ F (prλ2) = F (pr
λ◦prλ1
1 ) ◦ F (prλ2) = F (pr

λ◦prλ1
1 ◦ prλ2) = F (1∑

c λ
).

For the second equality we use that by showing

pr
Fc(λ)◦prFc(λ)

1
1 ◦

∑
Fc(λ)◦prFc(λ)

1

F
∼=
λ ◦ F

∼=
λ◦prλ1

◦ F (prλ2) = pr
Fc(λ)◦prFc(λ)

1
1 ◦ prFc(λ)

2 ◦F∼=
λ

we already get the desired equality as we can the use that
∑∑

F (c) Fc(λ)
Fc(λ) ◦ prFc(λ)

1 itself is

a pullback. But the postulated equality follows immediately as

pr
Fc(λ)◦prFc(λ)

1
1 ◦

∑
Fc(λ)◦prFc(λ)

1

F
∼=
λ ◦ F

∼=
λ◦prλ1

◦ F (prλ2) = F
∼=
λ ◦ pr

F∑
c λ(λ◦prλ1 )

1 ◦F∼=
λ◦prλ1

◦ F (prλ2)

= F
∼=
λ ◦ F (pr

λ◦prλ1
1 ) ◦ F (prλ2)

= pr
Fc(λ)◦prFc(λ)

1
1 ◦ prFc(λ)

2 ◦F∼=
λ

where we used the commutativity of the lower square and triangle for the first and second
equality respectively and then the commutativity of the outer square shown above.

Definition 5.1.4 ((dep,Σ)-natural transformations). Let C ,D be (dep,Σ)-categories
and F,G : C → D be (dep,Σ)-functors. We define a (dep,Σ)-natural transformation η : F ⇒G
to be a natural transformation fulfilling the following properties:
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(DΣ3) η is a (fam,Σ)-natural transformation of the underlying (fam,Σ)-functors.

(DΣ4) η is a dep-natural transformation of the underlying dep-functors.

(DΣ5) for every family arrow λ we have pr
F ′(λ)
2 ◦η∑

c λ
= pr

F (λ)
2 .

Remark 5.1.5. Actually the last condition on (dep,Σ)-natural transformations is superfluous
as we already have—from η being a dep-natural transformation—that

F ′(prλ2) ◦ η∑c λ
= F (prλ2),

so using F ′(prλ2) = pr
F ′(λ)
2 and the analogous equality for F yields the desired condition.

Definition 5.1.6 ((2-)Category of (dep,Σ)-categories). Let (dep,Σ)C be the category
with

• Objects: (dep,Σ)-categories C ,

• 1-maps: (dep,Σ)-functors F .

• 2-maps: (dep,Σ)-natural transformations η.

5.2 Higher discrete comprehension categories

5.2.1 Alternative viewpoints on comprehension categories. Before we proceed we
note the following observation made by Jacobs in [33, p. 4.1.2]: The object part of a
comprehension category P : E → B→ defines a natural transformation P : P0⇒ p. We will
confuse P with this natural transformation it gives rise to, it will be obvious from the context
which of the two notions we refer to.

Definition 5.2.2 (Higher discrete comprehension categories). A higher discrete
comprehension category consists of the following data:

• a discrete comprehension category P : E → B→.

• An iterated discrete fibration (q : G → E , p : E → B) where p stems from the comprehen-
sion category P .

• A functor pr2 : E → G and a natural transformation χ : q ◦ pr2⇒ idE .

This data will be written as (q, P, χ). It is subject to the following condition:

(HdCC1) p • χ = P , that is for all λ ∈ E we have p(χλ) = P (λ).

Definition 5.2.3 (Pseudo-maps of higher discrete comprehension categories). Let
(q, P, χ), (q′, P ′, χ′) be two higher discrete comprehension categories. A pseudo-map from
(q, P, χ) to (q′, P ′.χ′) is a quadruple (F̂ , F,G, ϕ) such that

(HdCC2) (F̂ , F,G) : (q, p)→ (q′, p′) is a map of iterated discrete fibrations and

(HdCC3) (F,G, ϕ) is a pseudo-map of comprehension categories.

(HdCC4) pr′2 ◦F = F̂ ◦ pr2.
If ϕ is the identity such that (F,G, ϕ) is a strict map of comprehension categories we say
that (F̂ , F,G, ϕ) is a strict map of higher discrete comprehension categories and drop the ϕ
from the notation.

Definition 5.2.4 (Transformation of pseudo-maps). Let (F̂ , F,G, ϕ), (F̂ ′, F ′, G′, ϕ′) : (q, P, χ)→
(q′, P ′, χ′) be two pseudo-maps between two higher discrete comprehension categories. We
define a transformation of such pseudo-maps to be a triple (η̂, η̃, η) where
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(HdCC5) (η̃, η) is a transformation of pseudo-maps of comprehension categories (see Defini-
tion 3.2.5).

(HdCC6) (η̂, η) is a transformation of functors of discrete fibrations.

(HdCC7) pr′2 •η̃ = η̂ • pr2.

Remark 5.2.5. Similar to (dep,Σ)-natural transformation we can see that the last condition
imposed on Transformations of pseudo-maps is superfluous in the case of the pseudo-map
being strict. For this we first observe that for each b ∈ B and e ∈ E with p(e) = b we obtain
a commutative square

q
(
pr

F (e)
2

)
q
(
pr

F ′(e)
2

)
F (e) F ′(e)

q(pr2(η̃e))

χF (e) χF ′(e)

η̃e

in E . Applying p on the above square must yield

G
(∑

b e
)

G′(∑
b e
)

G(b) G′(b)

η∑
b e

pr
F (e)
1 pr

F ′(e)
1

ηb

in B as p is a discrete fibration, so q(pr2(η̃e)) has to be the unique lift of η∑
c e

with respect to

q
(
pr

F ′(e)
2

)
. But η̂F (pre2)

: F (pre2)→ F ′(pre2) and F ′(pre2) = pr
F ′(e)
2 , hence p ◦ q being a discrete

fibration implies η̂F (pre2)
= pr

F (e)
2 .

Definition 5.2.6 (2-category of Higher discrete comprehension categories). We
define the 2-category HComprCdisc the be the 2-category with

• Objects: Higher discrete comprehension categories (q, P, χ),

• 1-maps: Pseudo-maps (F̂ , F, F, ϕ) between comprehension categories.

• 2-maps: Transformation of pseudo-maps.

This category has a subcategory HComprCstr
disc with the same objects but the 1- and 2-maps

restricted to the strict cases.

Theorem 5.2.7. There is a 2-equivalence

HComprCstr
disc ≃ (dep,Σ)C .

5.2.8 Products in comprehension categories. Before moving on we must talk about
the notion of a comprehension category with products, as in [35, §5], and how they relate
to our notion of dependent arrows over (2-fam,Σ)-categories. Jacobs defines—in [35]—
products in comprehension categories as a property rather than additional structure, namely
a comprehension category has products, if the functor ⟨P ⟩ has a fibred right adjoint. Here
⟨P ⟩ is obtained by first considering the inclusion ι : Cart(E ) ↪→ E of the wide subcategory
of objects and p-cartesian morphism of E , and then the pullbacks (under identification
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|p| := p ◦ ι, |P0| := P0 ◦ ι) as in the following diagram:

|p|−1(E )

|P0|−1(E ) E

Cart(E ) B.
|p|∗p

p∗|p|

⟨P ⟩

|P0|∗p
p∗|P0|

p∗|p|

p

|p|

|P0|

Note that ⟨P ⟩ is not defined by invoking the universal property of one of the pullbacks,
but instead using [19, Proposition 3]—the explicit construction will be recalled shortly. If
we consider only the discrete case, every arrow becomes cartesian, and the inclusion ι the
identity. In this case the functor ⟨P ⟩ sends (e, e′) with p(e) = p(e′) to (P ∗(e), e′). An arrow
(f, g) : (e1, e

′
1)→ (e2, e

′
2) gets mapped to the unique arrow arising from first considering

P0(e
′
1) p(e′1)

P0(e
′
2) p(e′2)

P (e′1)

P0(g) p(g)

P (e′2)

and observing that p
(
P (e1)

)
= P0(e

′
1), hence

p(g) ◦ P (e′1) = p
(
g ◦ P (e1)

)
.

Invoking the universal property of P (e2) on the situation as in the following diagram,

e1 P0(e
′
1)

P ∗(e2) P0(e
′
2)

e2 p(e′2),

g◦P (e2)

h P0(g)

p(g◦P (e2))

P (e2)
P (e′2)

yields an unique arrow h : e1 → P ∗(e2). Then define ⟨P ⟩(f, g) = (h, g).
In this discrete case a fibred adjunction ⟨P ⟩ ⊣

∏
is very restrictive, as vertical transforma-

tions can only consist of identities, as only those are mapped to identities by discrete fibrations.
Thus for a product

∏
to exist we need that ⟨P ⟩ ◦

∏
= id|P0|−1(E ) and

∏
◦⟨P ⟩ = id|p|−1(E ).



Chapter 6

2-dep-arrows and discrete ambifibrations

In this chapter we describe the relation between dependent arrows in 2-fam-categories and
ambifibrations as defined by Sattler in [60]. Originally we were motivated by the known
result that each Grothendieck fibration yields an orthogonal factorisation system on its total
category into its vertical and cartesian morphisms. Building on this result we defined a
special kind of fibration which has an oplifting property with respect to the vertical and
a lifting property with respect to the cartesian morphisms. By coincidence we read in
[38] that Sattler has defined such a concept in [60] – ambifibrations – which lead to a
ternary factorisation system on a category even higher up. However, we do not need the full
abstraction of this approach and only use what we will henceforth call discrete ambifibrations.
In the first section we recall the notion of a 2-dep-category due to Ehrhardt , in the next
section we give a brief overview of orthogonal factorisation systems and ambifibrations and
then use them to define an abstraction of the iterated discrete fibrations which we will use in
our 2-equivalence concerning the category of 2-dep-categories.

6.1 2-dep-categories

Definition 6.1.1 (2-dep-categories). A 2-dep-category is a 2-fam-category C together
with a collection dHom(λ) for every family arrow λ (over some arbitrary c ∈ C )) and

• an assignment rule that assigns to every Φ ∈ dHom(λ) and f : c′ → c a dep-arrow
Φ[f ] ∈ dHom(λ ◦ f) and

• an assignment rule that assigns to every Φ ∈ dHom(λ) and η : λ → µ a dep-arrow
η ◦ Φ ∈ dHom(µ).

These rules must fulfil the following conditions:

(2dep1) for every Φ ∈ dHom(λ) and f : c′′ → c, g : c′ → c both

[Φ](g ◦ f) =
[
[Φ](g)

]
(f) and [Φ](1c) = Φ.

(2dep2) For every Φ ∈ dHom(λ) and η : λ⇒µ, ξ : µ⇒ ν both

(ξ ◦ η) ◦ Φ = ξ ◦ (η ◦ Φ) and 1λ ◦ Φ = Φ.

(2dep3) For every Φ ∈ dHom(λ) and η : λ⇒µ, f : c′ → c

[η ◦ Φ](f) = (η ◦ f) ◦ [Φ](f).

Definition 6.1.2 (2-dep-functors). Let C ,C ′ be 2-dep-categories. We define a 2-dep-
functor to be a 2-fam-functor F : C → C ′ of the underlying 2-fam-categories together
with an assignment routine Fλ for every family arrow λ that assigns Φ ∈ dHom(λ) to
Fλ(Φ) ∈ dHom

(
Fc(λ)

)
. The following conditions must be met:

(2dep4) for every f : c→ c′, λ ∈ fHom(c) and Φ ∈ dHom(λ) the following holds:

Fλ(Φ ◦ f) = Fλ(Φ) ◦ F (f).

56
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(2dep5) For every f : c→ c′, η : λ→ µ where λ, µ ∈ fHom(c) and Φ ∈ dHom(λ) the equality

Fλ(η ◦ Φ) = Fc(η) ◦ Fλ(Φ)

holds.

Definition 6.1.3 (2-dep-natural transformations). Let C ,C ′ be 2-dep-categories,
F,G : C → C ′ be 2-dep-functors. We define a 2-dep-natural transformation to be a 2-
fam-natural transformation η : F ⇒G of the underlying 2-fam-functors (see Definition 2.3.4)
that fulfils the following additional condition:

(2dep6) For all c ∈ C , λ ∈ fHom(c) and Φ ∈ dHom(λ) we have Gλ(Φ) ◦ ηc = Fλ(Φ), that is

F (c) G(c)
ηc

Fc(λ) Gc(λ)
Fλ(Φ) Gλ(Φ)

commutes.

Definition 6.1.4 (2-Category of 2-dep-categories). We define the category 2-depC to
have

• objects 2-dep-categories,

• 1-cells 2-dep-functors and

• 2-cells 2-dep-natural transformations.

6.2 Ambifibrations and factorisation systems

Before we can define ambifibrations (and the required discrete variant) we need to introduce
orthogonal factorisation systems. Those were introduced by Freyd and Kelly in [23] and
later the weakened version was introduced by Bousfield in [8]. but we will follow the
presentation of Riehl in [54] and [55].

Definition 6.2.1 (Lifting problems). A lifting problem is a commutative square

a b

c d

f

l r

g

(11)

in a category C . Such a lifting problem has a solution if there exists an arrow h in C making
the following diagram

a b

c d

f

l r

g

h

commutative. If l, r are fixed and every possible lifting problem as in 11 has a solution, one
writes l � r. If all solutions to such lifting problems are unique one writes l⊥ r.

One then defines

M� := {c ∈ C | ∀m∈Mm � c},
�M := {c ∈ C | ∀m∈Mc � m},

analogously for “⊥” instead of “�”.
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Definition 6.2.2 (Factorisation systems). A weak factorisation system (L,R) on a
category C consists of two classes L,R of objects of C such that

1. L = �R,
2. R = L� and

3. every arrow f in C factors as f = rl where l ∈ L and r ∈ R.
A weak factorisation system is an orthogonal factorisation system if the first two properties
hold with “⊥” instead of “�”.

Factorisation systems were introduced (independently) in [46],[31].

Examples 6.2.3. 1. The standard orthogonal factorisation system (Epi,Mon) on Sets con-
sists of the class Epi of surjective maps and Mon of injective maps.

2. For every category C one can define the orthogonal factorisation system (1,C1) where 1
is the class of all identities in C and C1 is the class of all morphisms.
The above two examples already show that for any given category there might be multiple

factorisation systems on it, so factorisation systems provide additional data not encompassed
by their underlying categories.

6.2.4 Orthogonal factorisation systems from fibrations. Given a Grothendieck fibration
p : E → B it is known that there is a orthogonal factorisation system (V , C) on E where V
consists of all morphisms vertical with respect to p, that is they are mapped to isomorphisms
by p, and C consists of all morphisms cartesian with respect to p.

Note that the vertical morphisms here are different from the ones defined in much of
the established literature in that they get mapped to isomorphisms and not identities! This
change is required as one would otherwise only have V ⊊ �C in case B has isomorphisms
that are not identities.

Remark 6.2.5. A factorisation system (L,R) on a category C can be seen as two subcate-
gories L,R of C whose morphisms are those in L and R respectively. Those subcategories
are full as both L and R have to contain all isomorphisms.

Definition 6.2.6 (Ambifibrations). Let B be a category with orthogonal factorisation
system (L,R). Given a functor p : E → B define pL, pR through the pullbacks

EL E

L B

pL

⌟
p and

ER E

R B.

pR

⌟
p

Then p is called

• an ambifibration if both pL is a Grothendieck opfibration and pR is a Grothendieck
fibration,

• a discrete ambifibration if both pL is a discrete opfibration and pR is a discrete fibration.

We first show that the choice of pullback is not relevant for this definition, that is if we
are given two pullbacks

EL E

L B

⌟
pL p and

E ′
L E

L B

⌟
p′L

p (12)

(similarly for pR in place of pL) then one being a opfibration implies the other being one and
vice versa. Explicitly:



6.2 Ambifibrations and factorisation systems 59

Lemma 6.2.7. In the situation of 12 the following are equivalent:

1. pL is a (split) opfibration.

2. p′L is a (split) opfibration.

Proof: Assuming 1 we use that there exists a unique isomorphism i : EL → E ′
L by the

universal property of pullbacks, so for any arrow l : b→ b′ in L and any e ∈ E ′
L with p′L(e) = b

we define the opcartesian lift to be i−1(l(e))—where l(e) is the opcartesian lift with respect
to pL. It is immediate that this is a splitting from the functoriality of i and the opcartesian
property of the arrows follows from the opcartesian property of the arrow in EL in conjunction
with i being a isomorphism.

The reverse direction follows from a similar argument. Q.e.d.

Alternative proof: Alternatively we can build the pasted diagram

EL E ′
L E

L L B

i
∼=

pL p′L

⌟
p

idL
∼=

where the outher and the right square are pullbacks and thus the left is as well. As opfibrations
are stable under pullbacks pL has to be an opfibration if p′L is. For the reverse direction we
observe that both i and idL are isomorphisms, so we can exchange EL and E ′

L to obtain the
desired result. Q.e.d.

Naturally this extends to a dual result for pR which we will not state explicitly here.
These two results allow us to always check the ambifibration property through the categories
EL,ER explicitly defined as follows:

• The both share the same objects as B.

• The arrows in EL are those arrows f in E such that p(f) ∈ L, similarly those in ER are
those projected to an arrow in R under p.

How does this relate to 2-dep-categories? First note that in all earlier equivalences
the precompositions of fam- and dep-arrows were solved through some lifting property: the
precomposition of Φ or λ with f was defined as a cartesian lift with respect to a (discrete/split)
fibration.

c′ c
f

λ◦f

λ
⇝

f ∗(λ) λ

c′ c.

f(λ)

p p

f

However, 2-dep-categories introduce a way to postcompose dep-arrows with arrows between
family arrows, thus what is required is an opcartesian lift with respect to this arrow between
family arrows.

c

λ

µ

η

Φ

η◦Φ

⇝

Φ η∗(Φ)

(c, λ) (c, µ).

q

η(Φ)

q

(1c,η)

So if we obtain that our vertical morphisms are the left class of an orthogonal factorisation
system on the category obtained from translating the 2-fam-structure into a Grothendieck
fibration and the cartesian morphisms are the right class of that factorisation system, the
property of an ambifibration yields the desired (op-)cartesian lifts. In Lemma 3.2.12 we
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already saw that the cartesian morphisms with respect to the obtained split fibration are
(f, η) where η is an isomorphisms. But this is not a real obstacle as the opcartesian lift of a
dep-arrow Φ along this map would simply consist of first lifting in a cartesian way along f−1

and then in an opcartesian way along η.
For the vertical arrows with respect to the obtained split fibration we have the following

characterisation, whose proof is analogous to the cartesian case and is thus ommited.

Lemma 6.2.8. Let C be a 2-fam-category and pC : F → C be the resulting split fibration.
Then the class V of morphisms vertical with respect to pC can be described as such:

V = {(f, η) | f is an isomorphism}.

Similarly to before, the fact that f is an isomorphism and not the identity does not bother
us as we can simply postcompose with f−1 before taking the oplift.

A small remark about notation: in the following definition we will indicate the (ambi-
)fibration to which the (op-)lift belongs in the (sub-/super-)script, so the lift of f : c → c′

along e with respect to p will be denoted by f
p
(e) : f ∗p(e) → e (and f

p
(e) : f∗p(e) → e for

the oplift).

Definition 6.2.9 (Sas-tower). We define a sas-tower to consist of two functors q : G →
E , p : E → B such that

(sas1) p is a split Grothendieck fibration,

(sas2) q is a discrete ambifibration with respect to the orthogonal factorisation system (V , C)
of morphisms vertical/cartesian with respect to p and

(sas3) p ◦ q is a split Grothendieck fibration such that for every f : c→ c′ in B, every e ∈ E
with p(e) = c′ and every Φ ∈ G with q(Φ) = e we have

f
p◦q

(Φ) = f
p
(e)

q

(Φ).

(sas4) For any f : c→ c′ in B, g : e→ e′ in E with p(g) = 1c′ and any Φ ∈ G with q(Φ) = e
we have

f ∗(p◦q)(g∗q(Φ)) = (g • f)∗q(f ∗(p◦q)(Φ))

where g • f is defined through the universal property of the cartesian lifts of f as in

f ∗(e) e

f ∗(e′) e.

g•f

f
p
(e)

g

f
p
(e′)

(see the proof of Proposition 2.4.14 for more details.)

Lemma 6.2.10. We can associate to any 2-dep-category a sas-tower in the following way:

• The categories E ,B and the split fibration p : E → B are defined as in the translation
between 2-fam-categories and split fibrations (see 2.4.14).

• The category G has

– as objects dep-arrows Φ over arbitrary λ and

– a morphism (f, η) : Φ→ Ψ consists of an arrow (f, η) : (c, λ)→ (c′, µ) in E such that
Φ ∈ dHom(λ),Ψ ∈ dHom(µ) and

η ◦ Φ = [Ψ](f).
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• The functor q : G → E takes each Φ to the pair (c, λ) such that Φ ∈ dHom(λ) and
(f, η) : Φ→ Ψ to (f, η).

Proof: We have already seen in Proposition 2.4.14 that p : E → B is a split fibration. To
see that p ◦ q : G → B is a split fibration we observe that defining f(Φ) := (f, 1λ) : Φ ◦ f → Φ
yields a splitting—the proof that (f, 1λ) is cartesian for f and Φ is analogous to the proof
that it is cartesian for f and λ—and by definition of a 2-dep-category this cleavage fulfils
functoriality, thus p ◦ q is a split fibration. From the Lemmata 3.2.12 and 6.2.8 we know
that the orthogonal factorisation system on E in vertical and cartesian morphisms looks as
follows:

V = {(f, η) | f is an isomorphism},
C = {(f, η) | η is an isomorphism}.

Thus we need to exhibit the discrete lifting (oplifting) property for qC (respective qV). Given
an arrow in V , that is (f, η) : (c, λ)→ (c′, µ)— with f invertible—and Φ ∈ dHom(λ) the lift
of (f, η) along Φ is defined to be (f, η) : Φ→ [η ◦ Φ](f−1). This is an arrow in G as[

[η ◦ Φ](f−1)
]
(f) = [η ◦ Φ](f−1 ◦ f) = η ◦ Φ.

It is the necessarily unique lift of (f, η) with respect to qV .
Similarly, given an arrow in C, that is (f, η) : (c, λ) → (c′, µ)—with η invertible—and

Φ ∈ dHom(µ) the lift of (f, η) along Φ is defined to be (f, η) : η−1 ◦ Φ[f ] → Φ. This is a
well-defined arrow as

η ◦
(
η−1 ◦ Φ[f ]

)
= (η ◦ η−1) ◦ Φ[f ] = Φ[f ].

It is also the necessarily unique lift of (f, η) with respect to qC.
It remains to check the equalities imposed upon the splitting. We compute that

f
p◦q

(Φ) =
(
(f, 1λ) : Φ ◦ f → Φ

)
= (f, 1λ)

q
(Φ) = f

p
(e)

q

(Φ).

Similarly for f : c′ → c, η : λ→ µ with p(η) = 1c and Φ with (p ◦ q)(Φ) = c′ we compute

f ∗(p◦q)((1c, η)∗q(Φ)) = f ∗(p◦q)(η ◦ Φ)) = [η ◦ Φ](f) and
(1c, η) • f ∗q

(
f ∗(p◦q)(Φ

)
= (1c′ , η • f)∗q(Φ ◦ f) = η • f) ◦ Φ[f ].

As [η ◦ Φ](f) = (η • f) ◦ Φ[f ] in any 2-dep-category this proves the desired equality. Q.e.d.

Conversely every sas-tower gives rise to a 2-dep-category.

Lemma 6.2.11. Let (q : G → E , p : E → B) be a sas-tower. Then we obtain an associated
2-dep-category C whose

• underlying fam-category C is the category obtained from p : E → B as previously.

• The dependent arrows over e ∈ E are defined as q−1(e).

The compositions of f : c′ → c, e ∈ fHom(c), g : e′ → e ∈ fHom(c),Φ ∈ dHom(e) are defined
as

[Φ](f) := f ∗(Φ) the lift with respect to p ◦ q.
g ◦ Φ := g∗(Φ) the lift with respect to qV .
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Proof: We already know that we can obtain a 2-fam-category from the split fibration
p : E → B. To see that it is a 2-dep-category we first observe that the functoriality of
composition [Φ](f) and g ◦Φ is guaranteed as both are lifts with respect to discrete fibrations.
To check [g ◦Φ](f) = (g ◦ f) ◦Φ[f ] we simply note that both are mapped to the same element
of E by q and thus must be the same.

Q.e.d.

The notion of an arrow between sas-towers will be the expected one, but before we can
state it we need a few technical Lemmata.

Lemma 6.2.12. Let C be a category and let maps as in the diagram

a ·

c ·

· ·

· ·

f1

f2

g1

g2

h1

h2

⌟

k
l1

l2 m

n

be given such that all faces commute. Then we obtain a map f3 : a→ c making the remaining
face commutative.

Proof: This follows as

k ◦ g2 ◦ f1 = m ◦ g1 ◦ f1 = m ◦ l1 ◦ f2 = n ◦ l2 ◦ f2,

so we can use the universal property of the pullback at c. Q.e.d.

Corollary 6.2.13. Given two ambifibrations q : E → B, q′ : E ′ → B′ and two functors
F̂ : E → E ′, F : B → B′ such that

E E ′

B B′

F̂

q q′

F

commutes we obtain F̂L : EL → EL′ and F̂R : ER → E ′
R′ such that

EL E ′
L′

L L′

F̂L

qL q′L′

FL

and

ER E ′
R′

R R′

F̂R

qR q′R′

FR

commute (where FL, FR are obtained through pullbacks like qL, qR).
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Proof: We obtain diagrams

EL E

E ′
L′ E ′

L B

L′ B′

⌟

qL

F̂

q

q′L′

⌟

q′

FL

F

and

ER E

E ′
R′ E ′

R B

R′ B′

⌟

qR

F̂

q

q′R′

⌟

q′

FR

F

so by the preceding Lemma we get the desired functors F̂L, F̂R. Q.e.d.

Definition 6.2.14 (Maps between sas-towers). Let (q : G → E , p : E → B), (q′ : G ′ →
E ′, p′ : E ′ → B′) be two sas-towers. A map (q, p)→ (q′, p′) is a triple (F̂ , F̃ , F ) of functors

F̂ : G → G ′, F̃ : E ′ → E , F : B → B′

such that

(sas5) (F̂ , F ) is a map of split fibrations (see Definition 2.4.9),

(sas6) (F̃ , F ) is a map of split fibrations and

(sas7) Both (F̂V , F ), (F̂C, F ) are maps of discrete fibrations, where F̂V , F̂C are obtained as
in the preceding corollary.

Lemma 6.2.15. Let C ,C ′ be two 2-dep-categories and (qC , pC ), (qC ′ , pC ′) the corresponding
sas-towers obtained as in Lemma 6.2.10. Then we obtain for every 2-dep-functor F : C → C ′

a map (F̂ , F̃ , F ) : (pC , qC )→ (pC ′ , qC ′) of sas-towers.

Proof: The map is defined as follows: The functors (F̃ , F ) are defined as the map of split
fibrations obtained from the underlying functor of 2-fam-categories. The functor F̂ : G → G ′

is defined by
F̂ (Φ) := Fλ(Φ) and F̂ (f, η) = (f, η).

It follows from Corollary 6.2.13 that both F̂V , F̂C are maps of discrete fibrations—that is they
commute with q restricted to either C or V—and (F̂ , F ) is also a map of split fibrations, as

(p ◦ q)
(
F̂ (Φ)

)
= F (c) = F

(
(p ◦ q)(Φ)

)
, (p ◦ q)

(
F̂ (f, η)

)
= F (f) = F

(
(p ◦ q)(f, η)

)
.

and for f : c′ → c, λ ∈ fHom(c) and Φ ∈ dHom(λ) we have

F (f)
(
F̃ (Φ)

)
=
(
F (f), 1Fc(λ)

)
= F̃ (f, 1λ) = F

(
f(Φ)

)
.

Hence (F̂ , F̃ , F ) is a map of sas-towers. Q.e.d.

Conversely every map of sas-towers yields a 2-dep-functor between the corresponding
2-dep-categories.

Lemma 6.2.16. Let (q′ : G ′ → E ′, p′ : E ′ → B′) and (q : G → E , p : E → B) be sas-
towers and C ′,C be the associated 2-dep-categories from Lemma 6.2.11. Then any map
(F̂ , F̃ , F ) : (q′, p′)→ (q, p) of sas-towers translates to a 2-dep functor F : C ′ → C where

Fc(e) := F̃ (e) and Fe(Φ) := F̂ (Φ).
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Proof: As in the case for 2-fam-categories the 2-fam-functor F is already well-defined. To
see that Fe are well-defined we observe that for all e ∈ fHom(c), that is p(e) = c and all
Φ ∈ dHom(e), that is q(Φ) = e we have

q
(
Fe(Φ)

)
= q
(
F̂ (e)

)
= F̃ (q′(Φ)) = FF (c)

(
q′(Φ)

)
as desired. To see the equalities (2dep4) and (2dep5) we compute

Fe(g ◦ Φ) = F̂ (g ◦ Φ) = F̂
(
g(Φ)

)
= F̃ (g)

(
F̂ (Φ)

)
for (g : e′ → e) ∈ V ,

Fe(Φ ◦ f) = F̂ (Φ ◦ f) = F̂
(
fΦ)

)
= F (g)

(
F̂ (Φ)

)
for (f : c′ → c) ∈ B.

Thus F is a 2-dep-functor. Q.e.d.

It is immediate from the above definition that this assignment of sas-maps to 2-dep-functors
fulfils functoriality.

Definition 6.2.17 (Transformations of maps of sas-towers). Let (q, p), (q′, p′) be
sas-towers and (F̂ , F̃ , F ), (Ĝ, G̃, G) : (q, p) → (q′, p′) be maps of sas-towers. We define a
transformation of sas-maps (F̂ , F̃ , F )→ (Ĝ, G̃, G) to be a triple (η̂, η̃, η) where

η̂ : F̂ ⇒ Ĝ, η̃ : F̃ ⇒ G̃, η : F ⇒G

are natural transformations such that the following conditions are met:

(sas8) Both q′ • η̂ = η̃ • q and p′ • η̃ = η • p, that is the diagram

G E B

G ′ E ′ B′

q

F̂Ĝ F̃G̃

p

FG

q′ p′
η̂ η̃ η

commutes.

(sas9) Both (η̂, η) : (F̂ , F )→ (Ĝ, G) and (η̃, η) : (F̃ , F )→ (G̃, G) fulfil

ηb
p◦q(Φ) = η̂Φ for b ∈ B,Φ ∈ G such that (p ◦ q)(e) = b,

ηb
p(e) = η̃e for b ∈ B, e ∈ E such that p(e) = b.

Lemma 6.2.18. Let C ,C ′ be 2-dep-categories, F,G : C → C ′ be 2-dep-functors and
η : F ⇒G be a 2-dep-natural transformation. Then we obtain a transformation of the
associated sas-maps, (η̂, η̃, η) : (F̂ , F̃ , F )→ (Ĝ, G̃, G), where (F̂ , F̃ , F ), (Ĝ, G̃, G) are obtained
as in Lemma 6.2.15.

Proof: We first note that we obtain the 2-fam-natural transformation (η̃, η) : (F̃ , F )⇒(G̃, G)
as in Proposition 2.4.14, thus in

G E B

G ′ E ′ B′

q

F̂Ĝ F̃G̃

p

FG

q′ p′
η̂ η̃ η

we already know that the right square commutes. To see that the left square commutes
we first have to define η̂. We set η̂Φ = (ηc, 1Fc(λ)) : F̂ (Φ) → Ĝ(Φ)—which is possible as
F (Φ) = G(Φ) ◦ f . This allows us to compute

(q′ • η̂)Φ = q′(ηc, 1Fc(λ)) = (ηc, 1Fc(λ)) = η̃λ = η̃q(Φ) = (η̃ • q)Φ.

Additionally we compute that

ηc
p◦q(Φ) =

(
(ηc, 1Fc(λ)) : G(Φ) ◦ ηc → G(Φ)

)
= η̂Φ. Q.e.d.



6.2 Ambifibrations and factorisation systems 65

Obviously we have the reverse direction as well.

Lemma 6.2.19. Let (q, p), (q′, p′) be sas-towers, (F̂ , F̃ , F ), (Ĝ, G̃, G) : (q, p) → (q′, p′) be
maps of sas-towers. Then any transformation (η̂, η̃, η) : (F̂ , F̃ , F )→ (Ĝ, G̃, G) gives rise to a
2-dep-natural transformation η : F ⇒G between the associated 2-dep-functors from Lemma
6.2.16.

Proof: We already know from 2.4.14 that the underlying map of split fibrations (η̃, η) gives
rise to a 2-fam-natural transformation. So it remains to confirm the remaining property, that
is

Gλ(Φ) ◦ ηc = Fλ(Φ).

But Gλ(Φ) ◦ ηc := (ηc)
(p′◦q′)∗(Gλ(Φ)

)
and thus we compute

(ηc)
(p′◦q′)∗(Gλ(Φ)

)
= F̂ (Φ) as η̂Φ : F̂ (Φ)→ Ĝ(Φ)

= Fλ(Φ) by definition. Q.e.d.

The functoriality of the assignment “transformation of sas-maps” 7→ “2-dep-natural
transformation” is again immediate from the definition (similarly for the reverse direction).
Thus these assignment routines determine two 2-functors between categories we now define.

Definition 6.2.20 (Category of sas-towers). We define the 2-category sas of sas-tower
as follows:

• Its objects (0-cells) are sas-towers as in Definition 6.2.9,

• its 1-maps are maps of sas-towers as in Definition 6.2.14.

• its 2-maps are transformations of sas-maps as in Definition 6.2.17.

The composition of 1-cells and the vertical and horizontal composition of 2-maps is defined
component-wise.

Lemma 6.2.21. We obtain two 2-functors

(q - , p - ) : 2-depC→ sas, C 7→ (q, p) as in Lemma 6.2.10

F 7→ (F̂ , F̃ , F ) as in Lemma 6.2.15

η 7→ (η̂, η̃, η) as in Lemma 6.2.18

C - : sas→ 2-depC, (q, p) 7→ C as in Lemma 6.2.11

(F̂ , F̃ , F ) 7→ F as in Lemma 6.2.16

(η̂, η̃, η) 7→ η as in Lemma 6.2.19

Proof: As we remarked the functoriality with respect to 1-maps and 2-maps is immediate in
both cases. Q.e.d.

Theorem 6.2.22. The two 2-functors of the previous lemma establish a 2-equivalence

sas ≃ 2-depC .

Proof: It is immediate that mapping a 2-dep-category to the associated sas-tower and that
tower to its associated 2-dep-category yields the same 2-dep-category (up to renaming). An
analogous result holds for the 2-dep-functors and 2-dep-natural transformations.

Conversely, if we are given a sas-tower applying C - first and then (q - , p - ) yields the same
sas-tower (up to renaming), similar for sas-maps and transformations of such maps. Q.e.d.



Chapter 7

(2-dep,Σ)-categories and higher comprehension
categories

In this chapter we will examine the most abstract notion explored by Ehrhardt in [20], (2-
dep,Σ)-categories. To this end we will combine the notion of a higher discrete comprehension
category from chapter 5 and the notion of a sas-tower from the preceding chapter to arrive at
a notion of higher discrete comprehension category, which will turn out to be (2-)equivalent
to those (2-dep,Σ)-categories.

As only (2-dep,Σ)-categories defined in [20], but not the corresponding notion of maps
between those categories and transformation between these maps, we also have to define
these notions, inspired by the core result [20, Theorem 3.5.8], which allows associate to each
(2-fam,Σ)-category a (2-dep,Σ)-category in a canonical way.

7.1 (2-dep,Σ)-categories

Definition 7.1.1 ((2-dep,Σ)-categories). 0 A (2-dep,Σ)-category is a 2-dep-category (in
the sense of Definition 6.1.1) together with

• a morphism prλ1 :
∑

c λ → c for each family arrow λ such that C becomes a (2-fam,Σ)
category through this data and

• a family arrow prλ2 ∈ dHom(λ ◦ prλ1) for each family arrow λ

such that the following conditions hold:

(2dΣ1) for every family arrow λ ∈ fHom(c) for arbitrary c and f : b→ c

[prλ2 ]
(∑

λ

f
)
= prλ◦f2 .

(2dΣ2) For every c ∈ C , λ, µ ∈ fHom(c), η : λ→ µ

(η • prλ1) ◦ prλ2 = [prµ2 ]
(∑

λ,µ

η
)
.

This can be expressed through the commutativity of the following diagram:

∑
c λ

a .

∑
c µ

∑
λ,µ η

prλ1

λ◦prλ1

λ

µ

prµ1

µ◦prµ1

prλ2

prµ2

η

Definition 7.1.2 ((2-dep,Σ)-functors). Let C ,D be (2-dep,Σ)-categories. We define a
(2-dep,Σ)-functor F : C → D to be a (2-fam,Σ)-functor F (see Definition 3.1.11) such that
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(2dΣ3) F is also a 2-dep-functor (see Definition 6.1.2),

(2dΣ4) F is also a (dep,Σ)-functor (see Definition 5.1.2),

Definition 7.1.3 ((2-dep,Σ)-natural transformations). Let C ,D be (2-dep,Σ)-categories
and F,G : C → D (2-dep,Σ)-functors. We define a (2-dep,Σ)-natural transformationη : F ⇒G
to be a (2-fam,Σ)-natural transformation (see Definition 3.1.12) such that

(2dΣ5) η is a 2-dep-natural transformation (see Definition 6.1.3) and

(2dΣ6) η is a (dep,Σ)-natural transformation (see Definition 5.1.4).

7.2 Higher comprehension categories

Before we define higher comprehension categories we will define a property of natural
transformations related by fibrations, and prove some small results regarding this property,
whose importance will become apparent after the definition of higher comprehension categories.

Definition 7.2.1. Let C ,E ,B be categories, p : E → B a split fibration and F,G : C →
B, F ′, G′ : C → E be functors connected by natural transformations χ, η as in

E

C

B

p

F ′

G′

F

G

χ

η

(13)

We then say that χ is the p-lift of η if the above diagram commutes on the level of functors,
and for all objects c of C we have that

ηc(G(c) = χc.

In this case we write η = χ or ηp = χ.

First we show that the notation η = χ is actually justified, that is, if both η = χ and
η = ξ, then χ = ξ.

Lemma 7.2.2. In the situation of the definition above, if η = χ and η = ξ, then χ = ξ.

Proof: This is immediate, as for all c in C we can compute

ξe = ηcG(c) = χc. Q.e.d.

Lemma 7.2.3. In the situation of the preceding definition, if η = χ, then

p • χ = η,

that is the entirety of diagram (13) commutes.

Proof: The equation is immediate, because if χc is a lift of ηc along G(c), the equality
p(χc) = ηc follows by definition. As this holds for all c the equality follows. Q.e.d.

Lemma 7.2.4. If in the situation of the preceding definition the split fibration is discrete,
then the following are equivalent:

1. χ = ηp.
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2. p • χ = η and p ◦G′ = G.

Proof: The direction 1 ⇒ 2 is immediate, as any discrete fibration is a split fibration, so we
can simply apply Lemma 7.2.3. For the direction 2 ⇒ 1 we remark that any lift of ηc along
G(c) must be unique, so as p(χc) = ηc we already know that it is that unique lift. That it
is p-cartesian is then immediate. Furthermore we can infer that (p ◦ F ′)(f = F (f) for all
arrows f : c→ d, as both F ′(f) and the unique lift of F (f) make

F ′(c) G′(c)

F ′(c) G′(d)

χc

G′(g)

χd

commute, thus F ′(f) must be that unique lift and p
(
F ′(f)

)
= F (f). Q.e.d.

Before we give the notion of higher comprehension categories, we recall some notation
(and introduce some new notation) that will make the definition more amenable.

7.2.5 Some notation for specific lifts. When working with fibrations p : E → B we
already saw (in 2.4.14) that the precomposition of a vertical arrow η : e′ → e in E with an
arrow f of the base category involves invoking the universal property as such:

f ∗(e′) e′

f ∗(e) e,

h

f(e′)

η

f(e)

where h is then η • f . From now on we will always use η • f when we mean the arrow
obtained in this manner. It is immediate that when we consider a fibration stemming from a
2-fam-category this η • f coincides with the η • f of the 2-fam-category.

Another issue we have is regarding arrows vertical with respect to a fibration. As discussed
earlier section 6.2 the factorisation system obtained from a fibration distinguishes between
arrow which are vertical, in the sense that they map to an isomorphism under p, and those
that are cartesian, that is they are isomorphic to a chosen p-cartesian lift. However, when
discussing fibrations stemming from 2-fam-categories this distinction is to coarse for us, it
merely distinguishes morphisms (f, η) where either f is an isomorphism or η is. What we
want, however is that either f is an identity or η is.

• For η, this can obtained easily, just consider p(f, η))
p
, which will have η “removed”.

Similarly, this works for any morphism f : e′ → e in the total category of a (split) fibration
p : E → B, taking p(f)(e). We will call this the p-prone part of f—a slight abuse of the
terminology coined by Johnstone and Taylor in [37, 265ff] and [61, Definition 9.2.6]
respectively—and denote it as prn(f).

• For f we need to work more: considering the diagram

λ

f ∗(µ) µ

(f,η)
h

f(µ)
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we can see that h must be η. Inspired from this, for an arbitrary fibration p : E → B and
a vertical morphism f : e′ → e, we define through the same universal property

e′

(
p(f)

)∗
(e) e,

f
tv(f)

p(f)(e)

the true vertical tv(f) of f . It is immediate from this definition that p(tv(f)) = 1p(e′), as

p(f) = p
(
p(f)(e) ◦ tv(f)

)
= p
(
p(f)(e)

)
◦ p
(
tv(f)

)
= p(f) ◦ p

(
tv(f)

)
,

so as p(f) is invertible the claim follows.

Note however, that while any morphism in the total category of a fibration can be decomposed
into prn(f) ◦ tv(f), this does not always yield the desired outcome, as for example tv(f)
may not lie over the identity, as the proof of this fact rested on p(f) being invertible!

The following lemma will be needed for the definition of higher comprehension categories
to be well-defined.

Lemma 7.2.6. If P : E → B[1] is a comprehension category, then f • P0(f) is vertical if f
is.

Proof: First we use that any pullback of an isomorphism is an isomorphism, so P0(f) is an
isomorphism. Then f • P0(f) is be vertical because p

(
f • P0(f)

)
= P0(f). Q.e.d.

Definition 7.2.7 (Higher comprehension categories). We define a higher comprehension
category to consist of

(HCC1) a sas-tower (Definition 6.2.9) (q : G → E , p : E → B),

(HCC2) a comprehension category P : E → B[1] such that cod ◦P = p and

(HCC3) a functor pr2 : E → G together with a natural transformation χ : q ◦ pr2⇒ idE such
that

a) for all e ∈ E and all f : c′ → p(e) we have

pr2
(
f
p
(e)
)
= P0

(
f
p
(e)
)p◦q

(pr2(e)).

b) for all e, e′ ∈ E and all f : e′ → e vertical with respect to p we have

tv(f) • P (e′)
q
pr2(e

′) = P0(f)
p◦q(

pr2(e)
)
.

c) P
p
= χ.

We will denote this data as (q, P, χ).

Remark 7.2.8. From Lemma 7.2.3 it is now immediate that condition (HCC3) is an
abstraction of condition (HdCC1) in the definition of higher discrete comprehension categories
to the setting of split fibrations. We could have defined higher discrete comprehension
categories simply as higher comprehension categories where p, p◦q are discrete, but this would
have resulted in a lot of unnecessary data attached to then, like the discrete ambifibration,
which could be replaced by a discrete fibration in this instance.

So we choose the more “streamlined” version for this definition, which can be recovered
from the general one after accounting for all simplifications—like Lemma 7.2.4—that the
discreteness of the involved fibrations allows for.
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Lemma 7.2.9. We can map any (2-dep,Σ)-category to a higher comprehension category by
letting (q : G → E , p : E → B be the sas-tower obtained from Lemma 6.2.10, P : E → B[1]

be the comprehension category obtained from Lemma 3.2.11 and pr2 : E → G be the functor
defined through

E ∋ λ 7→ prλ2 and
(
(f, η) : λ→ µ

)
7→
((∑

µ

f ◦
∑
λ,µ

η, η • prλ1
)
: prλ2 → prµ2

)
.

The natural transformation is defined through χλ := (prλ1 , 1λ◦prλ1 ).

Proof: It only remains to check the conditions on pr2, all other conditions are checked in
their respective lemmata. To check that pr2 is well-defined we observe that obviously prλ2 ∈ G
for all λ ∈ E . For (f, η) : λ → µ we recall that this corresponds to η : λ⇒µ ◦ f , where
f : p(λ)→ p(µ). This implies

(η • prλ1) ◦ prλ2 = [prµ◦f2 ]
(∑

λ,µ

η
)
=

[
[prµ2 ]

(∑
µ

f
)](∑

λ,µ

η
)
= [prµ2 ]

(∑
µ

f ◦
∑
λ,µ

η
)
,

hence
(∑

λ f ◦
∑

λ,µ η, η • prλ1
)
: prλ2 → prµ2 .

For the functoriality we compute for λ ∈ fHom(c)(∑
λ

1c ◦
∑
λ,λ

1λ, 1λ • prλ1
)
=
(
1∑

c λ
◦
∑
λ,λ

1λ, 1λ • prλ1
)
=
(
1∑

c λ
◦ 1∑

c λ
, 1λ • prλ1

)
=
(
1∑

c λ
, 1λ • prλ1

)
=
(
1∑

c λ
, 1λ•prλ1

)
= 1λ◦prλ1 in E .

Analogously one checks the compatibility with composition, using the fact that given (g, θ) ◦
(f, η) we have the commutativity of

∑
c′′ λ

∑
c′′ µ ◦ f

∑
c′ µ

∑
c′′ ν ◦ (g ◦ f)

∑
c′ ν ◦ g

∑
c ν

c′′ c′ c ,

∑
λ,µ◦f η ∑

µ f

∑
µ◦f,ν◦(g◦f) θ•f

∑
µ,ν◦g θ∑

ν◦g f

pr
ν◦(g◦f)
1

⌟

∑
ν g

prν◦g1

⌟
prν1

f g
ν

which allows us to compute∑
ν

g ◦ f ◦
∑
λ,ν

θ ◦ η =
∑
ν

g ◦
∑
ν◦g

f ◦
∑
µ◦f,

η◦(g◦f)

θ • f ◦
∑
λ,µ◦f

η

=
∑
ν

g ◦
∑
µ,ν◦g

θ ◦
∑
µ

f ◦
∑
λ,µ◦f

η.
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The naturality of χ can be checked via computation as well. Let (f, η) : λ→ µ be given, then
we have to show that

λ ◦ prλ1 λ

µ ◦ prµ1 µ

(
∑

µ f◦
∑

λ,µ η,η•prλ1 )

(prλ1 ,1λ◦prλ1
)

(f,η)

(prµ1 ,1µ◦prµ1
)

commutes, that is to show

f ◦ prλ1 = prµ1 ◦
∑
µ

f ◦
∑
λ,µ

η and
(
1µ◦prµ1 •

∑
µ

f ◦
∑
λ,µ

η
)
◦ (η • prλ1) = (η • prλ1) ◦ 1λ◦prλ1 .

The second equality is immediate. For the first equality note that from the definition of
(2-fam,Σ)-categories we know that ∑

c′ λ

∑
c′ µ ◦ f

∑
c µ

c′ c

∑
λ,µ f

prλ1

∑
µ f

prµ◦f1 prµ1

f

commutes, which yields the desired equality.
From the definition of the postcomposition with an arrow f : c→ p(λ) we can compute

pr2
(
f
p
(λ)
)
= pr2(f, 1λ◦f ) =

(∑
λ

f ◦
∑
λ◦f,λ

1λ◦f , 1λ◦f • prλ◦f1

)
=
(∑

λ

f, 1λ◦f◦prλ◦f1

)
=
(
P0(f

p
(λ)), 1λ◦f◦prλ◦f1

)
= P0

(
f
p
(λ)
)p◦q

(prλ2),

For the precomposition with a vertical arrow (f, η) : λ→ µ we compute

tv(f, η) • P (λ)
q
pr2(λ) = (1p(λ), η) • prλ1 q(pr2(λ)) = 1p(λ◦prλ1 ), η • pr

λ
1
q
(pr2(λ))

=
(
1P (λ), η • prλ1

)
q

(
pr2(λ)

)
= (η • prλ1) ◦ prλ2

= [prµ◦f2 ]
(∑

λ,µ

η
)
= [prµ2 ]

(∑
µ

f ◦
∑
λ,µ

η
)

=
∑
µ

f ◦
∑
λ,µ

η
p◦q

(pr2(µ)) = P0(f)
p◦q

(pr2(µ))

Lastly, it is immediate from the definitions that p(χλ) = prλ1 for all λ and thus P
p
=

χ. Q.e.d.

Lemma 7.2.10. We can map any higher comprehension category (q, p, P, χ) to a (2-dep,Σ)-
category by letting the underlying 2-dep-category be the category C obtained from the sas-
tower (q, p) by Lemma 6.2.11 and the (2-fam,Σ)-structure is obtained from p and P using
Lemma 3.2.10.

For each e ∈ E we define pre2 := pr2(e).
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Proof: As the two lemmata already yield the underlying 2-dep- and (2-fam,Σ)-structure, it
remains to check conditions (2dΣ1) and (2dΣ2). For the first condition we first compute

[pre2]
(∑

e

f
)
= P0(f

p
(e))

∗(p◦q)
(pr2(e)) = pr2

(
f
p
(e)
)

= pre◦f2 .

For the second condition we compute (where f : e′ → e is such that p(f) = 1p(e)

(f • pre′1 ) ◦ pre
′

2 =
(
tv(f) • P0(e

′)
)
◦ pr2(e′) = tv(f) • P0(e

′)
q

(
pr2(e

′)
)

= P0(f)
p◦q(

pr2(e)
)
=
∑
p(e)

f
p◦q(

pr2(e)
)

= [pre2]
(∑

p(e)

f
)
. Q.e.d.

Definition 7.2.11 (Maps of higher comprehension categories). Let (q, P, χ), (q′, P ′, χ′)
be higher comprehension categories. A map is a triple (F̂ , F̃ , F ) : (q, P, χ)→ (q′, P ′, χ′) such
that

(hCC4) (F̂ , F̃ , F ) is a map of sas-towers (see Definition 6.2.14).

(hCC5) (F̃ , F ) is a strict map of comprehension categories (see Definition 3.2.2).

(hCC6) pr′2 ◦F̃ = F̂ ◦ pr2 and χ′ • F̃ = F̃ • χ.

Lemma 7.2.12. Any (2-dep,Σ)-functor F : C → C ′ can be translated into a map between
the associated higher comprehension categories (from Lemma 7.2.9).

Proof: From Lemma 6.2.15 we know that the underlying 2-dep-functor F yields a map
(F̂ , F̃ , F ) : (q, p)→ (q′, p′) of sas-towers. Analogously we know from Proposition 3.2.11 that
the underlying (2-fam,Σ)-functor yields a strict map (Ḟ , F ) of comprehension categories.
It is immediate from the definition of those maps that Ḟ = F̃ , so the maps agree on the
2-fam-structure. To see that pr′2 ◦F̃ = F̂ ◦ pr2 we simply compute for (f, η) : λ → µ where
λ ∈ fHom(c), µ ∈ fHom(c′)

(pr′2 ◦F̃ )(λ) = pr
Fc(λ)
2 = Fλ◦prλ1 (pr

λ
2) = (F̂ ◦ pr2)(λ)

and (pr′2 ◦F̃ )(f, η) = pr′2
(
(F (f), Fc(η)

)
=
( ∑

Fc′ (µ)

F (f) ◦
∑

Fc(λ),Fc′ (µ)

Fc(η), Fc(η) • F∑
c λ
(prλ1)

)
=
(
F
(∑

µ

f ◦
∑
λ,µ

)
, Fc(η • prλ1

)
= F̂

(
pr2(f, η)

)
This shows the last remaining property, so (F̂ , F̃ , F ) is a map of higher comprehension
categories. Q.e.d.

Lemma 7.2.13. If ((F̂ , F̃ , F )) : (q, P, χ) → (q′, P ′, χ′) is a map of higher comprehension
categories, then F can be made a (2-dep,Σ)-functor of the associated (2-dep,Σ)-categories
from Lemma 7.2.10 by setting

Fc(λ) := F̃ (λ) and Fλ(Φ) := F̂ (Φ).
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Proof: It is immediate that the F obtained in this manner is both a (2-fam,Σ)-functor of the
underlying (2-fam,Σ)-categories from Lemma 3.2.10 and a 2-dep-functor of the underlying
2-dep-categories from Lemma 6.2.16. Thus by showing

F (prλ2) = F̂
(
pr2(λ)

)
= pr′2

(
F̃ (λ)

)
= pr

F (λ)
2

we have that F is a (2-dep,Σ)-functor. Q.e.d.

Definition 7.2.14 (Transformation of maps of higher comprehension categories).
Let (F̂ , F̃ , F ), (Ĝ, G̃, G) : (q, P, χ)→ (q′, P ′, χ′) are two maps of higher comprehension cate-
gories, we define a transformation to be a transformation between maps of sas-towers (see
Definition 6.2.17) that is also a transformation of maps of the underlying comprehension
categories (see Definition 3.2.5).

Lemma 7.2.15. Any (2-dep,Σ)-natural transformation between (2-dep,Σ)-functors F,G : C →
D induces a transformation between the associated maps of higher comprehension categories
from Lemma 7.2.12.

Proof: Immediate from the Lemmata 6.2.18 and 3.2.11. Q.e.d.

The reverse direction holds trivially as well.

Lemma 7.2.16. Any transformation of maps (F̂ , F̃ , F )⇒(Ĝ, G̃, G) induces a (2-dep,Σ)-
natural transformation between the associated (2-dep,Σ)-functors of Lemma 7.2.13.

Proof: Immediate from Lemmata 6.2.19 and 3.2.10. Q.e.d.

7.3 A comparison with generalised categories with fam-

ilies

Coraglia and Di Liberti introduced a notion very similar looking to higher discrete
comprehension categories—generalised categories with families—in [15]. Coraglia and
Emmenegger then proceed to show in [14] that generalised categories with families are
biequivalent to comprehension categories.

We start by recalling the definition.

Definition 7.3.1 (generalised categories with families). A generalised category with
families consists of a map of fibrations Σ:

(
u̇ : U̇ → B

)
→
(
u : U → B

)
together with an

adjunction

U̇ U

B

Σ

u

∆

u̇

⊣

such that all components of the unit and counit are cartesian with respect to u̇ and u
respectively.

Looking at the diagrams governing the two notions they appear eerily similar:
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generalised categories with families higher comprehension categories

U̇ U

B

Σ

u̇

∆

u

⊣ G E B[1]

B

q

χ

q

pr2
P

p

cod

However, there are some differences, which we will emphasise in the following paragraphs,
which will make it easier when we examine how these generalised categories relate to categories
with dependent arrows, and how the biequivalence between comprehension categories and
generalised categories with families fits into our picture.

7.3.2 Adjunction versus counit. The immediately visible difference (discarding the
triangle on the right for higher comprehension categories) is that where generalised categories
with families demand an adjunction, higher discrete comprehension categories demand only a
natural transformation. Unpacking the definition of an adjunction one sees that an adjunction
is a stricter version, as it unpacks to two natural transformations,

the unit idU⇒∆ ◦ Σ and the counit Σ ◦∆⇒ idU̇ ,

so our natural transformation χ plays the role of a counit.

7.3.3 Split versus unsplit. One difference between generalised categories with families is
that they are concerned with normal fibration, whereas we demand that all fibrations come
equipped with a normalised cleavage, i.e. are split. This is the reason we demand that all
splittings are preserved by the functors involved, more precisely:

• in the definition of sas-towers in conditions (sas2) and (sas4), the equivalent part to (sas??)
in the definition of generalised categories with families is that Σ is a functor between
fibrations and hence preserves cartesian morphisms. That it reflects cartesian morphisms
can be deduced from the definition (see [14, Lemma 3.20.3]). The part of oplifts with
respect to vertical arrows (with respect to u) is obviously missing, but we will explain
later why this does not matter for the translation to comprehension categories.

• In condition (hCC3) in the definition of higher comprehension categories the part c)
corresponds to the counit consisting of (chosen) lifts of arrows in E . That the counit for
the adjunction in a generalised category with families is at least cartesian (as no specific
chosen lifts are given) is guaranteed by the definition.

• That pr2 preserves our choices of lifts for p corresponds to ∆ respecting the cartesianness
of morphisms, this is guaranteed by [14, Lemma 3.20.2].

7.3.4 The (bi-/2-)equivalences. The biequivalences described in [14] are between com-
prehension categories and weakening comonads, and between weakening comonads and
generalised categories with families. Extending this picture with the notions of categories
with families/dependent arrows and the corresponding equivalence proved earlier, that is as
in Lemma 3.2.11, we get

(2-dep,Σ)C HComprC

(2-fam,Σ)C ComprC WCmd gCwF,

2-≃ ?

2-≃ bi-≃ bi-≃

(14)
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where the relation indicated with “?” is the one we want to explore in the following paragraphs.
For this reason we compute the obtained generalised category with families from a (2-fam,Σ)-
category C by applying all the functors in the above diagram. This generalised category
with families has as U̇ the category E of family arrows and 2-family arrows, and U is the
category of K-coalgebras, for the weakening comonad (K, ϵ, ν) defined via

1. K(λ) = λ ◦ prλ1 for λ ∈ fHom(c), and for (f, η) : λ→ µ

K(f, η) =
(∑

µ

f ◦
∑
λ,µ

η, η • prλ1
)
. (15)

The well-definedness can be seen from the commutativity of

∑
c λ

∑
c µ ◦ f

∑
c′ µ

c c c′,

∑
λ,µ◦f η

prλ1

∑
µ f

prµ◦f1
prµ1

1c f

which yields µ ◦ prµ1 ◦
∑

µ f ◦
∑

λ,µ◦f η = µ ◦ prλ1 .

2. ϵλ = (prλ1 , 1λ◦prλ1 ) : λ ◦ pr
λ
1 → λ

3. νλ = (Q, 1
λ◦prλ1 ◦ pr

λ◦prλ1
1

) : λ◦prλ1 → λ◦prλ1 ◦ pr
λ◦prλ1
1 where Q stems from the pullback diagram

∑
c λ

∑∑
c λ

λ ◦ prλ1
∑

c λ

∑
c λ c.

id∑
c λ

id∑
c λ

Q

pr
λ◦prλ1
1

∑
λ prλ1

prλ1

prλ1

(16)

This category CoAlg(K) can be spelled out explicitly. It has as

• objects arrows (Φ, η) : λ→ λ ◦ prλ1 such that

λ λ ◦ prλ1

λ
(1c,1λ)

(Φ,η)

(prλ1 ,1λ)
and

λ λ ◦ prλ1

λ ◦ prλ1 λ ◦ prλ1 ◦ pr
λ◦prλ1
1

(Φ,η)

(Φ,η) νλ

K(Φ,η)

commute. The commutativity of the first diagram simply spells out that both prλ1 ◦Φ = 1c
and (1λ • prλ1) ◦ η = 1λ, which simplifies to η = 1λ. This in turn can be used for the
commutativity of the second diagram, which entails both

Q ◦ Φ =
∑
λ◦prλ1

Φ ◦
∑

λ,λ◦prλ1

η ◦ Φ and η • (prλ1 ◦Φ) ◦ η = 1
λ◦prλ1 ◦ pr

λ◦prλ1
1

• Φ ◦ η.

We immediately see that the left hand side of the second equality simplifies to η ◦ η = 1λ,
and the right hand side simplifies to 1λ as well, so this equality always holds. For the
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first equality we observe that as η = 1λ we have
∑

λ,λ◦prλ1
η = 1∑

c λ
, and we can extend

the pullback diagram (16) to

c
∑

c λ

∑
c λ

∑∑
c λ

λ ◦ prλ1
∑

c λ

c
∑

c λ c.

Φ

1c

1∑
c λ

Φ

Q

⌟ ∑
λ◦prλ1

Φ

prλ1 pr
λ◦prλ1
1

∑
λ prλ1

⌟
prλ1

Φ prλ1

It is immediate that the dashed arrow has to be Φ, which yields the desired equality.
Thus (Φ, η) can be reduced to Φ such that

c
∑

c λ

c

Φ

1c
prλ1

commutes.

• An arrow (f, η) : (Φ: c→
∑

c λ)→ (Ψ: d→
∑

d µ) is an arrow f : c→ d together with a
2-fam-arrow η : λ⇒µ ◦ f such that

λ ◦ prλ1 λ

µ ◦ prµ1 µ

(Φ,1λ)

(
∑

µf ◦
∑

λ,µ η,η•prλ1 ) (f,η)

(Ψ,1µ)

commutes. This can be reduced to the commutativity of both∑
µ

f ◦
∑
λ,µ

η ◦ Φ = Ψ ◦ f and
(
η • (prλ1 ◦Φ)

)
◦ 1λ = (1µ • f) ◦ η.

Again the second equality is immediate (both sides equate to η), so only the first equality
has to be checked. Thus the condition on (f, η) reduces to the commutativity of

c c d

∑
c λ

∑
c µ ◦ f

∑
d µ

c c d.

1c

Φ

1c

1c

η◦Φ

f

1d

Ψ

prλ1

∑
λ,µ◦f η

prµ◦f1

∑
µ f

prµ1

1c f

The only nontrivial condition of this is
∑

µ f ◦ η ◦ Φ = Ψ ◦ f . However, this condition is
equivalent to η ◦ Φ = [Ψ](f).

It is thus immediate that the objects of CoAlg(K) are the canonical dependent arrows of a
(2-fam,Σ)-category introduced in [20] and the arrows are obtained as combinations of lifts of
(f, η) : λ→ µ such that η ◦ Φ = [Ψ](f).

Conversely, if we first compute the canonical dependent arrow structure for a (2-fam,Σ)-
category and then the higher comprehension category obtained from the 2-equivalence consists
of the following data:
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• The comprehension category structure P : E → B[1] consists of (2-)family arrow and C

• The category G has as objects coalgebras c →
∑

c λ for the weakening comonad K
described earlier. Morphisms Φ → Ψ—where q(Φ) = c and p(Ψ) = c′—are given by
(f, η) : λ→ µ such that η ◦ Φ = [Ψ](f).

From the discussion above we thus infer that G = CoAlg(K).
Comparing the functors, we compute that Σ takes Φ: c→

∑
c λ to λ and (f, η) to (f, η),

hence q = Σ. The functor ∆ takes λ to Q from νλ = (Q, 1
λ◦prλ1 ◦ pr

λ◦prλ1
1

) and (f, η) to K(f, η)

defined in (15). Examining how the second projection arrow is defined in the canonical way
in [48] we see that prλ2 = Q. A similar computation shows that also pr2(f, η) = K(f, η). Thus
pr2(λ) = Q.

The adjunction

CoAlg(K) E .
Σ

∆

⊣

is not part of the higher comprehension category, but the natural transformation χ : λ◦prλ1 → λ
can be extended to obtain this adjunction, as χ and the counit coincide.

Thus we obtain that the diagram (14) can be extended to

(2-dep,Σ)C HComprC

(2-fam,Σ)C ComprC WCmd gCwF .

2-≃

2-≃ bi-≃ bi-≃

The biequivalence ComprC ≃ gCwF proved in [14] actually yields more than [20, Theo-
rem 3.5.8]: not only does it give the canonical (dep,Σ)-structure given a (2-fam,Σ)-category,
but also says that if we are given a (2-dep,Σ)-category, such that in the higher compre-
hension category, formed as in Lemma 7.2.9, the natural transformation χ : q ◦ pr2⇒ idE

can be extended to an adjunction q ⊣ pr2, then we obtain a pseudo-natural isomorphism
G → CoAlg(K), where K is the comonad defined by bullet points 1–3 on page 75.
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Chapter 8

Computability models

8.1 Computability models

The original definition due to Longley only considers the case that T is a proper set, but we
do not require this restriction.

Definition 8.1.1 (Computability models). A computability model C over a class T is a
pair

C =
((

C(τ)
)
τ∈T ,

(
C[σ, τ ]

)
σ,τ∈T

))
,

of families of sets such that all C(τ) are sets and all C[τ, σ] are sets of partial functions
between C(σ) and C(τ) such that:

1. For all τ ∈ T we have 1C(t) ∈ C[τ, τ ].

2. For all σ, τ, ρ ∈ T and all f ∈ C[σ, τ ], g ∈ C[τ, ρ] there exists g ◦ f ∈ C[σ, ρ].

Many examples of computability models can be found in [45, subsection 3.1.2, pp. 54].
We will repeat a few of the most important ones here.

Examples 8.1.2 (see [45]).

1. If one takes as underlying set the set 1 and only data type the set N and lets the
computable functions be the Turing computable ones, then one obtains Kleene’s first
model K1, perhaps the most fundamental of all computability models.

2. The terms of the untyped λ-calculus are generated from a set V of variable symbols x by
the grammar

M ::= x | MM | λx.M.

Let Λ be the set of terms obtained in this way modulo α-equivalence. Write M [x 7→ N ]
for the term that is obtained by replacing all free occurrences of x in M by N . If ∼ is a
equivalence relation on Λ satisfying

(λx.M)N ∼M [x 7→ N ], M ∼ N ⇒ PM ∼ PN

for all terms P , then we can define a computability model on Λ/ ∼ in the following
manner:

The underlying set is again 1 and the only datatype is Λ/∼ the computable functions
are the mappings Λ/∼→ Λ/∼, [M ] 7→ [PM ] induced by the terms P .

3. This example is actually a class of examples. For this let B = (Bi)i∈I be a given family
of sets and let F = (F(i,j))(i,j)∈I2 be a family of sets where for each (i, j) ∈ I2 we have

that F(i,j) ⊆ BBi
j . Denote by ⟨B⟩ the family of sets by adding 1 to B and closing under

products and function spaces. Define a computability model K(B,F ) by letting the
underlying set be I and setting K(B,F )(i) = Bi for all i ∈ I and the computable functions
are defined as follows:

• For each i, j ∈ I, we have that F(i,j) ⊂ K(B,F )[i, j].

• For each i we have that {Bi → 1} ⊂ K(B,F )(i, 1).
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• For each i, j ∈ I we have that

pr1 ∈ K(B,F )[i× j, i] and pr2 ∈ K(B,F )[i× j, j].

• If f ∈ K(B,F )[i, j] and g ∈ K(B,F )[j, k], then g ◦ f ∈ K(B,F )[i, k].

• If f ∈ K(B,F )[i, j] and g ∈ K(B,F )[i, k], then ⟨f, g⟩ ∈ K(F,B)(i, j × k).

• If f ∈ K(B,F )[i× j, k], then f̂ ∈ K(B,F )[i, kj].

Remark 8.1.3. In another work Longley defines the notion of computability model slightly
different: In [43] he writes that the datatype sets need to be inhabited and may not be empty.
Although a small difference at first we will later discuss why this distinction actually matters.
Furthermore he allows the computable function to be relations rather than partial functions.
We will discuss this approach in subsection 8.2.7.

As we want to discuss the connection between computability models and category theory,
we highlight the method to associate to a category a computability model introduced by
Petrakis [49]. A small notational convention beforehand:

Notation: Let C ,D be categories with pullbacks and S : C → D be a pullback-preserving
functor. We denote a span of the kind

c a

b

i

f

where i is monic as (i, f) : a ⇀ b. As S is pullback-preserving S(i) is monic as well and we
denote

(
S(i), S(f)

)
: S(a) ⇀ S(b) as S(i, f).

Definition 8.1.4 (Canonical (total/partial) computability models). Let C be a
category and S : C → Sets be a presheaf.

• The canonical total computability model CMtot(C ;S) associated to C is defined as((
S(a)

)
a∈C

,
(
{S(f) | f : a→ b}

)
a,b∈C

)
.

From this is apparent that the underlying class of CMtot(C ;S) is C .

• If C has pullbacks and S preserves those pullbacks, then the canonical partial computability
model CMprt(C ;S) associated to C is defined as((

S(a)
)
a∈C

,
(
{S(i, f) | (i, f) : a ⇀ b}

)
a,b∈C

)
.

One immediately notices the similarities between these computability models associated to
categories and the computability models constructed on a given family of sets we constructed
earlier. Namely giving a category C and a presheaf S amounts to giving exactly such families
as above where I = C0, Bi = S(i) and F(i,j) = {S(f) | f : i→ j}.

8.2 Simulations

Definition 8.2.1 (Simulations). Let C be a computability model over the class T and D
be a computability model over the class U . A simulation γγγ between C,D, written γγγ : C _ D
consists of the following data: A class function γ : T → U and for each τ ∈ T a subset
⊩γ

τ⊆ D(γ(τ))×C(τ), such that the following two conditions are satsified:
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(Siml1) For every τ ∈ T and each x ∈ C(τ) exists a y ∈ D(γ(τ)) such that (y, x) ∈⊩γ
τ . We

also write y ⊩γ
τ x instead of (y, x) ∈⊩τ

γ.

(Siml2) For every σ, τ ∈ T and each f ∈ C[σ, τ ] exists a f ′ ∈ D[γ(σ), γ(τ)] such that
f ′ ⊩γ

(σ,τ) f , where f ′ ⊩γ
(σ,τ) f stands for the following:

∀x ∈ C(σ)∀y ∈ D(γ(τ)) :(
x ∈ dom(f)&y ⊩γ

σ x⇒ y ∈ dom(f ′)& f ′(y) ⊩γ
τ f(x)

)
.

Example 8.2.2. If we two categories C ,D with presheaves S, S ′ respectively, then any
functor F : C → D making the diagram

C D

Sets

F

S S′
(17)

commute corresponds to a simulation γγγF : CMtot(C ;S)_CMtot(C ;S ′) defined as follows:

• The underlying class function is given via γF (c) = F (c) for all c ∈ C .

• The tracking relations ⊩γF

c ⊆ S ′(F (c)
)
× S(c) are given by

s1 ⊩
γF

c s2 :⇔ s1 = s2.

This is possible as by (17) S ′(F (c)
)
= S(c).

The above is an example of an important class of simulations, the so-called equality
simulations.

Definition 8.2.3 (Equality simulations). If C,D are simulations over T, U respectively,
then a simulation γγγ : C_D is an equality simulation, if for all t ∈ T the following three
properties are satisfied:

(EqSim1) For all t ∈ T we have that C(t) = D
(
γ(t)

)
.

(EqSim2) For all t ∈ T we have that
d ⊩γ

t c⇔ d = c.

(EqSim3) For all t, t′ ∈ T we have that C[t, t′] ⊆ D[t, t′].

Another (class of) example(s) of simulations can be obtained as follows:

Example 8.2.4. If C is a category and S, S ′ presheaves on that category, then any natural
transformation η : S → S ′ an be translated into a simulation ηηη : CMtot(C ;S)_CMtot(C ;S ′)
as follows:

• The underlying class function is given by the identity on C .

• The tracking relations ⊩η
c are defined via

s′ ⊩η
c s :⇔ ηc(s) = s′.

The simulations in example 8.2.4 are instances of so-called natural simulations.

Definition 8.2.5 (Natural simulations). A simulation γγγ : C_C′ where the models live
over the same class T is a natural simulation if the following conditions are fulfilled:

(NatSim1) The underlying class function is the identity on T .
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(NatSim2) For all t ∈ T there exists a γ∗
t : C(t) → C′(t) such that for all x ∈ C(t) and

y ∈ C′(t) we have that y ⊩γ
t x if and only if y = γ∗

t (x).

(NatSim3) For all t, t′ ∈ T and all f ∈ C[t, t′] there exists a f ′ ∈ C[t, t′] such that for all
x ∈ (t) we have that if x ∈ dom(f) then γ∗

t (x) ∈ dom(f ′) and

f ′(γ∗
t (x)

)
⊩γ

t′ γ
∗
t

(
f(x)

)
.

This definition might suggest that all natural simulations between computability models
obtained from categories in the previously given manner arise from natural transformations
between the categories. The following proposition shows that this is not the case.

Proposition 8.2.6. Consider the category given by

a b,

f1

f2

g1

g2

q

where f1 ̸= f2 as well as g1 ̸= g2 and

f1 ◦ g1 = 1b = f1 ◦ g2 = f2 ◦ g2,
f2 ◦ g1 = q,

q2 = 1b, g2 ◦ q = g1, g1 ◦ q = g2, q ◦ f1 = f2, q ◦ f2 = f1,

g1 ◦ f1 = g1 ◦ f2 = g2 ◦ f1 = g2 ◦ f2 = 1a.

Let γγγ : CMtot(C ; Hom(a, - )) _ CMtot(C ; Hom(b, - )) be the natural simulation given by

γ∗
a : Hom(a, a)→ Hom(b, a),1a 7→ g1,

γ∗
b : Hom(a, b)→ Hom(b, b), f1 7→ f2 ◦ g1, f2 7→ f1 ◦ g1.

Then (γ∗
a)a∈C0 is not a natural transformation Hom(a, - )⇒ Hom(b, - ).

Proof: We first have to prove that the simulation γγγ given through the γ∗
a is actually natural.

For this, we check the axioms of a natural simulation.

(NatSim1) By definition we have γ = idC0 .

(NatSim2) By definition we have y ⊩γ
a x⇔ y = γ∗

a(x) for all x, y, a.

(NatSim3) We have to consider all possible cases.

We start of with the case Hom(a, - )tot[a, a]. As there is only one arrow 1a : a → a, it
suffices to remark that the diagram

Hom(a, a) Hom(a, a)

Hom(b, a) Hom(b, a)

1a◦ -

γ∗
a γ∗

a

1a◦ -

commutes, as
γ∗
a(1a ◦ 1a) = γ∗

a(1a) = g1 = 1a ◦ g1 = 1a ◦ γ∗
a(1a).

Next we consider the case Hom(a, - )tot[a, b]. Here we have two possible arrows f1, f2 : a→
b. We start of with f1. One can see that the diagram

Hom(a, a) Hom(a, b)

Hom(b, a) Hom(b, b)

f1◦ -

γ∗
a γ∗

b

f2◦ -
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commutes, as there is only 1a ∈ Hom(a, a) and

γ∗
b (f1 ◦ 11) = γ∗

b (f1) = f2 ◦ g1 = f2 ◦ γ∗
a(1a).

If f2 is considered we can see that the diagram

Hom(a, a) Hom(a, b)

Hom(b, a) Hom(b, b)

f2◦ -

γ∗
a η∗b

f1◦ -

commutes, as

γ∗
b (f2 ◦ 1a) = γ∗

b (f2) = f1 ◦ g1 = f1 ◦ γ∗
a(1a).

Next we consider the case Hom(a, - )tot[b, a]. Here we have two possible arrows, g1, g2 : b→
a. We start with the case g1. One can see that the diagram

Hom(a, b) Hom(a, a)

Hom(b, b) Hom(b, a)

g1◦ -

γ∗
b γ∗

a

g1◦ -

commutes, as the only arrows in Hom(a, b) are f1, f2 and we can compute

γ∗
a(g2 ◦ f1) = γ∗

a(1a) = g1 = 1a ◦ g1
= g1 ◦ f2 ◦ g1 = g1 ◦ γ∗

b (f1),

γ∗
a(g2 ◦ f2) = γ∗

a(1a) = g1 = 1a ◦ g1
= g1 ◦ f1 ◦ g1 = g1 ◦ γ∗

b (f2).

Similarly, we have that the diagram

Hom(a, b) Hom(a, a)

Hom(b, b) Hom(b, a)

g2◦ -

γ∗
a γ∗

a

g1◦ -

commutes, as we can compute

γ∗
a(g2 ◦ f1) = γ∗

a(1a) = g1 = g1 ◦ 1a

= g1 ◦ f2 ◦ g1 = g1 ◦ γ∗
b (f1),

γ∗
a(g2 ◦ f2) = γ∗

a(1a) = g1 = g1 ◦ 1a

= g1 ◦ f1 ◦ g1 = g1 ◦ γ∗
b (f2).

At last we consider the case Hom(a, - )tot[b, b]. Here we have to consider two morphisms,
1b, q : b→ b. We start with the case 1b. One can see that the diagram

Hom(a, b) Hom(a, b)

Hom(b, b) Hom(b, b)

1b◦ -

γ∗
b γ∗

b

1b◦ -
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commutes trivially, so we can redirect our attention to the case q. In this case we obtain
the commutative diagram

Hom(a, b) Hom(a, b)

Hom(b, b) Hom(b, b)

q◦ -

γ∗
b γ∗

b

q◦ -

which is commutative because the only arrows in Hom(a, b) are f1, f2 and we can compute

γ∗
b (q ◦ f1) = γ∗

b (f2) = f1 ◦ g1 = q ◦ f2 ◦ g1
= q ◦ γ∗

b (f1),

γ∗
b (q ◦ f2) = γ∗

b (f1) = f2 ◦ g1 = q ◦ f1 ◦ g1
= q ◦ γ∗

b (f2).

This finishes the proof that γγγ is indeed a natural simulation.

To prove that (γ∗
a)a∈C0 does not constitue a natural transformation, we show that the diagram

Hom(a, a) Hom(a, b)

Hom(b, a) Hom(b, b)

f1◦ -

γ∗
a γ∗

b

f1◦ -

does not commute. One the one hand one can calculate

γ∗
b (f1 ◦ 1a) = γ∗

b (f1) = f2 ◦ g1,

but we also obtain
f1 ◦ γ∗

a(1a) = f1 ◦ g1,
and by design we have f2 ◦ g1 ̸= f1 ◦ g1. Q.e.d.

8.2.7 Simulations in other contexts. In [50] poses the question whether one can define
computability models where the data types do not live in the category Sets, but another
category. Such an approach is taken by Cockett and Hofstra in [10], which bases on [11,
12, 13]. In this work one first considers restriction categories, which are categories where
the domains of a morphism f : c→ c′ is realised not as an object but as an endomorphism
f : c→ c. This definition reads as follows:

Definition 8.2.8 (Restriction categories). A category C is a restriction category if it
comes equipped with a map ( - ) that maps an arbitrary morphism f : c→ c′ to a morphism
f : c→ c. This map ( - ) must be subject to the following conditions:

1. For all f we have that f ◦ f = f .

2. For all f : c→ c′, g : c→ c′′ we have f ◦ g = g ◦ f .

3. For all f : c→ c′, g : c→ c′′ we have g ◦ f = g ◦ f .
4. For all f : c→ c′, g : c′ → c′′ we have g ◦ f = f ◦ g ◦ f .
The map ( - ) is called the restriction map.

It is immediate that the presence of such a restriction map allows us to define a partial
order on each of the Hom-sets, by

f ⪯ g :⇔ g ◦ f = f.
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Example 8.2.9. The easiest example of a restriction category is the category of sets and
partial functions. The domain of a partial function f : S ⇀ S ′ is then simply the partial
function

f : S ⇀ S, f(x) =

{
x if f(x) is defined,

undefined otherwise.

A computability model in Cockett’s sense is then simply a functor F : C → R where R
is a restriction category. He defines a simulation as follows:

Definition 8.2.10 (Simulations - due to Cockett). Let F : C → R, G : D → R be
computability models. A simulation consists of

• a map K that maps objects of C to objects of D and

• for each object c ∈ C a morphism α : F (c)→ G
(
K(c)

)
such that for each f : c→ c′ in C

there exists a fα : K(c)→ K(c′) such that

F (c) G
(
K(c)

)
F (c′) G

(
K(c′)

)
.

F (f)

αc

G(fα)⪯
αc′

We write (K,α) : F ⇝ G if (K,α) constitutes a simulation.

Remarks: If one takes the restriction category R to be the category of sets and partial
functions, then the definition of a computability model is identical to the computability
models we obtained from categories. Also the notion of simulation seems very similar to the
notion defined by Longley and Norman. However there are a few key differences:

• Firstly, in the definition due to Cockett each element in a data type can only be tracked
by another element, whereas in the definition of Longley an element in a data type can
be tracked by many different elements.

• Secondly, which is really a consequence of the first observation, this fact can not be
remedied by changing the underlying category: In the computability models due to
Cockett the computable functions are partial functions, whereas the tracking relations are
relations. Thus passing to the category of sets and relations as the underlying category
(if one defines an appropriate restriction map on it) does not solve this problem, as it
would alter the definition of computability models.

As a final remark we note that if one takes the restriction category to be the category of sets
and relations on sets, then the notion of computability model that arises is very similar to
the slightly different version of a computability model defined by Longley in [43], however in
this restriction category approach the data types need not be inhabited.

8.3 Transformability

Definition 8.3.1. Given two simulations γγγ,δδδ : C _ D, we say that γγγ is transformable into
D, in symbols γγγ ⪯ δδδ, if for each σ ∈ T there exists a tσ ∈ D[γ(σ), δ(σ)], such that the
following condition is satisfied:

(Trafo1) For each a ∈ C(σ) and each a′ ∈ D(γ(τ)) such that a′ ⊩γ
σ a, we have that

t(a′) ⊩δ
σ a.

If γγγ ⪯ δδδ and δδδ ⪯ γγγ then we write γγγ ∼ δδδ.
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Definition 8.3.2. Let CompMod be the category whose

• objects are compuatbility models C over arbitrary classes and whose

• morphisms γγγ : C _ D in CompMod is a simulation.

• For each computability model C over the class T the identity simulation idC is given as
idC = (1T , diag

C
τ ), where diagCτ ⊆ C(τ)×C(τ) is defined through

(y, x) ∈ diagCτ :⇔ y = x.

• The composition of two simulations γγγ : C _ D, ϵϵϵ : D _ E is defined as ϵϵϵ◦γγγ = (ϵ◦γ,⊩ϵ◦γ
τ ),

where ⊩ϵ◦γ
τ ⊆ E

(
ϵ(γ(τ))

)
×C(τ) is defined through the following clause:

z ⊩ϵ◦γ
τ x :⇔ ∃y ∈ D(γ(τ) : z ⊩ϵ

γ(τ) y& y ⊩γ
τ x.

Definition 8.3.3 (Equivalence of computability models). If C,D are computability
models we say that they are equivalent if there exist simulations γγγ : C_D and δδδ : D_C
such that

γγγ ◦ δδδ ∼ idD and δδδ ◦ γγγ ∼ idC .

We write C ≃ D if C and D are equivalent.

One should note that this notion of equivalence is neither weaker nor stronger than the
notion of isomorphism of the underlying set, as the following example highlights.

Example 8.3.4. Consider the computability models B,C defined over 1, 2 respectively
where B(0) = C(0) = C(1) = ∅. The computable functions are simply the nowhere defined
partial functions. Then B,C are equivalent via the simulations

γγγ : B_C, δδδ : C_B,

γ(0) = 0, δ(0) = δ(1) = 0,

⊩γ
0= ∅, ⊩δ

0=⊩
δ
1= ∅.

It is immediate that these are well-defined simulations as the two conditions are trivially
satisfied (all data types are empty). They also constitute an equivalence: Obviously on
underlying class functions we have δ ◦ γ = 11 and ⊩δ◦γ

0 = ∅. Thus the nowhere defined partial
function in B[0, 0] witnesses the transformability δ ◦ γ ⪯ idB as no a ∈ B(0) and a′ ∈ B(0)
such that a′ ⊩δ◦γ

0 a exist. For the same reason the nowhere defined partial function witnesses
the transformability idB ⪯ δ ◦ γ as well.

We shall now return to the discussion hinted at earlier, whether the requirement that the
data types need to be inhabited actually matters. For this we consider the following example.

Example 8.3.5. Let C be the computability model over 1 given by C(0) = 1 where the
only computable function is the identity and D be the computability model over 2 where
D(0) = 1,D(1) = 0. Again the only computable functions shall be the identities. We seek
to show that C ̸≃ D. If C ≃ D, there would be simulations γγγ : C_D, δδδ : D_C such that
γγγ ◦ δδδ ∼ 1D, δδδ ◦ γγγ ∼ 1C. We can conclude that δ maps both 0, 1 to 0 and

⊩δ
0= 12, ⊩δ

1= ∅.

For γ there are a priori two possibilities: either γ(0) = 1 or γ(0) = 0. However the first case
can actually not occur as it would violate the first condition on simulations, as there can be
no x ∈ D(1) = ∅ such that x ⊩γ

0 0. Thus only the second case remains. But in this case we
can show that γγγ ◦ δδδ ̸⪰ 1D as this would mean there exists f ∈ D[γ(δ(1)), 1C(1)] = D[0, 1]
which is by definition not the case. Thus C ̸≃ D.
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This example shows that if one allows data types to be empty, then the notion of
equivalence does not allow one to eliminate empty data types that are not connected to other
data types via computable functions.

8.3.6 Transformability in other contexts. Coming back to the computability models
and simulations due to Cockett, he also has a notion similar to transformability, namely
refinements.

Definition 8.3.7 (Refinements). Let F : C → R, G : D → R be computability models
and (K,α), (L, β) : F ⇝ G be simulations. Then (L, β) is a refinement of (K,α) (written
(K,α) ⪯ (L, β)) if for each c ∈ C there is a λc : K(c)→ L(c) such that

F (c) G
(
K(c)

)
G
(
L(c)

)
.

αc

βc
G(λc)

⪰

8.4 The category of assemblies

Definition 8.4.1 (Category of assemblies - [45]). Let C be a computability model over
the class T . The category Asm(C) of assemblies is defined as follows:

• Its objects are triples (X, tX ,⊩X) where X is a set, tX ∈ T and ⊩X⊆ C(tX) ×X such
that for all x ∈ X there exists c ∈ C(tX) with c ⊩x x.

• Its morphisms f : (X, tX ,⊩X)→ (Y, tY ,⊩Y ) are maps f : X → Y such that there exists
f ′ ∈ C[tX , tY ] with the following property:

∀x∈X∀c∈C(tX)

(
x ∈ dom(f) ∧ c ⊩X x⇒ c ∈ dom(f ′) ∧ f ′(c) ⊩Y f(x)

)
.

• Composition and identities are defined as for maps of sets.

This category of assemblies has strong 2-categorical properties discovered by Longley,
which we will briefly state. Proofs can be found in [43, Section 4].

Definition 8.4.2 (Subobjects, quotients and copies - [43]). Let C be a category and
P : C → Sets be a faithful presheaf. Then (C , P ) has

• subobjects if for any c ∈ C and any monomorphism s : s → P (c) in Sets there exists a
morphism s̃ : c′ → c such that P (s̃) = s and for any morphism f : d→ c such that P (f)
factors through s there is a unique g : d→ c′ such that f = s̃ ◦ g.

• quotients if for any object c ∈ C and any epi q : P (c)→ q in Sets there exists a morphism
q̃ : c→ c′ in C such that P (q̃) = q and for any morphism f : c→ d such that P (f) factors
through q there is a unique g : c′ → d such that f = g ◦ q̃.

• copies if for any c ∈ C and S ∈ Sets there is an object c ∝ S in C equipped with morphisms
π : c ∝ S → c, θ : P (c ∝ S)→ S such that for any f : d→ C and ϕ : P (d)→ S there is a
unique g : d→ c ∝ S such that f = π ◦ g and ϕ = θ ◦ P (g).

We say that (C , P ) is a quasi-regular category over Sets if it has subobjects, quotients and
copies.

Longley then shows that each category of assemblies Asm(C) for an arbitrary computabil-
ity model C comes equipped with a forgetful functor FrgC : Asm(C) → Sets which maps
each triple (X, tX ,⊩X) to X and each f to itself, and the pair (Asm(C), FrgC) constitutes a
quasi-regular category over Sets.

Further, he defines the 2-category QReg of quasi-regular categories as such:
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Definition 8.4.3. The 2-category QReg of quasi-regular categories has as

• as objects (0-cells) quasi-regular categories (C , P ) over Sets and

• as morphisms (1-cells) (C , PC )→ (D , PD) functors Q : C → D together with a natural
isomorphism ι : PC → PD ◦Q such that

– Q preserves subobjects modulo ι, that is if s̃ : c′ → c is a subobject lifting of s : S →
PC (c), then F (s̃) : F (c′)→ F (c) is a subobject lifting of ιc ◦ s ◦ ι−1

c′ .

– Q preserves quotients modulo ι, this is defined similar as the above.

– Q preserves copies modulo ι, that is if (c ∝ S, π, θ) is an S-fold copy of x in C , then(
F (c ∝ S), F (π), θ ◦ ι−1

c∝S

)
is an S-fold copy of F (x) in D .

• as 2-cells (Q, ι)⇒ (Q′, ι′) natural transformations α : Q⇒ Q′.

He then shows that one obtains a 2-functor Asm : CompMod→ QReg which maps

• computability models C to Asm(C),

• simulations γγγ : C→ D to functors Asm(γγγ) : (Asm(C), FrgC)→ Asm(D), FrgD) and

• transformability γγγ ⪯ δδδ to a natural transformation Asm(γγγ ⪯ δδδ) : Asm(γγγ)→ Asm(δδδ).

The theorem is then the following:

Theorem 8.4.4. The 2-functor Asm : CompMod→ QReg is locally an equivalence, that is
C,D are equivalent in CompMod if and only if Asm(C),Asm(D) are equivalent in QReg.



Chapter 9

The category of computability models and
simulations

We now direct our study to the category of computability models itself. This (2-)category is
defined as follows:

Definition 9.0.1 (Category of computability models). The category CompMod has

• objects computability models over arbitrary classes as defined in 8.1.1,

• 1-maps simulations between computability models as defined in 8.2.1,

• 2-maps transformatbility of simulations as defined in 8.3.1.

The sub-2-categories CompModnat and CompModeq are those where the 1-maps are restricted
to natural and equality simulations respectively.

9.1 CompMod is finitely complete

To show its completeness we use the standard result (e.g. in [6, Theorem 2.8.1]) that the
existence of set-indexed products and equalisers suffices to obtain that a category is complete.

Lemma 9.1.1. Let Ci be a family of computability models indexed by a set I. Then the
product

∏
i∈I Ci is the computability model defined by the following data:

• The underlying class is
∏

i∈I Ti, where the Ti are the underlying classes of the Ci.

• The datatypes are given by (∏
i∈I

Ci

)
(τi)i∈I =

∏
i∈I

(
Ci(τi)

)
.

• The computable functions are given by(∏
i∈I

Ci

)
[τi, σi]i∈I =

∏
i∈I

(
Ci[τi, σi]

)
.

The projections pri :
∏

i∈I Ci _Ci are given by

• the underlying class function pri :
∏

i∈I Ti → Ti defined by (τi)i∈I 7→ τi,

• the tracking relations ⊩pri
(τi)i∈I

, defined via the equivalence

(xj)j∈I ⊩
pri
(τi)i∈I

y if and only if xi = y.

Proof: It is immediate that the above definition constitutes a computabiity model and
simulations. To see that is is a product in CompMod we simply observe that if we are given
simulations γγγi : D_Ci for a computability model D (over some class U) then we can define
the simulation ⟨γγγi⟩i∈I : D_

∏
i∈I Ci in the following manner:

• The underlying class function ⟨γi⟩i∈I : U →
∏

i∈I Ti is defined via u 7→
(
γi(u)

)
.

• The tracking relations ⊩⟨γi⟩i∈I
u are given through the equivalence

y ⊩⟨γi⟩i∈I
u (xi)i∈I if and only if for all i ∈ Iy ⊩γi

u xi.

89
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It is straightforward to check that this consitutes a simulation and that pri ◦⟨γγγi⟩i∈I = γγγi for
all i ∈ I and that this is the only simulation with this property. Q.e.d.

Proposition 9.1.2. Given two simulations γγγ,δδδ : C_D C,D liver over T, U respectively),
the computability model Eq(γγγ,δδδ) (defined in the next paragraph) together with the simulation
e(γγγ,δδδ) : Eq(γγγ,δδδ)_D (also defined in the next paragraph) constitute an equalizer.

Here Eq(γγγ,δδδ) is defined through the following data:

• The underlying class is the equalizer of

T U
γ

δ

in the category Sets, that is the subset of T consisting of only those t ∈ T such that
γ(t) = δ(t)¡

• The datatypes are given by
Eq(γγγ,δδδ)(t) = C(t).

• The computable functions are given by

Eq(γγγ,δδδ)[t, s] = C[t, s].

The simulation e(γγγ,δδδ) is defined as follows:

• The underlying class function maps t to t.

• The tracking relations ⊩e(γ,δ)
t are defined by the equivalence

x ⊩e(γ,δ)
t y if and only if x = y.

Proof: It is straightforward to check that Eq(γγγ,δδδ) is a computability model and that e(γγγ,δδδ)
is a simulation. To see that it is also an equaliser assume we are given another simulation
ααα : A_C (where A lives over S) such that γγγ ◦ααα = δδδ ◦ααα. This data allows us to define the
simulation α : A_Eq(γγγ,δδδ) via

• s 7→ α(s) for all s ∈ S,

• ⊩α
s=⊩

α
s for all s ∈ S.

A simple computation proves that e(γγγ,δδδ) ◦ α = α and this α is the only simulation with this
property, hence Eq(γγγ,δδδ) together with e(γγγ,δδδ) is an equaliser. Q.e.d.

9.2 CompMod has pushouts

We show that the category CompMod has pushouts.

Proposition 9.2.1. Let B,C,D be computability models over T, U, V respectively and
γγγ : C→ B, δδδ : C→ D be simulations. Then a pushout γγγ∗(D) is given by the underlying class

γ∗(V ) = (V ⨿ T )/ ∼

where v ∼ t for v ∈ V, t ∈ T if there exists a u ∈ U such that t = γ(u), v = δ(u). For
simplicity we write T ′ := T \ γ(U), V ′ := V \ δ(U). Then γ∗(V ) = T ′ ⨿ V ′ ⨿ γ(U). The data
types are given by

γγγ∗(D)(x) =


B(x) if x ∈ T ′

D(x) if x ∈ V ′,

B(γ(u))⨿D(δ(u)) if x = γ(u) for u ∈ U.
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The computable functions are defined via

(
γγγ∗(D)

)
[x, y] =


∅ if x ∈ T ′, y ∈ V ′ or y ∈ T ′, x ∈ V ′,

B[x, y] if x ∈ T, y ∈ T ′ or y ∈ T, x ∈ T ′,

D[x, y] if x ∈ V, y ∈ V ′ or y ∈ V, x ∈ V ′,

B[γ(u), γ(u′)]⨿D[δ(u), δ(u′)] if x = γ(u), x′ = γ(u′).

(18)

The simulations γγγ∗δδδ, δδδ∗γγγ are given by

δδδ∗γγγ : D→ γγγ∗(C), γ∗δ(v) = v for all v ∈ V,

a ⊩γ∗δ
v d :⇔ a = d,

γγγ∗δδδ : B→ γγγ∗(C), δ∗γ(t) = t for all t ∈ T,

a ⊩δ∗γ
t d :⇔ a = d.

Proof: It is immediate to prove that the above definition constitutes a computability model.
For the simulations it is immediate that the rules given are indeed well-defined and it remains
to check the two properties of simulations. We only check these properties for δδδ∗γγγ, the other
case is analogous.

1. Let v ∈ V and d ∈ D(v) be given. Then v ∈ U ′ ⨿ V ′, and in both cases d ∈ γγγ∗(D)(v) as
D(v) ⊆ γγγ∗(D)(v) in both cases. So d ⊩δ∗γ

v d.

2. Let v1, v2 ∈ V and f ∈ D[v1, v2] be given. Thus we know one of the last two cases of
(18) arises, and in both cases D[x, y] ⊆

(
γγγ∗(D)

)
[x, y]. We show that f ⊩δ∗γ

(v1,v2)
f . If

d ∈ dom(f) and d′ ⊩δ∗γ
v1

d, then d′ = d, so d′ ∈ dom(f) and thus f(d′) = f(d) ⊩δ∗γ
v2

f(d).

It remains to check the universal property. For this let another computability model E over
W with simulations ϵϵϵ : B→ E, ιιι : D→ E be given such that the obvious square commutes.
Then the unique [ϵϵϵ, ιιι] : γγγ∗(D) → E making the usual diagram commute is given by the
underlying class function γ∗(V ) → W that embeds γ∗(V ) as the union ϵ(V ) ∪ ι(T ). The

tracking relations ⊩[ϵ,ι]
x are given by

⊩[ϵ,ι]
x :=


⊩ϵ

x if x ∈ T ′,

⊩ι
x if x ∈ V ′,

⊩ϵ
γ(u) ⨿ ⊩ι

δ(u) if u ∈ U.

It is immediate to prove that this is well-defined, and the two conditions of a simulation hold
because

1. if x ∈ γ∗(V ) we can distinguish the following three cases:

1.1 if x ∈ T ′ then γγγ∗(D)(x) = D(x) and for every d ∈ γγγ∗(D)(x) we find e ∈ E(ϵ(x)) such

that e ⊩ϵ
x d and thus by definition e ⊩[ϵ,ι]

x d.

1.2 If x ∈ V ′ then a similar argument yields the desired e ∈ E(ι(x)) such that e ⊩[ϵ,ι]
x d.

1.3 If x = γ(u) then every d ∈ γγγ∗(D)(x) is either in B(γ(u)) or D(δ(u)). In both cases
we can proceed as above to obtain the desired e ∈ E(ι(x)).

2. If f ∈ (γγγ∗(D))[x, y] then we need to distinguish four cases:

2.1 if x ∈ T ′, y ∈ V ′ or y ∈ T ′, x ∈ V ′, then there are no computable functions to consider.

2.2 If x ∈ T, y ∈ T ′ or y ∈ T, x ∈ T ′, then the computable functions are those in B[x, y].

It is immediate from the definition of the tracking relations that g ⊩[ϵ,ι]
(x,y) f for the

g ∈ E[ϵ(x), ϵ(y)] such that g ⊩ϵ
(x,y) f .



92 Chapter 9 – The category of computability models and simulations

2.3 If x ∈ V, y ∈ V ′ or y ∈ V, x ∈ V ′, then the computable functions are those in D[x, y].

It is immediate from the definition of the tracking relations that g ⊩[ϵ,ι]
(x,y) f for the

g ∈ E[ι(x), ι(y)] such that g ⊩ι
(x,y) f .

2.4 In the last case we can similar to above reduce to case 2.2 or 2.3.

At last we show that [ϵϵϵ, ιιι] is unique. But this is immediate from the fact that [ϵϵϵ, ιιι] makes the
diagram

C D

B γγγ∗(D)

E

_ γγγ
_δδδ

_

ιιι

_ δδδ∗γγγ

_γγγ∗δδδ

_
ϵϵϵ _[ϵϵϵ,ιιι]

⌟

commute. This ensure that [ϵϵϵ, ιιι] is unique on the level of underlying class functions, and for

the tracking relations one notes that ⊩ϵ
t=⊩

[ϵ,ι]◦γ∗δ
t and as ⊩[ϵ,ι]

t is nothing but equality this
yields the desired uniqueness for tracking relations (the case ⊩ι

t is analogous). Q.e.d.

We will later need the explicit description of the coequalisers in CompMod, so we will
state how they are obtained from a parallel pair. The universal property can be checked as
in the case of pushouts and is straightforward, so we omit the proof.

Proposition 9.2.2. Given a parallel pair C D,_γγγ1

_γγγ2
where C lives over the class T and D

lives over U , a coequaliser is given be the computability model Coeq(C,D) defined via the
following data:

• The underlying class is T/ ∼ defined through the coequaliser diagram

T U T/ ∼
γ1

γ2
(19)

in Sets.

• The datatypes are given by Coeq(C,D)(t) =
∐

t′∼tC(t′).

• The partial functions are given as coproducts of partial functions, that is

Coeq(C,D)[t1, t2] =
∐
t′1∼t1
t′2∼t2

D[t′1, t
′
2].

The simulation Coeq(γγγ1, γγγ2) : D_Coeq(C,D) is defined by the following data:

• The underlying class function is simply the projection arising from the coequaliser diagram
(19).

• The tracking relations ⊩Coeq(γ1,γ2)
t are defined via

c′ ⊩Coeq(γ1,γ2)
t c⇔ c = c′.

9.3 CompMod is not regular

To show that CompMod is a regular category we have to show three things:

• CompMod is complete.
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• In CompMod if we consider pullback diagrams of the form

γγγ−1(C) C

C D

_ρρρ1

_ ρρρ2 _ γγγ

_γγγ

then we obtain a coequaliser γγγ−1(C) C Coeq(ρρρ1, ρρρ2)__ _ .

• In CompMod the pullback of a regular epimorphism is again a regular epimorphism.

The first two are immediate because as we have shown CompMod is also cocomplete. For the
last property we first examine the (regular) epimorphisms in CompMod.

Lemma 9.3.1. If γγγ : C_D is a simulation, then the following are equivalent:

1. The underlying class function γγγ is surjective and all tracking relations ⊩γ
t fulfil the

following:

• For every y ∈ D
(
γ(t)

)
there exists a x ∈ C(t) such that y ⊩γ

t x and if y′ ⊩γ
t x, then

y = y′.

2. The simulation γγγ is an epimorphism in CompMod.

Proof: We first show that if the condition hold, then γγγ is an epimorphism. For this let two
simulations δδδ1, δδδ2 : D_E such that δδδ1 ◦ γγγ = δδδ2 ◦ γγγ. We have to show that δδδ1 = δδδ2. On the
level of underlying class functions this is immediate. For the tracking relations suppose that
we are given u ∈ U and x ∈ D(t), y ∈ E

(
δ1(u)

)
such that y ⊩δ1

u x. By assumption we know
that there exists t ∈ T such that γ(t) = u, additionally we find z ∈ C(t) such that x ⊩γ

t z
and if x′ ⊩γ

t z, then x = x′. This yields that y ⊩δ1◦γ
t z, and thus y ⊩δ2◦γ

t z by assumption. So
we have a x′ ∈ D(u) such that y ⊩δ2

u x′ and x′ ⊩γ
t z. But then by assumption x = x′ and

thus y ⊩δ2
u x as desired.

The same argument with δ2 and δ1 swapped shows the reverse direction. Thus ⊩δ1
u =⊩

δ2
u

for all u ∈ U and by extension δδδ2 = δδδ1.
Conversely assume that γγγ is an epimorphism. Then γ must be clearly surjective. To show

the condition for ⊩γ
t , assume that there was a y ∈ D

(
γ(t)

)
such that if y ⊩γ

t x, then there
exists y′ ̸= y such that y′ ⊩γ

t x. We can then define simulations δδδ1, δδδ2 : D→ E, where E lives
over the set 1 and E(∅) = 2, as follows: the underlying class function sends every u ∈ U to ∅,
and the tracking relations are defined as such:

⊩δ1
u :=

{
E(∅)×D(u) if u ̸= γ(t),(
E(∅)×D(γ(t)) \ {y}

)
∪
(
{1} × {y}

)
else,

⊩δ2
u :=

{
E(∅)×D(u) if u ̸= γ(t),

E(∅)×D(γ(t)) else.

Then one can compute that ⊩δ1◦γ
t =⊩δ2◦γ

t = E(∅)×C(t) for all t where we use that if y ⊩γ
t x,

then also y′ ⊩γ
t x for some y ̸= y′ and thus ∅ ⊩δ1

u y′ and by extension ∅ ⊩δ1◦γ
u x. But clearly

δδδ1 ̸= δδδ2, in violation of our assumption that γγγ is epi. Q.e.d.

Theorem 9.3.2. The category CompMod is not regular.

Proof: To prove this we adapt the counterexample in the category of partial orders. So let
A,B,C be the computability models given as such:
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• A lives over 4 where all sets of data types are simply 1, and the computable functions
are given by

A[0, 1] = {11} = A[2, 3]

together with the identities.

• B lives over 3 where again all sets of data types are simply 1, the computable functions
are given by

B[0, 1] = B[0, 2] = B[1, 2] = {11}
and the identities.

• C lives over 2, all sets of data types are 1 and the computable functions are given by
B[0, 1] = {11} and the identities.

We then define the simulations γγγ : A→ B, δδδ : C→ B through

γ(0) = 0, γ(1) = γ(2) = 1, γ(3) = 2,

δ(0) = 0, δ(1) = 1.

The tracking relations are always 1×1. It is immediate that these are well-defined simulations
and from the preceding lemma we know that γγγ is an epimorphism.

If we calculate the pullback we obtain the model γγγ−1(C) which lives over the set
{(0, 0), (3, 1)}, which we will tacitly identity with 2 and whose sets of data types are
1. The only computable functions are the identities. The pulled back simulations are
γγγ−1δδδ, δδδ−1γγγ, here the first one maps 0 to 0 and 1 to 3, the second maps 0 to 0 and 1 to 1.
The tracking relations are again 1× 1.

We show that δδδ−1γγγ is not the coequaliser of its kernel pair which is equivalent to it arising
from a coequaliser [44, p. 41]. We show that

γγγ−1(C) γγγ−1(C)

γγγ−1(C) C

_id

_ id _ δδδ−1γγγ

_δδδ−1γγγ

is a pullback square. It is obviously commutative and thus it remains to check the universal
property. For this let E over V with ααα1,ααα2 : E_γγγ−1(C) with δδδ−1γγγ ◦ααα1 = δδδ−1γγγ ◦ααα2. Thus on
the underlying sets we already have that α1 = α2 as δ−1γ is a monomorphism. The tracking
relations have to be 1 × E(w) for all w ∈ W due to the first condition on simulations, so
we obtain ααα1 = ααα2 and thus ααα1 is the desired unique simulation making the usual triangles
commute. But obviously δδδ−1γγγ is not the equaliser of the identities, for this would entail
that if we consider the simulation σσσ : γγγ−1(C)_γγγ−1(C) that swaps 0 and 1 there exists a
simulation ιιιC_γγγ−1(C) making

γγγ−1(C) C

C

_δδδ−1γγγ

_σσσ

_ ιιι

commute. But then we have ι(1) = 0, ι(0) = 1, but this can not be as no function in C[1, 0]
exists which could track 11 ∈ C[0, 1]. Q.e.d.

Corollary 9.3.3. CompMod is not a topos.

Proof: As every topos is regular [37, p. 92] and CompMod is not regular it can not be a
topos. Q.e.d.
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9.4 The Grothendieck computability model

The Grothendieck computability model is the computabiltiy model counterpart to the category
of elements, a special case of the general categorical Grothendieck construction. A category
C is replaced by a computability model C, and a (covariant) presheaf S : C → Sets by a
(covariant) simulation γγγ : C_Sets. Moreover, the first-projection functor is replaced by the
first-projection-simulation.

Proposition 9.4.1. Let C be a computability model over the class T together with a simula-
tion γγγ : C_Sets. The structure

∑
C γγγ with type names the class∑

t∈T

γγγ(t) :=
{
(t, b) | t ∈ T and b ∈ γ(t)

}
,

with data types, for every (t, b) ∈
∑

t∈T γγγ(t), the sets(∑
C

γγγ
)
(t, b) :=

{
y ∈ C(t) | b ⊩γ

t y
}
,

and computable functions from
(∑

C γγγ
)
(s, a) to

(∑
C γγγ
)
(t, b) the classes{

f ∈ C[s, t] | ∀x∈dom(f)

(
x ∈

(∑
C

γγγ
)
(s, a)⇒ f(x) ∈

(∑
C

γγγ
)
(t, b)

)}
,

is a computability model. The class-function pr1 :
∑

t∈T γγγ(t) → T , defined by the rule
(t, b) 7→ t, and the forcing relations, defined, for every (t, b) ∈

∑
t∈T γγγ(t), by

y′ ⊩pr1
(t,b) y :⇔ y′ = y,

determine the first-projection-simulation pr1 :
∑

C γγγ _C.

Proof: We show that the computable functions include the identities and are closed un-
der composition. Notice that the defining property of the computable functions in the
Grothendieck model is equivalent to the condition a ⊩γ

s x⇒ b ⊩γ
t f(x), for every x ∈ dom(f).

If (t, b) ∈
∑

t∈T γγγ(t), then the identity on
∑

C γγγ(t, b) is the identity on C(t), i.e., 1C(t)

is a computable function from
(∑

C γγγ
)
(t, b) to itself: if x ∈ C(t), then the implication

b ⊩γ
t x⇒ b ⊩γ

t x holds trivially. If g is a computable function from
∑

C γγγ(t, b) to
∑

C γγγ(u, c)
and f is a computable function from

∑
C γγγ(s, a) to

∑
C γγγ(t, b), then g ◦ f is a computable

function from
∑

C γγγ(s, a) to
∑

C γγγ(u, c). For that, let x ∈ dom(f) and f(x) ∈ dom(g). If
a ⊩γ

s x, then b ⊩γ
t f(x), and hence c ⊩γ

u g(f(x)). Next, we show that pr1 is a simulation. If
x ∈

∑
C γγγ(t, b), then only x ⊩pr1

(t,b) x, and if f is a computable function from
∑

C γγγ(s, a) to∑
C γγγ(t, b), then f ⊩pr1

((s,a),(t,b)) f . Q.e.d.

The following fact is straightforward to prove.

Proposition 9.4.2. Let C be a category and S : C → Sets a pullback-preserving presheaf
on C . Let γS : C0 _Sets be defined via γS(c) = S(c) and the relations ⊩γS

c are simply the
diagonal, and let {pr2} :

∑
C S → Sets be defined by {pr2}(c, x) := {x} and if f : (c, x)→ (d, y)

in
∑

C S, let [S(f)](x) := y. Then∑
CMprt(C ;S)

γγγS = CMprt
(∑

C

S; {pr2}
)
.
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Proof: Canonical model → Grothendieck model: We want to compute the Grothendieck
construction for the canonical computability model. For this we first need a simulation

CMprt(C;S)_Sets .

Here we simply take the simulation obtained from the presheaf S (called γγγS) that is γS : C0 →
Sets is defined via γS(c) = S(c) and the relations ⊩γS

c are simply the diagonal. Thus we can
compute the Grothendieck computability model1∑

CMprt(C;S)

γγγS

to live over the class {(c, u) | c ∈ C0, u ∈ γS(c) = S(c)}. In order to see that Σ(c, u) looks
like we can immediately compute that

Σ(c, u) = {x ∈ S(u) | u ⊩ x}.

But by definition we know that u ⊩ x if and only if x = u. Thus we have that Σ(c, u) has as
only element u itself. We compute the functions Σ

[
(c, u), (d, v)

]
. By definition functions in

this set are partial functions S(i, f) : S(c)→ S(d) such that S(i, f)(u) = v. Here S(i, f) is
identified with the partial arrow S(c)→ S(d) that has its domain restricted to dom(i).

Grothendieck category→ canonical model: On the converse, if we fist compute the Grothendieck
category associated to the presheaf and then the canonical model, we obtain the following:
The functor Σ(C, S)→ Sets we use is not the composition of the functor S with the projection
to C, but the functor S ◦ pr1 is not of use as we would then have on objects that

CMprt
(∑

C

S;S ◦ pr1
)
(c, u) = S(c) ̸= {u}

as desired. So we have to show that the second projection {pr2} that sends each (c, u) to {u} is
a functor. As well-definedness on objects is immediate it remains to show that it is well-defined
on arrows, that is each arrow f : (c, u)→ (c′, u′) maps to an arrow g : {u} → {u′}. But this
is again immediate as for each such arrow we have that S(f)(u) = u′, so we can choose g to
be S(f). The functoriality is now immediate. So we seek to show that CMprt(

∑
C S; {pr2})

is the same computability model as
∑

CMprt(C,S) γγγ
S. But this is now immediate from the

definition. Q.e.d.

Remark 9.4.3. The functor C 7→ Asm(C), studied in [45], does not “preserve” the
Grothendieck construction. Namely, if 1 is the terminal computability model with type
names {∅}, data type 1(∅) = {∅}, and as only computable function the identity, then one
can define a presheaf ιιι1 : 1_Sets, and show that

Asm
(∑

1

ιιι1

)
̸=

∑
Asm (1)

Asm(ιιι1).

Next we show that the category of computability models CompMod is a type-category.
First, we lift a simulation γγγ : C_D to a simulation between the Grothendieck computability
models

∑
C(δδδ ◦ γγγ) and

∑
D δδδ.

1We will write Σ(c, u) instead of
(∑

CMprt(C;S) γγγ
S)
)
(c, u) to make the notation a little more readable.
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Lemma 9.4.4. Let C,D be computability models over the classes T, U respectively, and
γγγ : C_D, δδδ : D_Sets simulations. There is a simulation

∑
δδδ γγγ :

∑
C(δδδ ◦ γγγ)_

∑
D δδδ, such

that the following is a pullback square∑
C(δδδ ◦ γγγ)

∑
D δδδ

C D.

_
∑

δδδ γγγ

_ pr1 _ pr1

_γγγ

Proof: To define
∑

δδδ γγγ, let the underlying class-function
∑

δ γ :
∑

t∈T γγγ(t)→
∑

u∈U δδδ(u) be
defined by the rule (t, b) 7→

(
γ(t), b). The corresponding forcing relations are defined by

x′ ⊩
∑

δ γ

(t,b) x :⇔ x′ ⊩γ
t x. It is straightforward to show that

∑
δδδ γγγ is a simulation. Next we show

that the above square commutes. On the underlying classes this is immediate as

pr1
(∑

δ

γ(t, b)
)
= pr1

(
γ(t)

)
= γ

(
pr1(t, b)

)
.

On the forcing relations we observe that if x′ ⊩
pr1 ◦

∑
δ γ

(t,b) x, then x′ ⊩
∑

δ γ

(t,b) x, and thus x′ ⊩γ
t x,

which is also equivalent to x′ ⊩γ◦pr1
(t,b) x. Finally, we show the pullback property. Let a

computability model E over a class V with simulations ααα,βββ be given, such that the following
rectangle commutes

E
∑

D δδδ

C D.

_β
ββ

_ ααα _ pr1

_γγγ

(20)

We find a unique simulation ζζζ : E_
∑

C(δδδ ◦ γγγ) such that both triangles in

E

∑
C(δδδ ◦ γγγ)

∑
D δδδ

C D

_
ζζζ

_

ααα

_

βββ

_
∑

δδδ γγγ

_ pr1 _ pr1

_γγγ

commute. First we define ζ on the level of the underlying classes. If v ∈ V , let ζ(v) =
(
α(v), c

)
,

where c ∈ δ(γ(v)) is the unique c such that β(v) = (u, c) for some u. Clearly, ζ is well-defined.
Next we define the forcing relations. Let

x′ ⊩ζ
v x :⇔ x′ ⊩α

v x.

This relations are well-defined and in conjunction with the aforementioned class-function
they constitute a simulation. Observe that the two triangles already commute on the level of
the underlying class-functions, so it remains to check the forcing relations. Assume we are

given v ∈ V and x′′ ∈ E(v), x′ ∈
(∑

D δδδ
)(

β(v)
)
and x ∈ C

(
α(v)

)
such that

x′ ⊩β
v x′′ and x ⊩α

v x′′.

By definition we have to show that there exist y1, y2 such that

x′ ⊩
∑

δ γ

ζ(v) y1 and y1 ⊩
ζ
v x

′′, and x ⊩pr1
ζ(v) y2 and y2 ⊩

ζ
v x

′′.
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We know that the square (20) commutes and x′ ⊩pr1
(
∑

δ γ)(ζ(v))
x′, thus from x′ ⊩β

v x′′ we

conclude that x′ ⊩γ◦α
v x′′. This in turn ensures that there is y such that x′ ⊩γ

α(v) y and

y ⊩α
v x′′. By definition of

∑
δ γ we then have that x′ ⊩

∑
δ γ

α(v) y and thus y is our desired
y1. For y2 we simply choose x and it is easy to see that this fulfills the requirements. The
above implications also work in the reverse direction. It is immediate to show that ζζζ is the
unique simulation making the triangles commutative, as it is determined by the definition of
βββ,ααα. Q.e.d.

Lemma 9.4.5. If C,D,E ∈ CompMod, γγγ : C_D, δδδ : D_E, and ϵϵϵ : E_Sets is a presheaf-
simulation, then the following strictness conditions hold:

1.
∑

ϵϵϵ 1E = 1∑
E ϵϵϵ.

2.
∑

ϵϵϵ(δδδ ◦ γγγ) =
∑

ϵϵϵ δδδ ◦
∑

(ϵϵϵ◦δδδ) γγγ.

Proof:

1. It suffices to observe that by its definition the simulation
∑

ϵϵϵ 1E on the level of the
underlying class takes a pair (t, u) to (1E(t), u) = (t, u), so on the level of the underlying
class-functions the two simulations agree. For the forcing relations we see that both
simulations are the corresponding diagonal.

2. To verify this equation on the level of underlying classes we have that∑
ϵϵϵ

(δδδ ◦ γγγ)(t, b) =
(
t, (δ ◦ γ)(b)

)
=
∑
ϵϵϵ

δδδ
(
t, γ(b)

)
=
∑
ϵϵϵ

δδδ
((∑

ϵϵϵ◦δδδ

γγγ
)
(t, b)

)
.

For the forcing relations we simply rem that x ⊩
∑

ϵ δ◦γ
(t,b) y if and only if x ⊩δ◦γ

t y. Similarly,

we have that x ⊩
∑

ϵ δ

(t,b) y if and only if x ⊩δ
t y, and x ⊩

∑
ϵ◦δ γ

(t,b) y if and only if x ⊩γ
t y. Hence,

x ⊩
∑

ϵ δ◦
∑

ϵ◦δ γ

(t,b) y if and only if x ⊩δ◦γ
t z, which by the above is equivalent to x ⊩

∑
ϵ δ◦γ

(t,b) z.

Q.e.d.

Theorem 9.4.6. The category CompMod is a type-category.

Proof: This follows immediately from Lemma 9.4.4, Lemma 9.4.5, and the fact that CompMod
has a terminal object, as explained in Remark 9.4.3. Q.e.d.

9.4.7 A generalised Grothendieck construction.
We can generalise this notion of the Grothendieck construction to arbitrary simulations

C_D by observing the fact that every computability model allows a realising simulation
into the model Sets defined as follows:

Proposition 9.4.8. Let C be a computability model over the class T . We then obtain a
simulation rC : C_Sets defined by the following data:

• the underlying class function is defined by rC(t) = C(t) for all t ∈ T ,

• the tracking relations are given as

y ⊩rC

t x if and only if y = x.

Proof: Immediate as the first condition is satisfied as each x is tracked by itself and the
second condition is immediate as each function f is tracked by itself. Q.e.d.
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This allows us to make the following definition (with a small abuse of notation):

Definition 9.4.9. If γγγ : C_D is a simulation define∑
C

γγγ :=
∑
C

rD ◦ γγγ.

It is immediate that this extends the notion we defined in Proposition 9.4.1 as it is
immediate that rSets = idSets.

9.4.10 The Grothendieck model and presheaf simulations.
We show an analogous result to [37, Proposition 1.1.7]. Our goal is to show for any

presheaf simulation γγγ : C→ Sets that we obtain an equivalence[∑
C

γγγ, Sets
]
∼= [C, Sets]/γγγ.

We do this by exhibiting a full, faithful and essentially surjective functor

I :
[∑

C

γγγ, Sets
]
→ [C, Sets]/γγγ.

Before we do this we make a few following observations:

Remarks:

1. For both categories the morphism structure is thin and thus a preorder, thus we only
need to define our functor on morphisms and show this functor preserves this preorder.

2. More explicitly the objects of [C, Sets]/γγγ themselves are simply simulations δδδ : C→ Sets
such that δδδ ⪯ γγγ.

3. For all simulations γγγ : C→ Sets we have that for all t ∈ T the set γ(t) is nonempty. This
stems from the fact that otherwise ⊩γ

t could not fulfil the first condition on simulations
as γ(t) is empty so no a ∈ γ(t) with a ⊩γ

t b for any b ∈ C(t). (There is the possibility
that C(t) is empty but we shall exclude this from now on).

So we define our functor and then prove the desired properties:

Proposition 9.4.11. Let C over T be a computability model and γγγ : C→ Sets be a simulation.
We have a functor I :

[∑
C γγγ, Sets

]
→ [C, Sets]/γγγ defined through the following rule: for

βββ :
∑

C γγγ _ Sets we define I(βββ) through the underlying class function I(β) : T → Sets defined
as

I(β)(t) =
⋃

x∈γ(t)

β(t, x) for all t ∈ T.

The tracking relation ⊩I(β)
t ⊆

⋃
x∈γ(t) β(t, x)×C(t) is defined as

a ⊩I(β)
t b :⇔ ∃x ∈ γ(t) : a ⊩β

(t,x) b.

This functor fulfils the following three properties:

1. I is full.

2. I is faithful.

3. I is essentially surjective.
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Proof: We begin by showing that I is well-defined, that is that for every βββ ∈
[∑

C γγγ, Sets
]

the rule I(βββ) actually constitutes a simulation and I(βββ) ⪯ γγγ. First we observe that I(β)(t) is
well-defined and a set for all t ∈ T . To check the first property of simulations we observe
that for all t ∈ T we have that at least one x ∈ γ(t) exists, so

⋃
x∈γ(t) β(t, x) is non-empty.

Furthermore if we are given b ∈ C(t) we know as γγγ is a simulation we find x ∈ γ(t) such that
x ⊩γ

t b. Now as βββ is a simulation we find a ∈ β(t, x) such that a ⊩β
(t,x) b. By definition of

⊩I(β)
t we have that a ⊩I(β)

t b.
To check the second condition on I(βββ) let a function f ∈ C[t, t′] be given. We have to

find f ′ such that f ′ ⊩I(β)
(t,t′) f . We recall that this latter condition means the following

∀x ∈ dom(f)∀y ∈ I(β)(t) :
(
y ⊩I(β)

t x⇒ y ∈ dom(f ′) ∧ f ′(y) ⊩I(β)
t′ f(x)

)
.

So let such x and y be given. By definition y ⊩I(β)
t x if and only if there exists r ∈ γ(t) such

that y ⊩β
(t,r) x. This also entails that r ⊩γ

t x as x has to be in
(∑

C γγγ
)
(t, r). We use that γγγ is

a simulation from C to Sets, so we obtain a f̃ : γ(t)→ γ(t′) such that f̃ ⊩γ
(t,t′) f . We thus

have f̃(r) ⊩γ
t′ f(x). This in turn shows that

f ∈
(∑

C

γγγ
)[(

t, r
)
,
(
t′, f̃(r)

)]
as for all z such that r ⊩γ

t z we have f̃(r) ⊩γ
t′ f(z) by definition of f̃ . So as β is a simulation we

obtain a f̂ : β(t, r)→ β
(
t′, f̃(r)

)
such that f̂ ⊩β

((t,r),(t′,f̃(r)))
f . Then by design f̂(y) ⊩β

t′ f(x).

We can thus define our final f ′ to be on each part β(t, r) of
⋃

r∈γ(t) β(t, r) defined as f̂
obtained in the above manner. It is immediate that this f ′ fulfils the desired equality.

So we have shown that I(βββ) is a simulation and it remains to show that I(βββ) ⪯ γγγ. For this

we have to exhibit for each t ∈ T a gt : I(β)(t)→ γ(t) such that y ⊩I(β)
t x entails gt(y) ⊩

γ
t x.

We again do this by defining gt on each part β(t, r) of I(β)(t) =
⋃

r∈γ(t) β(t, r) separately.

On β(t, r) define gt(y) = r. Then by definition if y ⊩I(β)
t x, that is y ⊩β

(t,r) x then r ⊩γ
t x as

x ∈
(∑

C γγγ
)
(t, r).

This shows that the functor I is indeed well-defined. It remains to show the three
properties.

If ααα ⪯ βββ then we have to show that I(ααα) ⪯ I(βββ). From the assumption we obtain for each
(t, r) ∈

∑
C T a function g(t,r) : α(t, r) → β(t, r) such that if y ⊩α

(t,r) x then g(t,r)(y) ⊩
β
(t,r) x.

So for I(β)(t) we can define gt piecewise on the individual β(t, r) by setting gt(y) := g(t,r)(y)
if y ∈ α(t, r). It is immediate that these gt show that I(ααα) ⪯ I(βββ).

For the reverse direction we need to show that I(ααα) ⪯ I(βββ) entails ααα ⪯ βββ. But this is
immediate as we do the above “in reverse”, that is we define g(t,r)(y) := gt(y), where g(t,r), gt
take the same roles as in the preceding paragraph.

At last we have to show essential surjectivity, that is every βββ : C → Sets with βββ ⪯ γγγ
is equivalent to a I(ααα) for some ααα :

∑
C γγγ _ Sets. So let βββ be given. We define ααα in the

following way: For (t, r) ∈
∑

C T we let α(t, r) := β(t) and We further define the tracking
relations ⊩α

(t,r) via

x ⊩α
(t,r) a :⇔ x ⊩β

t a.

We have to show that this ααα indeed constitutes a simulation. As α :
∑

C T → Sets is clearly
well-defined and ⊩α

(t,r) as well it remains to show the two conditions imposed on simulations.

For the first condition let a ∈
(∑

C γγγ
)
(t, r) be given. We have to show that there exists

x ∈ α(t, r) such that x ⊩α
(t,r) a. This is given as there exists x ∈ β(t) = α(t, r) such that
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x ⊩β
t a. The second condition is shown analogously, as one observes that f ′ ⊩α

((t,r),(t′,r′)) f if

and only if f ′ ⊩β
(t,t′) f .

So this ααα constitutes a simulation. It is immediate that I(ααα) = βββ as
⋃

r∈γ(t) α(t, r) =⋃
r∈γ(t) β(t) = β(t) and

x ⊩I(α)
t a⇔ ∃rx ⊩α

(t,r) a⇔ ∃rx ⊩
β
t a⇔ x ⊩β

t a.

This shows that I is essentially surjective, as if I(ααα) = βββ, then obviously I(ααα) ∼ βββ. Q.e.d.

9.4.12 Presheaf-simulations out of Grothendieck models.
One of the key differences that arises when one considers computability models and

presheaf simulations instead of categories and presheaves is that a datatype b ∈ C(t) can
be tracked by multiple r ∈ γ(t). Thus in passing to the Grothendieck construction

∑
C γγγ

one has that b is present in
(∑

C γγγ
)
(t, r) for each of the r that track b. The question then is

whether in case we take a presheaf-simulation δδδ :
∑

C γγγ _Sets the sets δ(t, r) intersect for
all the r above.

We attack this question with a small example.

Example 9.4.13. Let C be the computability model over the set {0} such that C(0) = {0}
with only the identity. We define the simulation γγγ : C_Sets in the following way: γ(0) =
{0, 1} and 0 ⊩γ

0 0, 1 ⊩γ
0 0. This is a simulation as the identity on C(0) = {0} is tracked by

the identity on {0, 1}.
The Grothendieck model has thus as underlying set the set {(0, 0), (0, 1)} which we will

tacitly identify with {0, 1}. Furthermore
(∑

C γγγ
)
(0) =

(∑
C γγγ
)
(1) = {0}. Now consider the

simulation δδδ :
∑

C γγγ _Sets defined by δ(0) = {0, 2}, δ(1) = {1, 3} and where 0 ∈
(∑

C γγγ
)
(0)

is tracked by 0 and 0 ∈
(∑

C γγγ
)
(1) is tracked by 1. This is indeed a simulation as the first

condition imposed on simulations is satisfied, and for the second we observe that the only
computable functions present are

id{0} ∈
(∑

C

γγγ
)
[0, 0] =

(∑
C

γγγ
)
[0, 1] =

(∑
C

γγγ
)
[1, 0] =

(∑
C

γγγ
)
[1, 1]

and these are tracked by

• id{0,2} in case id{0} ∈
(∑

C γγγ
)
[0, 0],

• {(0, 1), (2, 3)} in case id{0} ∈
(∑

C γγγ
)
[0, 1]

• {(1, 0), (3, 2)} in case id{0} ∈
(∑

C γγγ
)
[1, 0],

• id{1,3} in case id{0} ∈
(∑

C γγγ
)
[1, 1].

This example shows that unfortunately we do not have that δδδ(0) and δδδ(1) intersect, but
in our case we at least obtained a computable function between the different sets of data
types. However this need not always be the case as the following example shows:

Example 9.4.14. Let C be the computability model over {0} given by C(0) = {0, 1, 2}
and let γγγ be given in the following different way: the underlying class function γ is given by
0 7→ {0, 1} and

0 ⊩γ
0 0, 1 ⊩γ

0 0, 1 ⊩γ
0 1, 0 ⊩γ

0 2.

Then the Grothendieck model is given again as the model over the set {(0, 0), (0, 1)}, which
we again replace by {0, 1} and the data types are given as

(∑
C γγγ
)
(0) = {0, 2},

(∑
C γγγ
)
(1) =

{0, 1}. However
(∑

C γγγ
)
[0, 1] =

(∑
C γγγ
)
[1, 0] as the identity can not be present in the former

because 1 ̸⊩γ
0 id{0,1,2}(2) = 2 and not in the latter because 0 ̸⊩ id{0,1,2}(1) = 1.
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9.5 Fibration-simulations and opfibration-simulations

The (covariant) Grothendieck construction allows the generation of fibrations (opfibrations),
as the first-projection functor pr1 :

∑
C P → C is a (split) opfibration, if P is a covariant

presheaf, or a (split) fibration, if P is a contravariant presheaf. In this section we introduce
the notion of a fibration and opfibration-simulation and we show that the first-projection-
simulation pr1 :

∑
C γγγ _C is a (split) opfibration-simulation, as we work with covariant

presheaf-simulations. The dual result is shown similarly.
In this section, E is a computability model over T and B a computability model over U .

Moreover, the pair

ϖϖϖ :=

(
ϖ : : T → U,

(
⊩ϖ

t

)
t∈T

)
is a simulation of type E_B. In contrast to what it holds for functors, for simulations
γγγ : E _ B each computable function f in E is tracked, in general, by a multitude of maps f ′

in B. Thus, for each opspan

E(t1) E(t2) E(t3)

_

f
_g

we have a whole class, in general, of opspans

B(γ(t1)) B(γ(t2)) B(γ(t3))

_

f ′_
g′

such that f ′ tracks f and g′ tracks g.

Definition 9.5.1 (Cartesian computable functions). Let f ′ ∈ B[s, s′] and t′ ∈ T , such
that ϖ(t′) = s′ be given. We call a computable function f ∈ E[t, t′] cartesian for f ′ and
t′, if f ′ ⊩ϖ

(t,t′) f , and given computable functions g ∈ E[t′′, t′], g′ ∈ B[ϖ(t′′), ϖ(t′)], and

h ∈ B[ϖ(t′′), ϖ(t)] as in the following diagram

E(t) B(ϖ(t))

E(t′′) B(ϖ(t′′))

E(t′) B(ϖ(t′))

⊩ϖ
t

f ′

k

⊩ϖ
t′′

g g′

h

⊩ϖ
t′

f

that is g′ tracks g, there is some k ∈ E[t′′, t] satisfying the following property: h ⊩ϖ
(t′′,t) k,

and for every x ∈ E(t′′), y ∈ B(ϖ(t′′)), such that y ⊩ϖ
t′′ x, y ∈ dom(f ′ ◦ h) ∩ dom(g′), and

f ′(h(y)) = g′(y), then x ∈ dom(f ◦ k) ∩ dom(g) and g(x) = f(k(x)).

Definition 9.5.2 (Opcartesian computable functions). Let f ′ ∈ B[s′, s] and t′ ∈ T ,
such that ϖ(t′) = s′ be given We call a computable function f ∈ E[t′, t] opcartesian for f ′

and t′, if f ′ ⊩ϖ
(t′,t′) f , and given computable functions g ∈ E[t′, t′′], g′ ∈ B[ϖ(t′), ϖ(t′′)] and

h ∈ B[ϖ(t), ϖ(t′′)] as in the following diagram

E(t) B(ϖ(t))

E(t′′) B(ϖ(t′′))

E(t′) B(ϖ(t′))

l f

⊩ϖ
t

f ′
⊩ϖ
t′′

g g′

h

⊩ϖ
t′
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that is g′ tracks g, there is some l ∈ E[t, t′′] satisfying the following property: h tracks l,
and for every x ∈ E(t′), y ∈ B(ϖ(t′)), such that y ⊩ϖ

t′ x, y ∈ dom(h ◦ f ′) ∩ dom(g′), and
f ′(h(y)) = g′(y), then x ∈ dom(l ◦ f) ∩ dom(g) and g(x) = l(f(x)).

Note that the computable functions k ∈ E[t′′, t] and l ∈ E[t, t′′] in the above two definitions,
respectively, are not unique.

Definition 9.5.3 (Fibration-simulations). We call ϖϖϖ : E _ B a fibration-simula-
tion, if for every computable function f ∈ B

[
u,ϖ(t)

]
there is g ∈ E[t′, t] cartesian for f and

t. In this case, we call g a lift of f .

Definition 9.5.4 (Opfibration-simulations). We call ϖϖϖ : E→ B an opfibration-simu-
lation, if for every computable function f ∈ B

[
ϖ(t), u

]
, there is g ∈ E[t, t′] opcartesian for f

and t. In this case, we call g a lift of f .

Example 9.5.5. Let E ,B be categories with presheaves S, S ′ and let F : E → B be a fibration,
such that S ′ ◦ F = S. Then, γγγF : CMtot(E ;S)_CMtot(B;S ′) is a fibration-simulation. To
see this, assume we are given a computable function in CMtot(B;S ′), that is a function
S ′(f) : S ′(b)→ S ′(b′), and e ∈ E such that F (e′) = b′. As F is a fibration, we find an arrow
g : e→ e′ cartesian over f and b′ . We show that S(g) is the desired cartesian function over
S ′(f) and S(b′). For this, let functions S(h), S(h2), S(g2) as in the following diagram,

S(e) S ′(b)

S(e′′) S ′(b′′)

S(e′) S ′(b′)

S(g)

⊩γF

e

S′(f)

S′(h)S(k)

S(g2)

⊩γF

e′′

S′(h2)

⊩γF

e′

be given, where we used that CMprt(E ;S)(e) = S(e) and CMprt(B;S ′)(b) = S(b), for every
e and b, respectively. As g is cartesian over f and b′, we obtain an arrow k : e′′ → e, such
that g ◦ k = g2 and F (k) = h2. Obviously, S(k) is the function needed, and hence S(g) is
cartesian over S ′(f) and S(b′).

Proposition 9.5.6. If C is a computability model and γ : C→ Sets a simulation, then the
first-projection-simulation pr1 :

∑
C γγγ _C is an opfibration-simulation.

Proof: Assume we are given a computable function f ∈ C[t, t′] and pr1(t, b) = t. We
need to find some b ∈ C(t′), such that pr1(t

′, b′) = t′, and a computable function f ′ ∈(∑
C γγγ
)[

(t, b), (t′, b′)
]
, such that f ⊩pr1

((t,b),(t′,b′)) f
′. By definition we know that f ⊩pr1

((t,b),(t′,b′)) f
′

if and only if f = f ′, so we have to find y ∈ C(t′), such that f(b) = b′. For this, we simply
take b′ := f(b). To show that f is opcartesian for f and b, we consider the following diagram(∑

C γγγ
)
(t, b) C(t)

(∑
C γγγ
)
(t′′, b′′) C(t′′)

(∑
C γγγ
)
(t′, b′) C(t′)

f

g

⊩
pr1
(t,b)

f

g

h

⊩
pr1
(t′′,b′′)

h

⊩
pr1
(t′,b′)
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and we observe that h fills also the triangle on the left, as we have that f = h◦g whenever they
are defined, so in particular f(b) = h

(
g(b)

)
, and thus b′ = h(b′′). Hence, h is a computable

function from
(∑

C γγγ
)
(t′′, b′′) to

(∑
C γγγ
)
(t′, b′). Q.e.d.

Next we define split fibration-simulations and split opfibration-simulations.

Definition 9.5.7 (Splittings). A splitting for a fibration-simulation ϖϖϖ : E_B is a rule
ϖ△ that takes a pair (f, u), where f ∈ B[t1, t2] and ϖ(u) = t2, to a function f ′ ∈ E[u, u′]
cartesian for f and u. This rule ϖ△ is subject to the following conditions:

• For every f ∈ B[t1, t2] and every g ∈ B[t2, t3] we have that

ϖ△(g ◦ f, u1) = ϖ△(g, u1) ◦ϖ△(f, u2).

• For every t ∈ T we have that ϖ△(1B(t), u) = (1E(u), u).

A splitting for an opfibration-simulation ϖϖϖ : E_B is a rule ϖ△ that corresponds a pair
(f, u), where f ∈ B[t1, t2] and ϖ(u) = t1, to a function f ′ ∈ E[u, u′] opcartesian over f and
u. This rule ϖ△ is subject to the following conditions:

• For every f ∈ B[t1, t2] and every g ∈ B[t2, t3] we have that

ϖ△(g ◦ f, u1) = ϖ△(g, u2) ◦ϖ△(f, u1).

• For every t ∈ T we have that ϖ△(1B(t), u) = (1E(u), u).

A (op)fibration-simulation ϖϖϖ is split, if it admits a splitting ϖ△.

Corollary 9.5.8. The simulation pr1 :
∑

C γγγ _C is a split opfibration-simulation.

Proof: We can simply take pr△1 to be defined by the rule pr△1 (f, u) := (f, u). Q.e.d.

9.5.9 A 2-categorical approach.
Our approach to fibrations and cartesian arrows looks a bit different than what the

2-categorically inclined mind envisioned. Indeed, in the works of Riehl [56] and Wong [65]
one sees a 2-categorical approach to cartesian arrows and fibrations that should also be
translatable to our framework, as the category CompMod of computability models constitutes
a 2-category.

We want to examine the differences between the 2-categorical approach to fibrations and
our bottom-up approach. It remains to interpret the meaning of the the abstract notion of a
fibration in a 2-category in the category CompMod.

A 2-cell γγγ ⇒ δδδ expresses nothing more than that γγγ is transformable into δδδ. So what does
it mean for this transformability to be cartesian with respect to another simulation ϖϖϖ? So
assume we are given this exact situation, that is

C D E
_γγγ

_
δδδ

_ϖϖϖ⪯

Then if we are given a simulations βββ : B→ C, ϵϵϵ : B→ D such that ϵϵϵ ⪯ δδδ◦βββ andϖϖϖ◦ϵϵϵ ⪯ϖϖϖ◦γγγ◦βββ
subject to

B E

ϖϖϖ◦ϵϵϵ

ϖϖϖ◦δδδ◦βββ

⪰ = B C D E

ϖϖϖ◦ϵϵϵ

βββ

γγγ

δδδ

ϖϖϖ

⪰

⪯

,
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we obtain that ϵϵϵ ⪯ γγγ ◦ βββ. Visually, this can be encoded as

B C D E
_

ϵϵϵ

_β
ββ

_

ϖϖϖ◦ϵϵϵ

_γγγ

_
δδδ

_ϖϖϖ

⪰

⪰

⇝ B C D E.

_
ϵϵϵ

_β
ββ _

γγγ

_
δδδ

_ϖϖϖ

⪰

Having seen what being cartesian with respect to a simulation means, we can turn to
examining fibration simulations. The definition is easy to translate. A simulation γγγ : C→ D
is a fibration if for all simulations ααα : B→ C,βββ : B→ D such that βββ ⪯ γγγ ◦ ααα we find a
simulation ααα′ : B→ C cartesian with respect to γγγ such that βββ ⪯ γγγ ◦ ααα′. At last we need
to concern ourselves with how to transform the notion “p • α = β” into the language of
computability models. This simply means the following: If ft ∈ D[β(t), γ(α((t))] is our
witness of transformability and x ∈ dom(ft), x ⊩

β
t y, then there exists a q such that q ⊩α′

t x
and a computable arrow f ′

t such that ft ⊩α′

(α′(t),α(t) f
′
t and q ∈ dom(f ′

t).
In pictures:

x ft(x)

y

ft

=

x ft(x)

q ft(x)

y

ft

f ′
t

Thus we can restate the definition of a ϖϖϖ-cartesian transformability

Definition 9.5.10 (ϖϖϖ-cartesian transformability). Let B,C,D be computability models
over S, T, U respectively with simulations γγγ,δδδ : B_C,ϖϖϖ : C_D. We say that a transforma-
bility γγγ ⪯ δδδ is cartesian (in the 2-categorical sense) with respect to ϖϖϖ if:

• given a simulation ααα : A→ B where A lives over V and a simulation ϵϵϵ : A→ C such that
ϵϵϵ ⪯ δδδ ◦ααα and ϖϖϖ ◦ ϵϵϵ ⪯ϖϖϖ ◦ γγγ ◦ααα, that is for all v ∈ V we obtain

– fv ∈ C[ϵ(v), δ(α(v))] witnessing ϵϵϵ ⪯ δδδ ◦ααα,
– f ′

v ∈ D[ϖ(ϵ(v)), ϖ(δ(α(v)))] such that f ′
v ⊩

ϖ
(ϵ(v),δ(α(v))) fv,

– gα(v) ∈ B[γ(α(v)), δ(α(v))] arising from γγγ ⪯ δδδ,

– g′α(v) ∈ E[ϖ(α(γ(v))), ϖ(α(δ(v)))] such that g′α(v) ⊩
ϖ
(α(γ(v)),α(δ(v))) gα(v),

– hv ∈ E[ϖ(ϵ(v)), ϖ(γ(α(v)))] arising from ϖϖϖ ◦ ϵϵϵ ⪯ϖϖϖ ◦ γγγ ◦ααα
and these computable functions fulfil the computability condition that if x ∈ A(v) and
y ⊩ϖ◦ϵ

v x then

y ∈ dom(f ′
v) ∩ dom(g′α(v) ◦ hv) and f ′

v(y) = g′α(v)(hv(y)),

• then we obtain ϵϵϵ ⪯ γγγ ◦ααα in the following compatible manner: for all v ∈ V we obtain

– fv ∈ C[ϵ(v), δ(α(v))] witnessing ϵϵϵ ⪯ δδδ ◦ααα,
– iv ∈ C[ϵ(v), γ(α(v))] witnessing ϵϵϵ ⪯ γγγ ◦ααα
– gα(v) ∈ B[γ(α(v)), δ(α(v))] arising from γγγ ⪯ δδδ

such that if x ∈ A(v) and y ⊩ϵ
v x, then

y ∈ dom(gα(v) ◦ iv) ∩ dom(fv) and gα(v)(iv(y)) = fv(y).
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The definition of a fibration 2-cell is the following:

Definition 9.5.11 (Fibration-2-cells in a 2-category). Let C be a small 2-category. A
1-cell p : B → C is a fibration if and only if every 2-cell β as in

X B

C

c

b

p
β

has a p-cartesian lift α : b′ ⇒ b such that p • α = β.

We want to show that this definition of a fibration is entailed by the bottom-up definition
we gave earlier. However this is (as of our knowledge) only possible if our computability
models C,D have constants, which is the following:

Definition 9.5.12. We say that a computability model C has all constants if for any t ∈ T
and any a ∈ C(T ) and any t′ ∈ T the total function that sends every x ∈ C(t′) to a is in
C[t′, t]. We write ct

′
a for this function.

Theorem 9.5.13. Let E,B be computability models over T, U respectively with all constants.
If ϖϖϖ is a fibration in the bottom-up sense, then ϖϖϖ is a fibration in the 2-categorical sense.

Proof: We first show that if it is a fibration in the bottom-up sense it is in the 2-categorical
sense. For this let a computability model C (over V ) with simulations χχχ : C→ E, ξξξ : C→ B
be given such that ξξξ ⪯ϖϖϖ ◦χχχ. We need to find a simulation χχχ′ : C→ E such that χχχ′ ⪯ χχχ is
ϖϖϖ-cartesian. For this consider an arbitrary v ∈ V and fv ∈ B[ξ(v), ϖ(χ(v))] that tracks the
transformability. As ϖϖϖ is a fibration in the bottom-up sense we obtain a lift f̂v ∈ E[w, χ(x)]
cartesian for fv and χ(x). For each v we make such a choice of w and arrive at a map
χ′ : V → T, v 7→ w. This will be the underlying class function of our desired simulation χχχ′.

For the tracking relations ⊩χ′
v we take x ∈ C(v). By definition there exists a y ∈ B(ξ(v))

such that y ⊩ξ
v x, and thus fv(y) ⊩ϖ◦χ

v x. Thus by definition we obtain a z ∈ E(χ(v)) such
that fv(y) ⊩ϖ

χ(v) z and z ⊩χ
v x. We consider the functions

cχ(v)z ∈ E[χ(v), χ(v)], cϖ(χ(v))
y ∈ B[ϖ(χ(v)), ξ(v)],

c
ϖ(χ(v))
fv(y)

∈ B[ϖ(χ(v)), ϖ(χ(v))], f̂v ∈ E[w, χ(v)].

We then obtain the situation as in the following diagram:

E(w) B(ξ(v))

E(χ(v)) B(ϖ(χ(v)))

E(χ(v)) B(ϖ(χ(v)))

f̂v

⊩ϖ
w

fv

⊩ϖ
χ(v)

c
χ(v)
z

c
ϖ(χ(v))
y

c
ϖ(χ(v))
fv(y)

⊩ϖ
χ(v)

Here the triangle on the right commutes, so as f̂v is cartesian for fv and χ(v) we obtain a
function h ∈ E[χ(v), w] making the triangle on the right commute. Furthermore z ∈ dom(h)
so we can define b := h(z). We now say that b ⊩χ′

v x if b arises in the fashion described above
from some y, z. Now obviously the first condition of a simulation is fulfilled.
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For the second condition we assume we are given h ∈ C[v, v′]. Then we can find
h′ ∈ B[ξ(v), ξ(v′)], h′′ ∈ E[χ(v), χ(v′)] and h′′′ ∈ B[ρ(χ(v)), ρ(χ(v′))] such that

h′ ⊩ξ
(v,v′) h, h′′ ⊩χ

(v,v′) h, h′′′ ⊩(χ(v),χ(v′)) h
′′.

In a diagram this looks like this:

C(v)

C(v′)

E(w) E(χ(v))

E(w′) E(χ(v′))

B(ξ(v)) B(ϖ(χ(v)))

B(ξ(v′)) B(ϖ(χ(v′)))

h

f̂v

f̂v′
h′′

fv

h′
fv′

h′′′

Thus as f̂v is cartesian for χ(v) and fv we obtain a h̃ ∈ E[w,w′] such that if x ∈ E(w′) and
y ⊩ϖ

w′ x for some y ∈ E(ξ(v)) such that y ∈ dom(fv ◦ h′) ∩ dom(h′′′ ◦ fv′) and h′′′(fv(y)) =
fv′
(
h′(y)

)
then x ∈ dom(h̃) ∩ dom(h′′ ◦ f̂v) and h′′(f̂v(x)) = f̂v′

(
h(x)

)
.

We now show that h̃ ⊩χ
(v,v′) h. For this let a ∈ C(v) with a ∈ dom(h) and b ∈ E(w) with

b ⊩χ′
v a be given. By definition this means that there exists c ∈ ξ(v) and d ∈ E(χ(v)) such

that

y ⊩ξ
v a, d ⊩χ

v a, fv(c) ⊩
ϖ
χ(v) d.

and b = i(z) where i arises from lifting cz through fv as above. Thus c ⊩ϖ
w b and

• c ∈ dom(h′) as h′ tracks h and a ∈ dom(h),

• c ∈ dom(fv) as fv witnesses the transformability of ξξξ to ϖϖϖ ◦χχχ
• h′(c) ∈ dom(fv′) as h

′(c) ⊩ h(a) and fv′ witnesses the transformability of ξξξ to ϖϖϖ ◦χχχ.
• fv(c) ∈ dom(h′′′) as fv(c) ⊩ϖ◦χ

v a and h′′′ tracks h.

Then fv′
(
h′(c)

)
= h′′′(fv(c)) and thus as desired b ∈ dom(h̃). Thus h̃ tracks h.

This finishes the proof that χχχ′ is a simulation and it remains to show that χχχ′ ⪯ χχχ. The
functions that witness the transformability are the f̂v ∈ E[w, χ(v)] for all v ∈ V . If a ∈ C(v)
and b ⊩χ′

v a then b ∈ dom(f̂v) by the above discussion and obviously f̂v(b) ⊩χ
v a.

It remains to show that this transformability is ϖϖϖ-cartesian. For this let another com-
putability model A over S together with simulations ααα : A_C and βββ : A→ E be given such
that

βββ ⪯ χχχ ◦ααα and ϖϖϖ ◦ βββ ⪯ϖϖϖ ◦χχχ′ ◦ααα.

and We have to show that βββ ⪯ χχχ′ ◦ ααα. Let s ∈ S be given. We know that there exist
hs ∈ E[β(s), χ(α(s))] and gs ∈ B[ϖ(β(s)), ϖ(χ′(α(s)))] witnessing these transformabilities.
and h′

s ∈ B[ϖ(β(s)), ϖ(χ(α(s)))] tracking hs through ϖϖϖ compatible. The desired js ∈
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[β(s), χ′(α(s))] witnessing the transformability is constructed as such: As ϖϖϖ ◦ χχχ′ = ξξξ our
given computable functions are arranged as follows:

E(χ′(α(s))) B(ξ(α(s)))

E(β(s)) B(ϖ(β(s)))

E(χ(α(s))) B[ϖ(χ(α(s)))

f̂α(s)

⊩ϖ
χ′(α(s))

fα(s)

hs

⊩ϖ
β(s)

h′
s

gs

⊩ϖ
χ(α(s))

Now as f̂α(s) is cartesian for χ′(α(s)) and fα(s) we obtain a k ∈ E[β(s)), χ′(α(s))] such that
if x ∈ dom(hs) and y ⊩ϖ

β(s) and y ∈ dom(fα(s) ◦ gs) ∩ dom(h′
s) then x ∈ dom(fα(s) ◦ k) and

fα(s)(k(x)) = hs(x).
It remains to show that this k witnesses the transformability. For this let s ∈ S be

given with y ∈ E(β(s)) such that y ⊩β
s x. Then y ∈ dom(hs), and as ϖϖϖ is a simulation

we find z ∈ B(ϖ(β(s))) such that z ⊩ϖ
β(s) y. Then z ∈ dom(h′

s), as y ∈ dom(hs) and

h′ tracks h, as well as z ∈ dom(gs) as z ⊩ϖ◦β
s x and gs witnesses the transformability.

Furthermore gs(y) ∈ dom(fα(s)) as fα(s) witnesses the transformability and gs(y) ⊩
β
α(s) q for

some q ∈ C(α(s)) as we know that gs(y) ⊩ϖ◦χ′◦α
s x and asϖϖϖ ◦χχχ′ = ξξξ we get that gs(y) ⊩ξ◦α

s x,
that is there exists q such that gs(y) ⊩

ξ
α(s) q and q ⊩α

s x.

Furthermore fα(s)(gs(y)) = h′
s(y), as these computable functions are compatible. Thus

x ∈ dom(k) as desired and f̂α(s)(k(x)) = hs(x). Q.e.d.



Chapter 10

The category of categories with a base of
computability

Having established our working notion of a computability model, we turn to the bases of
computability. The notion we use was introduced in [49].

Let C be a category. A base of computability B on C is a family (B(a))a∈C0 of subclasses
B(a) ⊆ Mon( - , a), such that the following conditions are satisfied:

(Base1) For each a ∈ C we have 1a ∈ B(a).

(Base2) Given a, b ∈ C and i : s → a, j : t → b such that i ∈ B(a), j ∈ B(b) and f : s → b,
we have the following: The pullback f−1(t) exists, and the diagram

f−1(t) t

a s b

j−1f

f−1j
i◦f−1j

⌟
j

i f

commutes and i ◦ f−1j ∈ B(a).

Examples 10.0.1.

1. For any category C we can consider the total base tot consisting of only identities, that
is tot(c) = {1c} for any c ∈ C .

2. On the other extreme if C has pullbacks we can consider the base prt consisting of all
monomorphisms, that is prt(c) = {f : b→ c mono }.

3. We can also for any category C consider the base I of isomorphisms, that is I(c) is the
set of all isomorphisms with codomain c. This works as for all isomorphisms i : b→ c and
arbitrary f : a→ c we have that

a b

a c

i−1◦f

1a

⌟
i

f

is a pullback square.

10.1 The category CatBaseComp

Definition 10.1.1 (Computability transformations). Suppose C and D are categories,
with bases of computability B = (B(a))a∈C and B′ = (B′(d))d∈D respectively. A computability
transformation F : (C , B)→ (D , B′) is a functor F : C → D such that we have:

(CTraf1) The functor F is pullback-preserving.

(CTraf2) For each a ∈ C we have F
(
B(a)

)
=
{
F (i) | i ∈ B(a)

}
⊆ B

(
F (a)

)
.

It is quite interesting, that a very similar notion to our notion of a base of computability
is introduced by Rosolini , which he calls dominions in [58, p. 28].

109
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“Suppose A is a given category with binary products, and M a family of monos of A
closed under identity and composition, with the property that any pullback of a monic inM
exists in A and a representative of it belongs toM. We shall call such a family a dominion.”

The only difference between our bases of computability and dominions is that we do not
require the underlying category to have binary products. The property that our structure
must be closed can be immediately derived from property (Base2): Let B be our base of
computability on the category C and i : s ↪→ a be in B(a) and j : t ↪→ s be in B(s). Then
we can consider the pullback diagram

1−1
s (t) t

s s.

j−11s

1−1
s j

⌟
j

1s

This pullback 1−1
s (t) is given by t and j−11s = j as well as 1−1

s j = 1s, so we obtain the
diagram

t t

a s s

1s

j

⌟
i◦j

j

i 1s

where i ◦ j ∈ B(a), as desired. Furthermore, an arrow that repects this structure is described
as follows in [58, p. 28]:

“If B is another category with finite products and a dominion N , a functor F : A→ B
which takes monos inM to monos in N is said to preserve dominions.”

Clearly this notion agrees with our definition of a computability transfer, albeit our
categories need not have binary products.

Definition 10.1.2 (The category CatBaseComp). Let CatBaseComp be the category whose

• objects are pairs (C , B), where C is a category and B is a base of computability on C
and whose

• morphisms F : (C , B)→ (D , B′) are computability transformations.

Evidently we have a forgetful functor Frg : CatBaseComp→ Cat, that simply “forgets”
the computability base on the category, where Cat is the large category of locally small
categories.

10.2 CatBaseComp has all PIE limits

In this section we show that CatBaseComp has all set-indexed products, as well as all equifiers
and inserters, hence it has all PIE-limits as described in [53]. Pie limits were defined in [53]
as a special kind of weighted limit for 2-categories.

Definition 10.2.1. Let C ,W be 2-categories and F : W → Cat, G : W → C be 2-functors.
An F -weighted limit of G—if it exists—is a representing object limF G of

[W ,Cat]
(
F,C

(
- , G( - )

))
,
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that is for every C ∈ C we have an isomorphism of categories

C [C, limF G] ∼= [W ,Cat]
(
F,C

(
C,G( - )

))
natural in C.

A textbook account of weighted limits can be found in [7, §6.1]. In this book weighted
limits are introduced for arbitrary categories enriched over a symmetric monoidal closed
category V . We only require this notion in the case that V = Cat.

Examples 10.2.2.

1. Products are weighted limits where W is a discrete 2-category on a set I. The weight F
maps all objects i to the terminal category 1.

2. Inserters are weighted limits where W is the 2-category given by

0 1.
f0

f1

The weight F takes 0 to the terminal 2-category 1 and 1 to the 2-category [1] with two
objects and only the non-trivial arrow 0→ 1. All 2-cells in [1] are trivial. The arrow f0 is
mapped to the functor taking 0 to 0 and the identity of 0 to the identity of 0, and the
arrow f1 is mapped to the functor taking 0 to 1 and the identity to the identity.

3. Equifiers are weighted limits where W is the 2-category given by

0 1.

f0

f1

γ1γ0

The weight F takes 0 to the terminal 2-category 1 and 1 to the 2-category [1] as above.

Power and Robinson give an explicit description of these weighted limits in elementary
terms in [53].

1. Products are simply products in the categorical sense with their universal property
together with the following 2-dimensional universal property:

Given two 1-cells (morphisms) f, g : A→
∏

i∈I Ai, the 2-cells η : f⇒ g are in one-to-one-
correspondence with families of 2-cells ηi : pri ◦f⇒ pri ◦g.

2. An inserter of a diagram

A B
f

g

in a 2-category C consists of an object I of C together with a morphism i : I → A and a
2-cell α : f ◦ i⇒ g ◦ i that is universal with this property, namely the following properties
are fulfilled:

• 1-dimensional part: For every other J with j : J → A, β : f ◦ j⇒ g ◦ j we obtain a
unique h : J → I making the obvious triangle commute.

• 2-dimensional part: For every other J, J ′ with j, β, j′, β′ as above and a 2-cell ν : j → j′

such that β′ ◦ (f • ν) = (g • ν) ◦ β, that is

f ◦ j g ◦ j

f ◦ j′ g ◦ j′

β

f•ν g•ν

β′

commutes, we obtain a 2-cell µ : h→ h′ such that i • µ = ν
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3. An equifier of a diagram

A B

f

g

γ0 γ1

in a 2-category C consists of an object I of C together with a morphism i : I → A such
that γ1 • i = γ0 • i that is universal with this property.

• 1-dimensional part: For every other J with j : J → A such that γ0 • j = γ1 • j we
obtain h : J → I such that j = i ◦ h.

• 2-dimensional part: For every other J, J ′ with j, j′ as above and ν : j⇒ j′ we obtain
µ : h→ h′ such that i • µ = ν.

Examples 10.2.3. We will exhibit inserters and equifiers in the category of categories.

1. Given two functors F,G : C → D , the inserter of F and G is given by its category
of dialgebras—introduced by Lambek in [39] as the subequalizing category of F and
G—DiAlg(F,G).

• The objects of this category are pairs (x, γ) of arrows γ : F (x)→ G(x).

• The arrows (x, γ)→ (y, δ) are given by maps f : x→ y such that

F (x) G(x)

F (y) G(y)

γ

F (f) G(f)

δ

commutes.

The functor i : DiAlg(F,G)→ C maps (x, γ) to x and f to f .

2. Given two functors F,G : C → D and two natural transformations α, β : F ⇒G the
equifier Eq(α, β) of α and β is given as the following category:

• The objects are objects c of C such that αc = βc.

• The arrows are all maps f : c→ c′ such that c, c′ are as above.

The functor i : Eq(α, β) maps c to c and f to f .

Lemma 10.2.4. If (Ci, Ci) is a family of categories with bases of computability indexed by
some set I, then the product

∏
i∈I(Ci, Ci) is given by∏

i∈I

(Ci, Ci) =
(∏

i∈I

Ci,
∏
i∈I

Ci

)
where

(∏
i∈I

Ci

)
(ci)i∈I =

∏
i∈I

Ci(ci).

Proof: It is immediate that the base contains all identities, as 1ci ∈ Ci(ci) for all ci. The
closure under composition follows similarly, and for the pullback we simply remark that
the pullback in

∏
i∈I Ci is simply product of the pullbacks in the respective Ci. That this

constitutes a product in the 2-limit sense is immediate. Q.e.d.

Lemma 10.2.5. Let (C , C), (D , D) be two categories with bases of computability and
F,G : (C , C)→ (D , D) be two computability transfers. Then the inserter of F,G is given by(
DiAlg(F,G),DiAlg(F,G;C)

)
where DiAlg(F,G) is the category of dialgebras on F,G and

DiAlg(F,G;C) is defined via

DiAlg(F,G;C)
(
α : F (c)→ G(c)

)
:=

⋃
β∈DiAlg(F,G)

{f ∈ DiAlg(F,G)(β, α)|f ∈ C(c)} .
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The computability transfer X :
(
DiAlg(F,G),DiAlg(F,G;C)

)
→ (C , C) takes α : F (c)→ G(c)

to c and F (f) to f . The natural transformation F ⇒G is the same as for the inserter in the
normal categorical setting.

Proof: It is immediate from the definition of DiAlg(F,G;C) that this is closed under
composition and identities. Hence it remains to check the pullback condition. For this let(
F (f), G(f)

)
: β → α and F (g), G(g) : γ → α be given. To compute the pullback we first

note that we obtain a pullback square

f ∗(c′′) c

c′′ c′

f∗g

g∗f
⌟

f

g

in C . As F,G are computability transfers they preserve pullbacks of arrows in C and we
thus obtain the cube

F
(
f ∗(c′′)

)
F (c)

G
(
(f ∗(c′′)

)
G(c)

F (c′′) F (c′)

G(c′′) G(c′).

ξ

F (f∗g)

F (g∗f)

β

F (f)⌟

G(f∗g)

G(f)

γ

F (g)

α

G(g)

G(g∗f)

The arrow ξ is obtained by the universal property of G
(
(f ∗(c′′)

)
applied to the arrows

G(f) ◦ β ◦ F (f ∗g) and G(g) ◦ γ ◦ F (g∗f), which are equal, as a straightforward computation
shows. The pullback of

(
F (f), G(f)

)
along

(
F (g), G(g)

)
is given by the vertical arrows on

the left face of the above cube, which are in DiAlg(F,G;C)(γ), as g∗f ∈ C(c′′).
It is immediate from the definition that X constitutes a computability transfer. To check

the universal property let another category with base of computability (E , E) together with a
computability transfer H : (E , E)→ (C , C) and a natural transformation β : F ◦H⇒G ◦H
be given. Then the functor J : E → DiAlg(F,G) takes e ∈ E to βe : F

(
H(e)

)
→ G

(
H(e)

)
and h : e→ e′ to

F
(
H(e)

)
G
(
H(e)

)
F
(
H(e′)

)
G
(
H(e′)

)
.

F (H(h))

βe

G(H(h))

βe′

It is immediate that this is the only functor such that X ◦ J = H.
The 2-dimensional aspect can be seen immediately as well. Suppose we are given two

computability transfers H,H ′ : (E , E)→ (C , C) and natural transformations β : F ◦H⇒G ◦
H, β′ : F ◦H ′ → G ◦H ′, as well as a natural transformation ξ : H → H ′ such that

F ◦H G ◦H

F ◦H ′ G ◦H ′

β

F•ξ G•ξ

β′
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commutes. Let J, J ′ be the two functors as in the 1-dimensional part of the universal
property. Then we can define γ : J → J ′ through γe := ξe. That this is constitutes a natural
transformation follows from the commutativity of

F
(
H(e)

)
G
(
H(e)

)
F
(
H ′(e)

)
G
(
H ′(e)

)
,

βe

F (ξe) G(ξe)

β′
e

which itself stems from the commutativity of the preceding square. A straightforward
computation shows I • γ = ξ, and it is immediate that γ is the only natural transformation
with this property. Q.e.d.

Lemma 10.2.6. Let F,G : (C , C)→ (D , D) be two computability transfers as in the preceding
lemma and α, β : F ⇒G be two natural transformations. Then the equifier Eq(α, β) of α and
β is given by the category Eq(α, β) whose objects are those c ∈ C such that αc = βc and
whose morphisms are all morphisms in C between those c.

The computability base on Eq(α, β) consists of all arrows in C that are in Eq(α, β), and
the computability transfer I : Eq(α, β)→ (C , C) is simply the inclusion.

Proof: It is immediate that α • I = β • I from the definition of Eq(α, β). The fact that
the base is closed under identity and composition is again immediate. To see that it is
closed under arbitrary pullbacks, let arrows f : c→ c′ and g : c′′ → c′ in Eq(α, β)—such that
f ∈ C(c′)—be given. If we compute the pullback, we have to show that g∗f : f ∗(c′′) → c′′

lies in the restricted base—that is we have to show that f ∗(c′′) ∈ Eq(α, β). For this consider
the cube

F
(
F ∗(c′′)

)
F (c)

G
(
f ∗(c′′)

)
G(c)

F (c′′) F (c′)

G(c′′) G(c′).

F (f∗g)

F (g∗f)
αF (f∗(c′′))

βG(f∗(c′′)) αc

F (f)⌟

G(f∗g)

G(f)

αc′′

F (g)

αc′

G(g)

G(g∗f)

As both αG(f∗(c′′)) and βG(f∗(c′′)) make the entirety of the cube commute, we get from the
pullback property of G

(
f ∗(c′′)

)
that they are equal.

Furthermore I is a computability transfer, as is immediate from the definition of the base
on Eq(α, β). To verify the universal property of the equifier, let another (E , E) together with
H : (E , E)→ (C , C), such that α•H = β •H, be given. Then we can define J : E → Eq(α, β)
via J(e) := H(e), J(f) = H(f). This is possible as αH(e) = βH(e) by assumption. It is
immediate that this J is a computability transfer, as H is. Furthermore H is unique, which
follows from the definition and the condition I ◦ J = H.

For the 2-dimensional aspect suppose we are given H,H ′ : (E , E)→ (C , C) as above and
γ : H⇒H ′ be given. We then define ω : J⇒ J ′—where J and J ′ are defined from H and H ′

as above, respectively—by ωe := γe. It is immediate that I • ω = γ, and that ω is the only
natural transformation with this property. Q.e.d.

Theorem 10.2.7. CatBaseComp has all limits of pie weight.
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Proof: This follows immediately from [53, Theorem 2.2], as CatBaseComp has all products,
equifiers and inserters by the preceding lemmata. Q.e.d.

Remark 10.2.8. The above theorem entails that CatBaseComp has 2-limits of many shapes,
including pseudo-pullbacks and powers. If we want to have regular equalisers, however, a
problem arises. Considering the equaliser of two computability transfers, we know that if
a computability base on the equaliser of F,G as functors exists, it must be closed under
pullbacks. Taking

f ∗(b) b

a c

i∗f

f∗i
⌟

i

f

(21)

in C , mapped into D with F,G respectively, we only obtain the diagram

G
(
f ∗(b)

)
F
(
f ∗(b)

)
F (b)

F (a) c

⌟
G(i∗f)

G(f∗i)

⌟

F (i∗f)

F (f∗i) F (i)

f

in D where both the inner and outer square are pullback squares. Thus we only obtain an
isomorphism, not an identity between G

(
f ∗(b)

)
and F

(
f ∗(b)

)
, hence this pullback does not

lie in the equaliser of F and G and thus the base would not be closed under pullbacks

To remedy this fact we would have to endow the base of computability with choices of
pullbacks, that is to require the stronger condition

(Base2
s) Given a, b ∈ C0 and i : s→ a, j : t→ b such that i ∈ C(a), j ∈ C(b) and f : s→ b,

we are given a specific choice of a pullback s×b t and the square in

s×b t t

a s b

i◦f∗j

j∗f

⌟
f∗j j

i

f

is a pullback square.

instead of just (Base2). In the following we will make the above remark precise in the
following way: not only can the equaliser in the category of locally small categories not be
endowed with a base of computability making it an equaliser in CatBaseComp, but in general
no equaliser exists.

Lemma 10.2.9. Let F,G : (C , C) → (D , D) be computability transfers. If I : (B, B) →
(C , C) is an equaliser in CatBaseComp, then for any cospan m ∈ C(c), f : c′′ → c, that is

c′′ c c′
f m

for an arbitrary object c of C , such that F (m) = G(m), F (f) = G(f), there exists a unique
cospan k, l in B with I(k) = m, I(l) = f such that k lies in the base of computability B.
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Proof: Let S be the category with objects 0, 1, 2 and non-identity arrows ≤0 : 0→ 2,≤1 : 1→
2. We define a base of computability Q on S by setting Q(0) = {10}, Q(2) = {≤0, 12}, Q(1) =
{11}. Considering a cospan m : c′ → c, f : c′′ → c in C with F (m) = G(m), F (f) = G(f), we
define the computability transfer H : (S,Q)→ (C , C) that sends ≤0 to m and ≤1 to f .

Obviously F ◦ H = G ◦ H, so we obtain a unique JH : (S,Q) → (B, B) such that
I ◦ JH = H. It is then immediate that JH(≤0) is the unique arrow k in B with I(k) = m
and JH(≤1) is the unique arrow l with I(l) = f . It is also immediate that k lies B(JH(2)),
as ≤0∈ Q(2) and JH is a computability transfer. Q.e.d.

Proposition 10.2.10. Considering the categories C ,D , generated by the graphs

0 1

2 3

f

g h

i

and

0′

0 1

2 3

t

s

k

l

f

g h

i

respectively, we can endow C with a base of computability C by setting

C(0) = {10}, C(1) = {11}, C(2) = {12, g}, C(3) = {13, h}
and D with a base of computability D by setting

C(0′) = {10′}, C(0) = {10}, C(1) = {11}, C(2) = {12, g, l}, C(3) = {13, h}.
Then the computability transfers F,G mapping 1, 2, 3 in C—and the corresponding morphisms
between them—to their counterparts in D , but

F (0) = 0, F (f) = f, F (f) = g, G(0) = 0′, G(f) = k,G(g) = l,

have no equaliser in CatBaseComp.

Proof: We begin by confirming that C,D constitute bases of computability. To this end
we first show that the only square in C is a pullback square and that both squares in D
consisting of 0, 1, 2, 3 and 0′, 1, 2, 3 are pullback squares. The first claim is immediate, as
the square commutes and the only object with arrows to both 1 and 2 is 0, so the universal
property is trivially true. For D we observe that the square 0, 1, 2, 3 commutes, and the only
object besides 0 with arrows to 1 and 2 is 0′. The square 0′, 1, 2, 3 commutes and the unique
mediating arrow is t, thus the universal property is fulfilled. An analogue argument shows
that 0′, 1, 2, 3 is a pullback square.

Thus to confirm that C is a base of computability on C it suffices to observe that g ∈ B(2),
as g is the pullback of h along i. Similarly we observe that both l and g are pullbacks of h
along i, and thus in D(2).

It is then straightforward to check that F,G are computability transfers. If there was an
equaliser I : (E , E)→ (C , C) of F,G in CatBaseComp, by the preceding Lemma we obtain

a cospan e′′ e e′k k in K that maps to the cospan 2 3 1i h and fulfils
k ∈ E(e). Then k is in the base E, so the pullback

e′∗(e′′) e′

e′′ e

l∗k

⌟
k

l

must exist. As I must be pullback-preserving we know I
(
l∗k
)
= g, but G(g) ̸= F (g), a

contradiction to (E , E) being an equaliser. Q.e.d.
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10.3 CatBaseComp and fibrations

We will show that Grothendieck fibrations can be used both to lift bases of computability
along them, and, that in restricting ourselves to fibrations, we regain some pullbacks, which
do not in general exist (as the previous section shows).

Proposition 10.3.1. Let F : E → B be a Grothendieck fibration where E has all pullbacks
and let B be a base of computability on B. Then we can define a base of computability BF

on E by setting

BF (e) = {i ∈ Mon(−, e) | i cartesian lift of j ∈ B
(
F (e)

)
}.

for every e ∈ E0.

Proof. Assume we are given E ,B, F as in the proposition. We show that BF contains
identities, is closed under composition and pullbacks.

To see that it contains all identities let e ∈ E0. We have to show that 1e is a cartesian lift
of 1F (e). If we are given g : d→ e in E and we have h : F (d)→ F (e) such that

F (d)

F (e) F (e)

F (g)
h

1F (e)

commutes, we can immediately deduce that h = F (g) and the only possible arrow making
the triangle in E commute is g itself. F (g) = h by the above. This shows the desired claim
as obviously F (1e) = 1F (e).

To show that BF is closed under composition we simply remark that the composition of
cartesian morphisms is cartesian.

To see that it is closed under pullback, let i : e′ → e in BF (e) and f : e′′ → e be given. We
can then form the pullback

f ∗(e′) e′

e′′ e

⌟

i∗f

f∗i i

f

in E . It remains to show that f ∗i is a cartesian lift of F (f ∗i). So let g : d → e′′ and
h : F (d)→ F

(
f ∗(e′)

)
be given such that

F (d)

F
(
f ∗(e′)

)
F (e′′)

h
F (g)

F (f∗i)

commutes. We can then fit this commutative triangle to our previous square (after having
applied F ) to obtain the commutative diagram

F (d) F
(
f ∗(e′)

)
F (e′)

F (e′′) F (e).

h

F (g)

F (i∗f)

F (f∗i) F (i)

F (f)
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Thus by considering F (i∗f) ◦ h and F (f) ◦ F (g) we can use that i is a cartesian lift of F (i)
to obtain a morphism p : d→ e′ such that the outer square in

d

f ∗(e′) e′

e′′ e

p

g

⌟

i∗f

f∗i i

f

commutes. But as the inner square is a pullback square we obtain a unique q : d→ f ∗(e′)
such that

d

f ∗(e′) e′

e′′ e

p

g

q

⌟

i∗f

f∗i i

f

commutes. This q is the desired map making the triangle in E commute. So f ∗i is a cartesian
lift of F (f ∗i) ∈ B

(
F (e′′)

)
and is thus in BF (e

′′) as desired. Q.e.d.

Actually the fact that i ∈ Mon(−, e) does not have to be checked, as it is automatic.

Proposition 10.3.2. Let p : E → B be a fibration. If f : b′ → b is a monomorphism, and
g : e′ → e is p-cartesian for f and e, then g is a monomorphism.

Proof. Assume we are given k, l : e′′ → e′ such that g ◦ k = g ◦ l. Then we obtain the
commutative triangles

e′′

e′ e

g◦k
?

g

and
b′′

b′ b.

f◦p(k)
p(k)

f

As both k, l for ? make the left triangle commute, we get by uniqueness—from g being
p-cartesian—that k = l. Q.e.d.

Corollary 10.3.3. If we have a pullback preserving fibration F : E → B and a base of
computability B on B as above, then the fibrationis a computability transfer with respect to
the lifted base BF .

Proof. From the definition of BF it is immediate that it maps monomorphisms in BF to
monomorphisms in B. It also preserves pullbacks by assumption, so it is a computability
transfer. Q.e.d.

Theorem 10.3.4. Let (B, B), (C , C) be categories with bases of computability, E be a cate-
gory such that p : (E , E)→ (B, B) is a fibrations, and F : (C , C)→ (B, B) be computability
transfers. Then if we are given a pullback square

p−1(C ) E

C B

p∗F

F ∗p

⌟
p

F
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of categories, we obtain that (
p−1(C ), CF ∗p

) (
E , Bp

)
(C , C) (B, B)

p∗F

F ∗p

⌟

F

is a pullback square in CatBaseComp.

Proof. We show the universal property of the pullback. If we are given another commutative
square

(G , G) (E , E)

(C , C) (B, B)

H

G p

F

we obtain—in Cat—a unique functor ⟨G,H⟩ : G → p−1(C ) making

G

C p−1(C ) E

HG ⟨G,H⟩

commute. We show that ⟨G,H⟩ is also a computability transfer. For this let i ∈ G(x) be
given. It then suffices to show that ⟨G,H⟩(i) is F ∗p-cartesian for G(i) and ⟨G,H⟩(x). If we
are given another ℓ with codomain ⟨G,H⟩(x) and k such that G(i) ◦ k = p∗F (ℓ), we can
apply F to obtain the same triangle in B, that is we have

-

- ⟨G,H⟩(x)

ℓ

⟨G,H⟩i

and

-

- G(x)

F ∗p(ℓ)
k

G(i)

and

-

- F
(
G(x)

)(G◦F ∗p)(ℓ)

F (k)

(F◦G)(i)

in p−1(C ),C and B respectively. As p is a fibration we can lift the last triangle to a triangle

-

- H(x)

p∗F (ℓ)
f

H(i)

as H is a computability transfer and thus H(i) is cartesian for F (G(i)) = p(H(i)).
Next we observe that ⟨G,H⟩i is the only arrow in p−1(C ) that is mapped to H(i) by p∗F

and to G(i) by F ∗p, as otherwise we would not have a unique fill for

C p−1(C ) E .

7→H(i)7→G(i)
?

p∗FF ∗p

A similar computation shows that ℓ is also uniquely determined by its images under p∗F, F ∗p.
So by considering [2] and the maps

-

- G(x)

F ∗p(ℓ)
k

G(i)

←[
0

1 2

7→
-

- H(x)

p∗F (ℓ)
f

H(i)
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from the pullback property we get the desired commutative triangle

-

- ⟨G,H⟩(x)

ℓ
g

⟨G,H⟩(i)

(where g is unique from the uniqueness of the pullback) showing that ⟨G,H⟩i is indeed
F ∗p-cartesian for G(i). Q.e.d.

10.4 Relation to comprehension categories

It is immediate that any category C with a base of computability C can be mapped to a
comprehension category P : E → C [1], where E has as objects all maps in C, and an arrow
from f → g in E is a cartesian square

- -

- -

f

⌟
g

in C . The functor P is then simply the inclusion of E as a subcategory of C [1]. From this
definition it is obvious that p sends an arrow f ∈ E to its codomain.

An immediately visible specialisation from general comprehension categories is that in this
case all arrows P (e) are monic, which is not always the case in an arbitrary comprehension
category, just observe that idC [1] : C [1] → C [1] is a comprehension category if C has all
pullbacks. Thus it is sensible to restrict oneself to the sub-2-category ComprCMon of all
comprehension categories where the P (e) are monic, with the same 1-maps and 2-maps.
The assignment routine described above can be extended to a 2-functor CatBaseComp →
ComprCMon in the following way:

Proposition 10.4.1. The rule (C , C) 7→ P : E → C [1] from above can be extended to a
2-functor P - via

F : (C , C)→ (D , D) 7→
EC ED

C D

F [1]

PC PD

F

and η : F ⇒G 7→ η[1].

Proof: Immediate, as obviously (G◦F )[1] = G[1] ◦F [1] from the definition of - [1], analogously
for η[1]. Q.e.d.

For the reverse direction ComprCMon → CatBaseComp we need a non-trivial construction,
as another difference between these comprehension categories arising from (categories with)
a base of computability and ordinary comprehension categories arise: In the former we can
always represent composition through an element of E , that is the following condition holds:

if P (e) can be precomposed with P (e′),

there exists an object e′′ of E such that P (e′′) = P (e) ◦ P (e′). (22)

This might seem surprising at first, as if we are given

P0(e) p(e) p(e′)
P (e) P (e′)
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it might seem that we can use some p-cartesian lift to obtain e′′, but such e′′ would need to
fulfil both P0(e

′′) = P0(e) and p(e′′) = p(e′), so if it stemmed from a lift, that lift would have
to be taken using an automorphism on p(e′),

In fact, it is possible to give an example of a comprehension category where condition
(22) fails:

Example 10.4.2. Consider the groupoid C obtained from the graph

c c′ c′′
f

f−1

g

g−1

and let E be another copy of the same groupoid. For clarity the objects of this second copy
will be called 0, 1, 2 and the arrows will simply be denoted as n 7→ m for n,m ∈ {0, 1, 2}. Let
P be the functor sending 0 to 1c, 1 to f and 2 to g. Its action on arrows generated by

(0→ 1) 7→
c c

c c′

1c

1c

f

f

and (1→ 2) 7→
c c′

c′ c′′.

f

f

g

g

as well as (1→ 0) 7→
c′ c

c c

f

f

1c

1c

and (2→ 1) 7→
c′ c

c′′ c′,

g

f−1

f

g−1

composites are simply obtained from pasting the squares. Observe that all these squares are
pullback squares, so for this to be a comprehension category only the second condition of p
being a fibration has to be checked. However, the lifts can be explicitly computed:

f−1(0) = 10, f−1 ◦ g−1(0) = (2→ 0),

f(1) = (0→ 1), g−1(1) = (1→ 0),

g(2) = (1→ 2), g−1 ◦ f−1(2) = (0→ 2)

and all identities lift to identities. To see that this comprehension category violates (22) just
observe that no object e in E exists such that P (e) = g ◦ f = P (2) ◦ P (1).

Thus to map an arbitrary comprehension category in ComprCMon to CatBaseComp we
first need to manually add objects such that (22) is fulfilled.

10.4.3 Some notation regarding lists. In the following we will

1. denote by P (E )—for P : E—the collection of all arrows P (e) where e is an object of E ,

2. denote by M+ the set of all finite lists of length ≥ 1 for an arbitrary set M ,

3. denote by ℓ⌢ ℓ′ the concatenation of ℓ, ℓ′, that is

ℓ⌢ ℓ′ = ℓ1 · · · ℓ|ℓ|ℓ′1 · · · ℓ′|ℓ′|,

4. call a list ℓ of arrows in a category E composable if

∀0≤i<|ℓ| cod(ℓi) = dom(ℓi+1) and

5. denote by ℓ◦ the arrow ℓ|ℓ| ◦ · · · ◦ ℓ1 for a list ℓ of composable arrows.
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Definition 10.4.4. For a given comprehension category P : E → B[1] in ComprCMon we
define a base of computability BP on B where

BP (b) =
{
ℓ◦ ∈ P (E )+ | ℓ composable ∧ cod(ℓ|ℓ|) = b

}
∪ {1b}.

Proposition 10.4.5. The above definition yields a well-formed base of computability for
such a P ∈ ComprCMon.

Proof: By definition BP contains all identities. To see that it is closed under composition
consider a two list ℓ ∈ BP (b) with dom(ℓ1) = a, and ℓ′ ∈ BP (a). It is then immediate that
(ℓ′⌢ℓ)◦ ∈ BP (b). For the pullback property, assume we are given ℓ◦ ∈ BP (b) and f : b′ → b.
To see that the pullback (

(ℓ)◦
)−1

(b′) b′

dom(ℓ1) b

⌟
f

ℓ◦

exists, first observe that we can find objects e1, . . . , e|ℓ| of E such that ℓi = P (ei) for all i.
Thus we start by considering the pullback

P0

(
f ∗(e|ℓ|)

)
b′

P0(e|ℓ|) b.

P (f∗(e|ℓ|))

P (f(e|ℓ|))
⌟

f

P (e|ℓ|)

Then by setting f1 := P
(
f(e|ℓ|)

)
and recursively fi+1 := P

(
fi(e|ℓ|−i)

)
we obtain the pullback

diagrams

P0(f
∗
i (e|ℓ|−i) p(f ∗

i (e|ℓ|−i)

P0(e|ℓ|−i) p(e|ℓ|−i)

P
(
f∗
i (e|ℓ|−i)

)

fi+1

⌟
fi

P (e|ℓ|−i)

Thus by pasting we obtain the diagram

P0

(
f ∗
|ℓ|−1(e1)

)
p
(
f ∗
|ℓ|−1(e1)

)
· · · P0

(
f ∗(e|ℓ|)

)
b′

P0(e1) p(e1) · · · P0(e|ℓ|) b

f|ℓ|−1

P (f∗
|ℓ|−1

(e1))

⌟ ⌟
f|ℓ|−2

P (f∗(e|ℓ|))

f1

⌟
f

P (e1) P (e|ℓ|)

where the outer rectangle is a pullback by pasting. Hence we can take our pullback to be

P0

(
f ∗
|ℓ|−1(e1)

)
b′

P0(e1) b,

f|ℓ|−1

P (f∗(e|ℓ|))◦···◦P (f∗
|ℓ|−1

(e1))

⌟
f

ℓ◦

which yields the desired arrow in BP (b
′). Q.e.d.
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Proposition 10.4.6. The assignment routing of Definition 10.4.4 can be made into a functor
by mapping each strict map (G,F ) : P → P ′ of comprehension categories to the computability
transfer F : (B, BP )→ (B′, BP ′) and a transformation (α̃, α) : (G,F )→ (G,F ) to α.

Proof: It suffices to show that F is a computability transfer, the functoriality is then
immediate. So we have to show that if ℓ◦ ∈ BP (b), then F (ℓ◦) ∈ BP ′

(
F (b)

)
. By definition

we obtain e1, . . . , e|ℓ| such that ℓ◦ = P (e|ℓ|) ◦ · · · ◦ P (e1). We compute

F (ℓ◦) = F
(
P (e|ℓ|) ◦ · · · ◦ P (e1)

)
= F

(
P (e|ℓ|

)
◦ · · · ◦ F

(
P (e1)

)
= F [1]

(
P (e|ℓ|

)
◦ · · · ◦ F [1]

(
P (e1)

)
= P ′(G(e|ℓ|)

)
◦ · · · ◦ P ′(G(e1)

)
∈ BP ′

(
F (b)

)
where we used (p′ ◦G)(e|ℓ|) = (F ◦ p)(e|ℓ| = F (b), as b = p(e|ℓ|).

For transformations of strict maps it is immediate that the resulting transformation of
functors is natural, and the functoriality of this assignment is immediate as well. Q.e.d.

Theorem 10.4.7.

10.5 CatBaseComp is a (2-fam,Σ)-category

Definition 10.5.1. CatBaseComp is a fam-category where for each (C , C) we define

fHom((C , C)) := {F : C op → Sets}.

The composition is simply the composition of the underlying functors.

Lemma 10.5.2. For any P ∈ fHom((C , C)), the projection prP1 is a computability transfer

prP1 :
(∑

C

P,CprP1

)
→ (C , C).

Proof. We only need to show that prC ,P
1 preserves pullbacks to apply corollary 10.3.3. So

suppose we are given a pullback square

f ∗(c1, x1) (c1, x1)

(c2, x2) (c3, x3).

g∗f

⌟
f∗g g

f

To see that this remains a pullback under prC ,P
1 assume we are given a commuting square

d c1

c2 c3

h1

h2 g

f

in C . As prC ,P
1 is a fibration we obtain cartesian lifts ĥ1, ĥ2 of h1, h2 respectively. We see

that ĥ1, ĥ2 have the same domain, as P maps this commuting square to the square

P (d) P (c1)

P (c2) P (c3)

P (h1)

P (h2) P (g)

P (f)
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of sets. We know that x1 = P (g)(x3), x2 = P (f)(x3) and thus a simple computation shows
that

P (h1)(x1) = P (h1)
(
P (g)(x2)

)
= P (g ◦ h1) = P (f ◦ h2)

= P (h2)
(
P (f)(x3)

)
= P (h2)(x2).

Setting y := P (h2)(x3) we get that

(d, y) (c1, x1)

(c2, x2) (c3, x3).

ĥ1

ĥ2
g

f

commutes and thus we obtain a unique q : (d, y)→ f ∗(c1, x1) rendering

(d, y)

f ∗(c1, x1) (c1, x1)

(c2, x2) (c3, x3).

q

ĥ2

ĥ1

g∗f

⌟
f∗g g

f

commutative. Thus we also know that

d

f ∗(c1) c1

c2 c3.

q

ĥ2

ĥ1

g∗f

⌟
f∗g g

f

is a commutative square in B. The uniqueness stems from the fact that prC ,P
1 is also a discrete

fibration so every other q′ making the diagram commutative would have a unique lift q̃ making
the diagram in

∑
C P commute and thus also be q. But this entails P (q) = q = q′. Q.e.d.

Theorem 10.5.3. CatBaseComp is a (fam,Σ)-category.

Proof. To see that (∑
D P ◦ F,DprP◦F

1

) (∑
C P,CprP1

)

(D , D) (C , C)

∑
P F

prP◦F
1 prP1

F

is a pullback square, we simply remark that∑
D P ◦ F

∑
C P

D C

prP◦F
1

∑
P F

prP1

F

is a pullback square in Cat, so we can apply Theorem 10.3.4. The strictness conditions are
then immediately inherited from the strictness condition in Cat. Q.e.d.
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10.6 Transporting bases of computability

Proposition 10.6.1. Let E be a category with base of computability B. If we have a
pullback-preserving functor F : E → B we obtain a base BF on B defnned through

BF (d) = {F (i) | i ∈ B(c) ∧ F (c) = d} ∪ {1d}.

Proof. The first property of a base is immediate as we have by design 1d ∈ BF (a) for all
d ∈ B. So we check the second one. For this let the morphisms i, j, f in B as in

d4

d1 d2 d3

j

i f

be given where i ∈ BF (d1) and j ∈ BF (d3). Again we distinguish two cases:

• If j = 1d3 we immediately see that f ∗1d3 = 1d3 and thus

i ◦ f ∗1d3 = i ◦ 1d3 = i ∈ BF (d1)

by defnnition of i.

• If j = F (k) for some k : c4 → c3 where k ∈ B(c4), we obtain a F -cartesian lift f ′ : c2 → c3
of f , as F (c3) = d3. We can thus compute the pullback

c3 ×c4 c2 c3

c2 c4

k∗f ′

f ′∗k k

f ′

and as F is pullback-preserving we obtain that F (c3 ×c4 c2)
∼= d3 ×d4 d2. Furthermore

F (c2) = d2 we obtain that either i is always given as h : c2 → c1 such that F (h) = i,
as in the case that i is the identity we simply have that h = 1c2 . So we can infer that
h ◦ f ′∗k ∈ B(c1) and thus F (h ◦ f ′∗k) = F (h) ◦ F (f ′∗k) ∈ BF (d1) as needed.

Q.e.d.

Lemma 10.6.2. If we are given C ,D ,E and pullback-preserving fibrations F : C → D , G : D → E
then for a computability model B on C we have that

• B1C = B,

• BG◦F = (BF )G.

Proof. The first claim is immediate from the defnnition. For the second claim we simply
observe that if i ∈ BG◦F (e) for some e ∈ E , then either i = 1a and thus i ∈ (BG)F (e) or
i = G(F (k)) for some k ∈ B(c) such that G

(
F (c)

)
= e. Then F (k) ∈ BF

(
F (c)

)
and thus

G
(
F (k)

)
= i ∈ (BF )G(e). The reverse direction is computed analogously. Q.e.d.

Definition 10.6.3. If A ,B,C are categories and F : A → B, G : C → B are functors,
then the comma-category F ↓ G has

• as object triples (a, h, c) of objects a ∈ A , c ∈ C and an arrow h : F (a)→ G(c).
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• Morphisms are pairs (f, g) : (a, h, c) → (a′, h′, c′) of morphisms f : F (a) → F (a′) and
g : G(c)→ G(c′) such that

F (a) F (a′)

G(c) G(c′)

h

f h′

g

commutes.

• The composition (i, j) ◦ (f, g) is defnned as (i ◦ f, j ◦ g).

Lemma 10.6.4. Let A ,B,C be categories and F : A → B, G : C → B be pullback-preserving
functors. Then the category F ↓ G has pullbacks.

Proof. We want to show that F ↓ G has pullbacks, for this let a cospan

(a1, h1, c1) (a2, h2, c3) (a3, h3, c3)
(f,g) (i,j)

(23)

in F ↓ G be given. By defnnition this span stems from to spans in A ,C which are transported
into B in the following manner:

a1 F (a1) G(c1) c1

a2 F (a2) G(c2) c2

a3 F (a3) G(c3) c3

A C

f F (f)

h1

G(i) i

h2

g

h3

F (g) G(j) j

B

We can take the pullbacks of both the span in A and in C , these become the pullbacks of
the two spans in B as both F and G are pullback-preserving. Our remaining goal is to show
that (a1 ×a2 a3, h̃, c1 ×c2 c3) is the desired pullback of (23). As F,G are pullback preserving
we can use them to map the pullbacks into B which yields

F (a1) G(c1)

F (a1 ×a2 a3) F (a2) G(c2) G(c1 ×c2 c3)

F (a3) G(c3)

F (f)

h1

G(i)
F (g∗f)

F (f∗g)

h2

G(i∗j)

G(j∗i)
h3

F (g) G(j)

(24)

where all squares commute. This in turn entails

G(i) ◦ h1 ◦ F (f ∗g) = h2 ◦ F (f) ◦ F (F ∗g) = h2 ◦ F (g) ◦ F (g∗f)

= G(j) ◦ h3 ◦ F (g∗f).

Thus from the universal property of pullbacks we obtain a h̃ : F (a1 ×a2 a3)→ G(c1 ×c2 c3)
such that

G(j∗i) ◦ h̃ = h3 ◦ F (f ∗g) and G(i∗j) ◦ h̃ = h1 ◦ F (g∗f). (25)
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The above also shows that

(f ∗g, j∗i) : (a1 ×a2 a3, h̃, c1 ×c2 c3)→ (a3, h3, c3)

and (g∗f, i∗j) : (a1, h1, c1)→ (a1 ×a2 a3, h̃, c1 ×c2 c3)

are morphisms in F ↓ G. It remains to show that (a1 ×a2 a3, h̃, c1 ×c2 c3) fulfills the universal
property of the pullback. So assume we are given (a′, h′, c′) ∈ (F ↓ G) together with
morphisms (n1,m1) : (a

′, h′, c′)→ (a1, h1, c1) and (n3,m3) : (a
′, h′, c′)→ (a3, h3, c3) such that

(a′, h′, c′) (a3, h3, c3)

(a1, h1, c1) (a2, h2, c2)

(n2,m2)

(n3,m3) (i,j)

(f,g)

commutes. This in turn decomposes to the respective commuting squares in A ,C , so we
can use the pullback properties of a1 ×a2 a3 and c1 ×c2 c3 to obtain arrows n′,m′ making the
diagrams

a′

a1 a1 ×a2 a3 a3

n3
n′n1

f∗g g∗f

and

c′

c1 c1 ×c2 c3 c3

m3
m′m1

i∗j j∗i

commute. Our remaining goal is to show that

F (a′) G(c′)

F (a1 ×a2 a3) G(c1 ×c2 c3)

F (n′)

h′

G(m′)

h̃

commutes. We pack all morphisms considered so far into one big diagram:

F (a′)

G(c′)

F (a1 ×a2 a3) F (a3)

G(c1 ×c2 c3) G(c3)

F (a1) F (a2)

G(c1) G(c2).

h′
F (n3)

F (n1)

F (n′)

G(m1)

G(m3)

F (g∗f)

F (f∗g)

F (g)

h3
h̃

G(m′)

G(g∗f)

G(g)

h1

F (f)

h2G(f∗g)

G(f)

In this diagram all squares commute (except the one we want to prove) as well as the triangles
of the pullbacks. This allows us to compute that

G(f) ◦G(m1) ◦ h′ = G(f) ◦G(f ∗g) ◦G(m′) ◦ h′ = G(g) ◦G(g∗f) ◦G(m′) ◦ h′
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= G(g) ◦G(m3) ◦ h′.

Thus by the pullback property we obtain an arrow ȟ : F (a′) → G(c1 ×c2 c3) such that
G(g∗f)◦ ȟ = G(m3)◦h and G(f ∗g)◦ ȟ = G(m1)◦h′. One can check that both ȟ = G(m′)◦h′

and ȟ = h̃ ◦ F (n′) fulfil these conditions, for G(m′) ◦ h′ this is immediate and for h̃ ◦ F (n′)
we compute

G(g∗f) ◦ h̃ ◦ F (n′) = h3 ◦ F (g∗f) ◦ F (n′) = h3 ◦ F (n3) = G(m3) ◦ h′

and

G(f ∗g) ◦ h̃ ◦ F (n′) = h1 ◦ F (f ∗g) ◦ F (n′) = h1 ◦ F (n1) = G(m1) ◦ h′.

By uniqueness we have the desired equality. Q.e.d.

Proposition 10.6.5. Let A ,B,C be categories and F : A → B, G : C → B be pullback-
preserving functors. Let BA, BB, BC be bases of computability on A ,B,C respectively. Then
we obtain a base of computability B↓ on F ↓ G defnned by

B↓(a, h, c) =
{
(i, j) | i ∈ BA(a)&F (i) ∈ BB(F (a))& j ∈ BC(c)&G(j) ∈ BB(F (c))

}
.

Proof. The first condition on bases of computability is immediate, as the identity on (a, h, c)
is (1a, 1c) and we can immediately see that 1a ∈ BA(a), S(1a) = 1S(a) ∈ B

(
S(a)

)
, analogously

for c. For the second condition we assume we are given objects and morphisms as in the
diagram

(a1, h1, c1)

(a2, h2, c2) (a3, h3, c3) (a4, h4, c4)

(i1,j1)

(i2,j2)

(f,g)

where we assume that (i1, j1), (i2, j2) are in the computability base B↓ and (f, g) is arbitrary.
As the comma category has pullbacks in our case by the preceding lemma we obtain the
pullback

(a1 ×a4 a3, h̃, c1 ×c4 c3) (a1, h1, c1)

(a2, h2, c2) (a3, h3, c3) (a4, h4, c4).

(f∗i1,g∗j1)

(i∗1f,j
∗
1g)

(i1,j1)

(i2,j2)

(f,g)

As (i2, j2) ◦ (f ∗i1, g
∗j1) = (i2 ◦ f ∗i1, j2 ◦ g∗j1) and both of these morphisms are in BA, BC

respectively it remains to check that F (i2 ◦ f ∗i1) ∈ BB

(
F (a2)

)
and T (j2 ◦ g∗j1) ∈ BB

(
T (c)

)
.

By defnnition of B↓ we know that F (i), F (f) ∈ BB

(
F (a4)

)
, F (i2) ∈ BB

(
F (a2)

)
. This allows

us to infer that F (f ∗i1) = F (f)∗F (i1) ∈ BB

(
F (a3)

)
as S is pullback preserving. Thus

F (f ∗i1) ◦ F (i2) = F (f ∗i1 ◦ i2) ∈ BB

(
F (a2)

)
. The same argument work for G and the second

components of the morphisms. Q.e.d.

Examples 10.6.6.

1. Given a category C with a base of computability B and if c is an object of C we can
endow the slice category C/c with a base of compitability B/ defnned by

B/(f : b→ c) = {i : a→ b | i ∈ B(b)}.

This stems from the fact that the slice category is the comma category of the span

C C 1
1C ιc

where ιc is the functor that sends the only object ∅ of 1 to c and its identity to the identity
of c.
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2. In the same way we can endow the coslice category c/C with the computability base /B

/B(f : c→ b) = {i : a→ b | i ∈ B(b)}.

This stems from the fact that the coslice category stems from the span

1 C C .
ιc 1C

3. If B is a base of computability on a category C we can equip the arrow category C →

with the base of computability B→ defnned by

B→(f : c→ d) = {(i, j) : (c′, d′)→ (c, d) | i ∈ B(c) ∧ j ∈ B(d)}.

This stems from the fact that the arrow category stems from the span

C C C .
1C 1C

Proposition 10.6.7. If D is a category with pullbacks and B is a base of computability
on D , then for any category C the functor category [C ,D ] can by equipped with a base of
computability [C , B] defnned by

[C , B](F ) =
{
η : F ′ ⇒ F | ∀c∈C ηc ∈ B

(
F (c)

)}
.

Proof. We show that [C , B] defnned in this manner constitutes a base of computability. The
first property of bases is immediate, as if F is a functor, then the identity 1F is the natural
transformation consisting of the identities 1F (c) : F (c)→ F (c) for all c. But 1F (c) is in B for
all c ∈ C as B is a base of computability, so 1F is in [C , B]. The second condition can be
computed explicitly in the same way, if we are given a functors and natural transformations
as in the diagram

F4

F1 F2 F3,

η

χ µ

where χ, η as in [C , B] and µ is arbitrary, then for each c ∈ C we obtain the situation as in

F4(c)

F1(c) F2(c) F3(c),

ηc

χc µc

which allows us to take the pullback F2(c)×F3(c) F4(c) and as B is a base of computability
we obtain that χc ◦ µ∗

cηc is in B, and thus χ ◦ µ∗η is in [C , B]. Q.e.d.

Proposition 10.6.8. If we are given two categories (C , C), (D , D) with respective bases,
then the category [C ,D ] together with the base [C , D] described above is the exponential of
(C , C), (D , D) in CatBaseComp.

Proof. We first show that if we consider the commutative triangle

[C ,E ]×D E

C ×D

eval

F
F̂×1D
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of categories and functors, where F : (C , C)× (D , D)→ (E , E) is a computability transfor-
mation, then eval and F̂ are already computability transfers

eval :
(
[C ,E ], [C , C]

)
→ (E , E), F̂ : (C , C)→

(
[C ,E ], [C , B]

)
.

First recall that (
[C ,E ], [C , C]

)
× (D , D) =

(
[C ,E ]×D , [C , C]×D

)
as defnned earlier, that is an element of [C , C]×D is a pair (η, f). So assume we are given
(η, f) ∈

(
C , C]×D

)
(G, d), that is

η : H ⇒ G, f : d′ → d.

By defnnition eval(η, f) is defnned as either composite in the commutative square

H(d′) H(d)

G(d′) G(d).

H(f)

ηd′ ηd

G(f)

By defnnition of [C , C] we have that ηd ∈ E
(
G(d)

)
and as H is a computability transfer we

obtain that ηd ◦H(f) ∈ E
(
G(d)

)
. Thus eval is a computability transfer. To see that F̂ is a

computability transfer we simply compute that if g : c→ c′ lies in C(c′), then

F̂ (g) = F (g,−) : F (c,−)⇒ F (c′,−), F̂ (g)d = F (g, d) : F (c, d)→ F (c′, d).

Q.e.d.

10.7 Bases of computability and computability models

So far we have not seen any reason why we call this structure “bases of computability”
instead of “dominions” or “stable systems of monics”. Hence it is time to start discussing
the relations between these two concepts. However for this relation to be established we
need to demand that every category is “concrete” in the way that its objects are sets and
its morphisms are maps (with additional structure). Thus from now on we will require our
categories C to come equipped with a presheaf S : C → Sets. A bit of notation beforehand

Notation: Let C be a category with pullbacks, S : C → Sets be a pullback preserving
presheaf and B be a base of computability on C . We denote by SB[c, c′] the set

SB[c, c′] = {S(i, f) | (i, f) : c ⇀ c′ ∧ i ∈ B(c)}

for all c, c′ ∈ C .

Definition 10.7.1 (Canonical computability models - [50]). Let C be a category
with a presheaf S : C → Sets and B be a base of computability on C . Then we define the
canonical computability model associated to C , S, B to be the model

CMB(C ;S) =
(
(S(c))c∈C , (S

B[c, c′])c,c′∈C

)
.

Example 10.7.2. If we take tot to be the total base on a category C , that is the case
consisting of just the identities, then CMtot(C ;S) agrees with the definition we gave earlier,
similarly CMprt(C ;S) agrees with this earlier definition.



10.7 Bases of computability and computability models 131

The above definition shows that we can associate to each category with base of com-
putability a canonical computability model. This assignment routine can be expanded into a
functor.

Proposition 10.7.3. Let (C , B) and (D , Y ) be two categories with bases of computability,
S : C → Sets and R : D → Sets be two pullback-preserving presheaves and F : (C , B) →
(D , Y ) be a computability transfer, such that the triangle

C D

Sets

F

S R

commutes. Then we obtain a simulation γγγ : CMB(C ;S) _ CMY (D ;R) defined by the
following clauses:

• The class function γ : C0 → D0 is defined by γ := F0.

• For all c ∈ C0 we define ⊩γ
c⊆ R(F (c))× S(c) in the following way:

y ⊩γ
c x :⇔ y = x.

Hence we obtain a simulation γγγ : CMB(C ;S) _ CMY (D ;R) from a computability
transfer F : (C , B) → (D , Y ) such that S = R ◦ F for pullback-preserving presheaves
S : C → Sets, R : D → Sets . Using the definitions of [PetStrict] we can see that this
simulation γγγ is an equality simulation, albeit not always a full one. So schematically we have

C CMB(C ;S)

Sets

D CMY (D ;R).

F

S

_

γγγ

=

R

⟳

Definition 10.7.4 (The category CatBasePshvid). The category CatBasePshvid is defined
through the following data:

• The objects of CatBasePshvid are triples (C , B, S), where (C , B) is a category with a base
of computability and S : C → Sets is a pullback-preserving presheaf.

• The arrows F : (C , B, S)→ (D , Y, R) are computability transfers F : C → D , such that
the triangle

C D

Sets

F

S R

commutes.

The “id” in the superscript at the end stems from the fact that this category is a special
case of a more general case which we define in 10.7.7.

Lemma 10.7.5. We have a functor CM - ( - ; - ) : CatBasePshvid → CompModEq, defined
through the following clauses: for each (C , B, S) ∈ CatBasePshvid we set

CM - ( - ; - )(C , B, S) = CMB(C ;S)
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and for F : (C , B, S) → (D , Y ), R) we define CM - ( - ; - )(F ) = γγγ, where γγγ is defined as in
lemma 10.7.3. We will write CM - (F ; - ) instead of CM - ( - ; - )(F ) for a morphism F from
(C , B, S) to (D , Y ), R)

Proof. The preservation of identities is immediate, whereas preservation of composition is a bit
more tedious to prove. So let two morphisms F : (C , B, S)→ (D , Y, R) and G : (D , Y, R)→
(E , Z, U) in CatBasePshvid be given, so we obtain the commutative diagram

C D E

Sets .

F

S

G

R
U

Let γγγ be the simulation assigned to F , δδδ be the simulation assigned to G and ϵϵϵ be the
simulation assigned to G ◦ F . Our objective is to prove ϵϵϵ = δδδ ◦ γγγ. On the level of the class
functions C0 → E0 this is immediate. The class function δ ◦ γ = G0 ◦ F0 by definition of the
composite simulation and ϵ = G0 ◦ F0 by definition of the assigned simulation. It remains to
examine the relations ⊩ϵ

c and ⊩
δ◦γ
c for c ∈ C0. We know that for x ∈ S(c) and y ∈ U(G(F (c)))

the equivalence
y ⊩ϵ

c x⇔ y = x

holds by definition. On the other hand we have the equivalence

y ⊩δ◦γ
c ⇔ ∃z : y ⊩δ

F (c) z& z ⊩γ
c x.

But if such a z ∈ R(F (c)) exists, we immediately have y = z = x, so the two relations ⊩ϵ
c

and ⊩δ◦γ
c coincide. Q.e.d.

Next we generalise CatBasePshvid by allowing more morphisms. The morphisms of this
category were computability transfers (C , B)→ (D , Y ) that respect presheaves in the sense
that

C D

Sets

F

S R

commutes. We now allow this diagram to commute only “up to” an endofunctor on Sets,
that is up to a

F
: Sets→ Sets such that the diagram

C D

Sets Sets

F

S R

F

commutes, together with a natural transformation η :
F
⇒ idSets. We assign to such a functor

F a simulation as in the following lemma.

Proposition 10.7.6. Let (C , B), (D , Y ) be categories with bases of computability, and let

S : C → Sets, R : D → Sets, F : C → D

be given where R, S are pullback-preserving functors and F is a computability transfer. Let
F
: Sets→ Sets be an endofunctor (which we shall call the mirroring morphism) such that

the diagram

C D

Sets Sets

F

S R

F
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commutes. Furthermore we demand the existence of a natural transformation η : idSets →
F
.

Then we obtain a simulation γγγF : CMB(C ;S)→ CMY (C ;R) defined by the following clauses:

• The class function γF : C0 → D0 is given by γF := F0.

• For all c ∈ C0 we define ⊩γF

c ⊆ R(F (c))× S(c) via

y ⊩γF

c x :⇔ y = ηS(a)(x).

Similar to the less general case we this rule assigning to a computability transfer a
simulation gives rise to a functor between appropriate categories. For this we define the more
general version of CatBasePshvid.

Definition 10.7.7 (The category CatBasePshv). Let CatBasePshv be the category defined
by the following data:

• The objects of CatBasePshv are the same objects as the ones of CatBasePshvid, that is
pairs (C , B, S), where (C , B) is a category with a base of computability and S : C → Sets
is a pullback-preserving presheaf.

• The arrows between two objects (C , B, S) → (D , Y, R) are given as triplets (F,
F
, η),

where

– F : (C , B)→ (D , Y ) is a computability transfer,

–
F
: Sets→ Sets is an endofunctor making the diagram

C D

Sets Sets

F

S R

F

commute and

– η : idSets →
F

is a natural transformation.

Proposition 10.7.8. We have a functor CM - ( - ; - ) : CatBasePshv → CompMod, which
takes each (C , B, S) ∈ CatBasePshv to its computability model CMB(C ;S) and(

(F,
F
, η) : (C , B, S)→ (D , Y, R)

)
7→ γF : CMB(C ;S) _ CMY (D ;R)

as defined in the lemma 10.7.6.

Proof. One can immediately see that Assign preserves identities, as the identity of (C , B, S)

is simply (idC , idSets, id), and by definition we have that γidC = (idC0 , (⊩
γidC

c )c∈C0) where

x ⊩γidC

c y ⇔ idS(c)(x) = x = y, so ⊩γidC

c is identical to the equality relation.
Suppose we have two morphisms,

(F,
F
, η) : (C , B, S)→ (D , Y ), R), (G,

G
, ρ) : (D , Y, R)→ (E , Z, U)

in the category CatBasePshv. So we have the commutative diagram

C D E

Sets Sets Sets .

F

S R

G

U

F G
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Our goal is now to show that γγγG◦F = γγγG ◦ γγγF . On the level of the class function this is
immediate, we have that in both cases the class function is given by G0 ◦ F0. So it remains
to examine the tracking relations for c ∈ C0.

Let c ∈ C0 be given. We seek to show that for all y ∈ U(G(F (c))) and x ∈ S(c) we have
the equivalence

y ⊩γG◦F

c x⇔ y ⊩γG◦γF

c x.

So we first assume that y ⊩γG◦F
c x. This means that if we define ξ to be the natural

transformation ξ : idSets ⇒ G ◦ F by setting ξc := ρF0(c) ◦ ηc, we obtain y = ξS(c)(x). So to

see that y ⊩γG◦γF

c x we only need to prove the existence of a z such that

y ⊩γG

F0(c)
z& z ⊩γF

c x.

But one can see that z := ηxc does the trick.

On the other hand, let z be given such that

y ⊩γG

F0(c)
z& z ⊩γF

c x.

Then z = ηc(x) and y = ρF0(c)(z) = ρF0(c)(ηc(x)), so y ⊩γG◦γF

c x. So the desired equivalence
has been proven and CM - ( - ; - ) : CatBasePshv→ CompMod is a functor. Q.e.d.

So we can now view the case CM - ( - ; - ) : CatBasePshvid as a special case of this more gen-
eral functor in the following way: It is immediate that we have an inclusion ι : CatBasePshvid →
CatBasePshv, so we can summarize the situation in the following commutative diagram:

CatBasePshvid CompModEq

CatBasePshv CompMod,

ι

CM - ( - ; - )

ıncl

CM - ( - ; - )

where ıncl : CompModEq→ CompMod is the obvious inclusion.

Having considered the more general case, we re our attention to the case that the category
with base of computability is the same, and only the base of computability and the presheaf
S : C → Sets vary.

Lemma 10.7.9. Let (C , B) be a category with a base of computability and S, S ′ : C → Sets
be pullback-preserving presheaves. If we are also given a natural transformation µ : S → S ′

we obtain a simulation γγγη = (idC0 , (⊩
γµ

c )c∈C0) : CMB(C ;S) _ CMB(C ;S ′), where ⊩γµ

c ⊆
S ′(c)× S(c) is defined through the equivalence(

y ⊩γµ

c x
)
:⇔
(
y = µS(c)(x)

)
.

Proof. One can immediately see that for all c ∈ C0 the relation ⊩γµ

c ⊆ S ′(c) × S(c) is
well-defined. So it remains to prove the axioms of a simulation.

(Siml1) Let c ∈ C0 be given and x ∈ S(c). Then by definition µS(c)(x) ∈ S ′(c) and
µS(c)(x) ⊩γµ

c x.

(Siml2) Let S(i, f) ∈ S[a, b] be given. We seek to show that S ′(i, f) ⊩γµ

(a,b) S(i, f). First

we observe that S ′(i, f) ∈ S ′[a, b], as i ∈ B(a) and f : dom(i) → b, otherwise
we could not have S(i, f) ∈ S[a, b]. Now to see that S ′(i, f) ⊩γµ

c S(i, f). Let
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x ∈ S(a) be given and y ∈ S ′(a) such that y ⊩γµ

c x, that means y = µS(a)(x). Then
y ∈ S ′(dom(i)) and the diagram

S
(
dom(i)

)
S(b)

S ′( dom(i)
)

S ′(b)

S(f)

µS(a) µS(b)

S′(f)

commutes. This already yields that S(f)(y) ⊩γµ

b S(f)(x). Q.e.d.

Schematically one can visualize this assignment as follows:

C CMB(C ;S)

Sets CMY (D ;R).

S S′

_

γγγµ ∗µ

Here, the “∗” denotes that the simulation γγγµ is of a special kind, a so called “natural
simulation”. This notion has been introduced in [PetStrict]. We briefly recall this definition,
but do not go further into details.

Definition 10.7.10 (Natural simulations). Let C and C′ be computability models over
the class T . A natural simulation γγγ : C _ C′ is a simulation γγγ = (idT , (⊩γ

τ )τ∈T ), such that
the following properties are met.

(NatSim1) For each τ ∈ T there exists γ∗
τ : C(τ)→ C′(τ) such that for all y ∈ C′(τ) and all

x ∈ C(τ) the equivalence
y ⊩γ

τ x⇔ y = γ∗
τ (x)

holds.

(NatSim2) For all σ, τ ∈ T and all f ∈ C[σ, τ ] there exists f ′ ∈ C′[σ, τ ] such that forall
x ∈ C(σ), such that x ∈ dom(f) holds that γ∗

σ(x) ∈ dom(f ′) and f ′(γ∗
σ(x)) =

γ∗
τ (f(x)).

If additionally the following property is fulfilled, γγγ is called a full natural simulation.

(NatSim3) For each τ ∈ T the map γ∗
τ is a surjection.

It may appear as if a natural simulations and natural transformations are “essentially
the same”, as in that each natural simulation between canonical computability models
CMB(C ;S) and CMB′

(C ′;S ′) must come from a natural transformation (and the reverse
direction is lemma 10.7.9), but this is not true. To see this, we consider the following example.

Remark 10.7.11. Consider the category given by the following diagram of objects and
arrows:

a b

f1

f2

g1

g2

q

where f1 ̸= f2 as well as g1 ̸= g2 and

f1 ◦ g1 = 1b = f1 ◦ g2 = f2 ◦ g2,
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f2 ◦ g1 = q,

q2 = 1b, g2 ◦ q = g1, g1 ◦ q = g2, q ◦ f1 = f2, q ◦ f2 = f1,

g1 ◦ f1 = g1 ◦ f2 = g2 ◦ f1 = g2 ◦ f2 = 1a.

Let the natural transformation γγγ : CMtot(C ; Hom(a, - )) _ CMtot(C ; Hom(b, - )) by given
by

γ∗
a : Hom(a, a)→ Hom(b, a),1a 7→ g1,

γ∗
b : Hom(a, b)→ Hom(b, b), f1 7→ f2 ◦ g1, f2 7→ f1 ◦ g1.

Then (γ∗
a)a∈C0 is not a natural transformation Hom(a, - )⇒ Hom(b, - ).

In the following [C , Sets]pull is the category of pullback-preserving presheaves with
codomain C . The following result follows with a straightforward use of 10.7.9:

Proposition 10.7.12. Let (C , B) be a category with a base of computability. We have a
functor CMB(C ; - ) : [C , Sets]pull → CompModNat, defined through the following clauses:

• On the level of objects we define CMB(C ; - )(S) = CMB(C ;S).

• On the level of morphisms we define CMB(C ; - )(µ : S ⇒ S ′) = γγγµ, where γγγµ is defined
as in lemma 10.7.9.

We write CMB(C ;µ) instead of CMB(C ; - )(µ).

The preceding assignment can be easily generalised. For this, we consider the case where
the category C is fixed, but the computability bases on C can vary, to be precise we consider
(C , B) and (C , B′) where B,B′ are bases of computability on C . Additionally we demand
the existence of a computability transfer F : (C , B)→ (C , B′). Then we have the situation

C C

Sets,

F

S S′

where this diagram does not commute. At last, we demand the existence of a natural trans-
formation η : S ⇒ S ′ ◦ F . Then we want to find a simulation CMB(C ;S) _ CMB′

(C ;S ′).
This can be done in the following way:

Proposition 10.7.13. Let C be a category with bases of computability B,B′ and presheaves
S, S ′ : C → Sets. For any computability transfer F : (C , B)→ (C , B′) we obtain a simulation
γγγF,η : CMB(C ;S) _ CMB′

(C ;S ′) defined through the following clauses:

• On the level of the class function we have γ := F0.

• On the level of relations we have for each c ∈ C0 the relation ⊩γF,η

c ⊆ S ′(F (c))× S(c) via
the following equivalence:

(y ⊩γF,η

c x) :⇔ (y = ηc(x)).

This assignment rule can again be packaged into a functor from a suitable category, which
is the following

Definition 10.7.14 (The category ⌊C , Sets⌋pull). The category ⌊C , Sets⌋pull is defined
through the following data:

• The objects of ⌊C , Sets⌋pull are pairs (B, S); where B is a base of computability on C
and S : C → Sets is a pullback-preserving functor.
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• A morphism (F, η) : (B, S)→ (B′, S ′) consists of a computability transfer F : (C , B)→
(C , B′) and a natural transformation η : S ⇒ S ′ ◦ F .

• The composition is defined as (G, ν) ◦ (F, µ) = (G ◦ F, (1F ⋆ ν) ◦ µ), where ⋆ signifies the
horizontal composition.

Then the asignment rule of lemma 10.7.13 is the following a functor.

Proposition 10.7.15. CM - (C ; - ) : ⌊C , Sets⌋pull → CompMod defined via the following
clauses:

• On the level of objects we define CM - (C ; - )(B, S) = CMB(C ;S).

• On the level of morphisms we define CM - (C ; - )(F, η) = γγγF,η as defined in proposition
10.7.13.

is a functor.

We can finally sum up our functors in the following diagram with the obvious inclusions:

[C , Sets]pull CompModNat

⌊C , Sets⌋pull CompMod

CMB(C ; - )

CM - (C ; - )

Together with the already established functors we obtain

CatBasePshvid CompModEq

CatBasePshv CompMod ⌊C , Sets⌋pull

CompModNat [C , Sets]pull

ι

CM - ( - ; - )

ıncl

CM - ( - ; - )

CM - (C ; - )

CMB(C ; - )
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. . . of (2-)categories

2-depC objects: 2-dep-categories (see 6.1.1)
1-maps: 2-dep-functors (see 6.1.2)
2-maps: 2-dep-natural transformations (see 6.1.3)

57

2-famC objects: 2-fam-categories (see 2.3.1)
1-maps: 2-fam functors (see 2.3.3)
2-maps 2-fam-natural transformations (see 2.3.4)

19

(2-fam,Σ)C objects: (2-fam,Σ)-categories (see 3.1.7)
1-maps: (2-fam,Σ)-functors (see 3.1.11)
2-maps: (2-fam,Σ)-natural transformations (see 3.1.12)

31

(2-fam,Σ)Cwk objects: (2-fam,Σ)-categories (see 3.1.7)
1-maps: weak (2-fam,Σ)-functors (see 3.1.11)
2-maps: (2-fam,Σ)-natural transformations (see 3.1.12)

31

ComprC objects: comprehension categories (see 3.2.1)
1-maps: pseudo-maps of comprehension categories (see 3.2.2)
2-maps: transformations of pseudo-maps (see 3.2.5

34

ComprCdisc objects: discrete comprehension categories (see 3.2.1)
1-maps: pseudo-maps of comprehension categories (see 3.2.2)
2-maps: transformations of pseudo-maps (see 3.2.5)

34

ComprCspl objects: split comprehension categories (see 3.2.1)
1-maps: split pseudo-maps of comprehension categories (see 3.2.2)
2-maps: transformations of pseudo-maps (see 3.2.5)

34

ComprCstr objects: comprehension categories (see 3.2.1)
1-maps: strict maps of comprehension categories (see 3.2.2)
2-maps: transformations of strict maps (see 3.2.5)

34

CompModeq objects: computability models (see 8.1.1)
1-maps: equality simulations (see 8.2.3)
2-maps: transformatbility of simulations (see 8.3.1)

89

CompMod objects: computability models (see 8.1.1)
1-maps: simulations (see 8.2.1)
2-maps: transformatbility of simulations (see 8.3.1)

89

CompModnat objects: computability models (see 8.1.1)
1-maps: natural simulations (see 8.2.5)
2-maps: transformatbility of simulations (see 8.3.1)

89

139
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ComprCMon objects: Comprehension categories with all P (e) monic
1-maps: same as in ComprC
2-maps: same as in ComprC

120

depC objects: dep-categores (see 4.1.1)
1-maps: dep-functors (see 4.1.8
2-maps: dep-natural transformations (see 4.1.8)

46

(dep,Σ)C objects: (dep,Σ)-categories (see 5.1.1
1-maps: (dep,Σ)-functors (see 5.1.2)
2-maps: (dep,Σ)-natural transformations (see 5.1.4)

53

dFib objects: discrete fibrations (see 2.2.1)
1-maps: pseudo-maps of discrete fibrations (see 2.2.2)
2-maps: transformations of pseudo-maps (see 2.2.2)

16

famC objects: categories with family arrows (see 2.1.1)
1-maps: family functors (see 2.1.4)
2-maps: fam-natural transformations (see 2.1.4)

15

(fam,Σ)C objects: (fam,Σ)-categories (see 3.1.1)
1-maps: (fam,Σ)-functors (see 3.1.4)
2-maps: (fam,Σ)-natural transformations

30

Fib objects: Grothendieck fibrations (see 2.4.1)
1-maps: maps of Grothendieck fibrations (see 2.4.5)
2-maps: transformations of pseudo-maps (see 2.4.10)

23

Fibspl objects: split fibrations (see 2.4.7)
1-maps: maps of split fibrations (see 2.4.9)
2-maps: transformations of (split) maps (see 2.4.10)

23

HComprCdisc objects: Higher discrete comprehension categories (see 5.2.2)
1-maps: Pseudo-maps (see 5.2.3)
2-maps: Transformations of pseudo-maps (see 5.2.3)

54

HComprCstr
disc objects: Higher discrete comprehension categories (see 5.2.2)

1-maps: strict maps (see 5.2.3)
2-maps: Transformations of strict maps (see 5.2.3)

54

sas objects: sas-towers (see 6.2.9)
1-maps: sas-maps (see 6.2.14)
2-maps: transformations of sas-maps (see 6.2.17)

65

. . . of binary symbols

(#1)⌢ (#2) If both (#1), (#2) are lists ℓ1, ℓ2 ∈M+, the concatenated list

ℓ1⌢ℓ2 = ℓ11 · · · ℓ1|ℓ1|ℓ21 · · · ℓ2|ℓ2|.

121
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. . . of unary symbols
(#1)◦ if (#1) is a list ℓ of composable arrows, the composition ℓ|ℓ| ◦ · · · ◦ ℓ1 121
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Martin-Löf, Per, 1
Mirroring morphism, 132
Morphism

mirroring, 132

natural transformation
2-dep- , see 2-dep-natural transforma-

tion

opfibration
discrete, see discrete opfibration

Opfibration-simulation, 103
split, 104

p-prone part
of a morphism, 68

Petrakis, Iosif, 2, 13, 27, 29, 41, 50
Pitts, Andrew, 2, 13, 41–43
Problem

lifting, see Lifting problem
Pseudo-map

of comprehension categories, 32
split, see Split pseudo-map

Refinement, 87
Restriction category, 84
Restriction map, 84
Riehl, Emily, 57
Rosolini, Giuseppe, 2, 109
Russell, Bertrand, 1, 15

Sad-tower
map, 63

Sas-tower, 60
Sattler, Christian, 56
Scott, Philip, 1
Simulation, 80

equality, 81
Split pseudo-map

of comprehension categories, 32
Split strict map

of comprehension categories, 32, see split
strict map

Splitting, 22, see Fibration-simulation, split
Strict map

of comprehension categories, 32

Taylor, Paul, 1, 68
Tower

sas- , see Sas-tower
Transformability, 85

ϖϖϖ-cartesian, 105
true vertical

of a morphism, 68
Type names, 79



Preliminary draft

Typeset using the memoir class↰

https://www.ctan.org/pkg/memoir

Illustrations created using TikZ & pgf↰
https://www.ctan.org/pkg/pgf

Diagrams created using TikZ-cd↰

https://www.ctan.org/pkg/tikz-cd

compiled with pdfLATEX
03.01.2026, 16:20

https://www.ctan.org/pkg/memoir
https://www.ctan.org/pkg/pgf
https://www.ctan.org/pkg/tikz-cd


Eidesstattliche Versicherung
nach der Promotionsordnung vom 12.07.2011, §8, Absatz 2, Punkt 5

Hiermit versichere ich an Eides statt, dass die vorliegende Arbeit von mir selbstständig ohne
unerlaubte Beihilfe angefertigt wurde.

München, den .....................

........................................................Gambarte, Luis Antonio ........................................................
⟨Name, Vorname Doktorand⟩ ⟨Unterschrift Doktorand⟩


	Acknowledgements
	1 Introduction
	Organisation of this thesis
	Contributions

	Preliminaries
	a (2-)categorical prerequisites
	a.1 Notation for categorical notions
	a.2 Notions of fibrations

	b Type theories with dependent types
	b.1 Dependent types out of contexts
	b.2 Dependent types as function types


	I Equivalences between categories with dependent arrows and comprehension categories
	2 (2-)fam-categories and fibrations
	2.1 Categories with family arrows
	2.2 Discrete fibrations
	2.3 2-fam-categories
	2.4 Grothendieck fibrations

	3 -objects and comprehension categories
	3.1 -objects in (2-)fam-categories
	3.2 Comprehension categories

	4 Dependent arrows in fam-categories
	4.1 dep-categories
	4.2 Iterated discrete fibrations

	5 (dep,)-categories and higher comprehension categories
	5.1 (dep,)-categories
	5.2 Higher discrete comprehension categories

	6 2-dep-arrows and discrete ambifibrations
	6.1 2-dep-categories
	6.2 Ambifibrations and factorisation systems

	7 (2-dep,)-categories and higher comprehension categories
	7.1 (2-dep,)-categories
	7.2 Higher comprehension categories
	7.3 A comparison with generalised categories with families


	II Computability models induced by categories
	8 Computability models
	8.1 Computability models
	8.2 Simulations
	8.3 Transformability
	8.4 The category of assemblies

	9 The category of computability models and simulations
	9.1 `3́9`42`"̇613A``45`47`"603ACompMod is finitely complete
	9.2 `3́9`42`"̇613A``45`47`"603ACompMod has pushouts
	9.3 `3́9`42`"̇613A``45`47`"603ACompMod is not regular
	9.4 The Grothendieck computability model
	9.5 Fibration-simulations and opfibration-simulations

	10 The category of categories with a base of computability
	10.1 The category `3́9`42`"̇613A``45`47`"603ACatBaseComp
	10.2 `3́9`42`"̇613A``45`47`"603ACatBaseComp has all PIE limits
	10.3 `3́9`42`"̇613A``45`47`"603ACatBaseComp and fibrations
	10.4 Relation to comprehension categories
	10.5 `3́9`42`"̇613A``45`47`"603ACatBaseComp is a (2-fam,)-category
	10.6 Transporting bases of computability
	10.7 Bases of computability and computability models


	Backmatter
	Glossary ...
	... of (2-)categories
	... of binary symbols
	... of unary symbols

	Bibliography
	Index


