
SOBOLEV INEQUALITIES AND UNCERTAINTY PRINCIPLES
IN MATHEMATICAL PHYSICS. PART I

RUPERT L. FRANK

Abstract. This is a first draft of lecture notes for a course given at the LMU

Munich in July 2011.

1. Sobolev inequalities and uncertainty principles

1.1. Example: Stability of the hydrogen atom. We consider a single particle of

mass 1/2 moving in three-dimensional space in the presence of a potential V .

We recall that in classical mechanics the state of such a system (at a given time) is

described by a point (p, x) ∈ R3×R3, where x denotes the particle position and p the

particle momentum. The energy, which is conserved under the time evolution, is

H(p, x) = p2 + V (x) .

In quantum mechanics a state is described by a function ψ ∈ L2(R3), a wave func-

tion, with ∫
R3

|ψ(x)|2 dx = 1 . (1.1)

In view of this normalization requirement, the function |ψ|2 can be interpreted as the

probability density of the position of the particle. On the other hand, by (1.1) and

Plancherel’s theorem we know that the Fourier transform of ψ,

ψ̂(p) = (2π)−3/2

∫
R3

e−ip·xψ(x) dx , (1.2)

satisfies a similar normalization condition∫
R3

|ψ̂(p)|2 dp = 1 . (1.3)

That is, |ψ̂|2 has the interpretation of the probability density of the momentum of the

particle. The energy of the system in the state ψ is

h[ψ] =

∫
R3

p2|ψ̂(p)|2 dp+

∫
R3

V (x)|ψ(x)|2 dx =

∫
R3

(
|∇ψ(x)|2 + V (x)|ψ(x)|2

)
dx .

Again, under certain weak assumptions on V one can construct a time evolution under

which this energy is constant. In this lectures, however, we will not consider the time

evolution, but we consider the stationary problem of minimizing the energy.
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Despite a certain formal correspondence between the definitions in the classical and

in the quantum case there are fundamental differences. Probably the most important

one is the uncertainty principle. It is instructive to study the effect of this principle in

the simple example of a single electron interacting with a fixed nucleus via attractive

Coulomb forces. The classical energy of this system is

HCoulomb(p, x) = p2 − κ|x|−1 ,

where the parameter κ > 0 (with the dimension of 1/length) contains all physical

constants. We observe that H(p, x), considered as a function on R3×R3, is unbounded

from below. There is no minimal energy state! By making |x| small (considering an

electron close to the nucleus) and preventing |p| from being too large, we can make

H(p, x) arbitrarily negative.

This is not true in quantum mechanics! The reason for this is the uncertainty

principle which roughly states that |p| and |x| cannot be simultaneously small. So

when |x| we try to make |x| small, as before, we have to make |p| large. While this is

intuitively correct, the question of what exactly ‘small’ and ‘large’ here means leads

to non-trivial mathematics, and this is the content of this course.

We now give to arguments of why the quantum mechanical energy

hCoulomb[ψ] =

∫
R3

(
|∇ψ(x)|2 − κ|x|−1|ψ(x)|2

)
dx .

is bounded from below. Certainly, at this point the knowing reader will remember

that the quantum-mechanical hydrogen problem can be solved explicitly. (... did

this already in ..., several years before the advent of quantum mechanics.) Pauli,

Jan. 1926 Our point here is that only very few Schrödinger eigenvalue problems can

be solved explicitly. Screening effects, for instance, lead to physical situations with

effective potentials, for which the eigenvalues are typically not known in closed form.

On the other hand, the comparison with the known result in the Coulomb case give a

natural measure of how good our methods are.

Here is the first mathematical formulation of the uncertainty principle.

Theorem 1.1 (Hardy inequality). For any ψ ∈ Ḣ1(R3) one has∫
R3

|∇ψ|2 dx ≥ 1

4

∫
R3

|ψ|2

|x|2
dx . (1.4)

The inequality is strict for every ψ 6≡ 0, but the constant 1
4

cannot be replaced by a

smaller constant.

This inequality says that if ψ is localized close to a point, e.g., x = 0, (i.e., the right

side is large), then its momentum has to be large (i.e., the left side is large). We also

note that a stronger singularity |x|−2 can be controlled by the kinetic energy than the

|x|−1 singularity which arises in our Coulomb problem. The power |x|−2 is, of course,

dictated by the dimensionality of the gradient on the left side. Indeed, if an inequality

of the form
∫
|∇ψ|2 dx ≥ C

∫
|x|α|ψ|2 dx holds with a constant independent of ψ,
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then a simple scaling argument (i.e., replacing ψ(x) by ψ(λx)) shows that necessarily

α = −2.

Hardy’s inequality (1.4) should be compared with the better known Heisenberg’s

uncertainty principle,(∫
R3

|∇ψ|2 dx
)1/2(∫

R3

x2|ψ|2 dx
)1/2

≥ 3

2

∫
R3

|ψ|2 dx .

This inequality says that, if
∫
|∇ψ|2 dx is not too big, then

∫
x2|ψ|2 dx is not too small.

This is not too useful in practice, however. The value
∫
x2|ψ|2 dx can very well be

large and, at the same time, ψ can be sharply localized close to the origin, as long as

there is an additional bump of ψ very far out. In contrast, Hardy’s inequality says

that, if
∫
|∇ψ|2 dx is not too big, then

∫
|x|−2|ψ|2 dx is not too big either, and this

excludes ψ being sharply localized near the origin. This is what we need to prove the

quantum-mechanical energy of hydrogen is finite.

Remark 1.2. As an aside, note that the Heisenberg inequality follows (with a non-sharp

constant) from the Hardy inequality via Jensen’s inequality.

We shall prove Hardy’s and Heisenberg’s inequalities in the following subsection.

Accepting them for the moment, we shall use the former to prove that the quantum

mechanical energy of the hydrogen problem is finite. Indeed, (1.4) implies that

hCoulomb[ψ] =

∫
R3

(
1

4
|x|−2 − κ|x|−1

)
|ψ(x)|2 dx ,

and therefore, putting ρ = |ψ|2,

inf
‖ψ‖=1

hCoulomb[ψ] ≥ inf{
∫
R3

(
1

4
|x|−2 − κ|x|−1

)
ρ(x) dx : ρ ≥ 0 ,

∫
R3

ρ(x) dx = 1} .

The minimization problem on the right side can easily be solved and leads to the lower

bound −κ2. (The density ρ wants to be supported only on the sphere |x| = (2κ)−1.)

The second formulation of the uncertainty principle, from which we will be able to

deduce a lower bound on hCoulomb[ψ], is Sobolev’s inequality. In contrast to Hardy’s

inequality, which is a linear inequality, in the sense that it involves the square of ψ

on both sides, Sobolev’s inequality is a non-linear inequality, where ψ appears with a

higher power on the left than on the right side. This makes it, intuitively, a stronger

inequality; (see, however, the discussion in Remark 5.8.)

Theorem 1.3 (Sobolev inequality). For any ψ ∈ Ḣ1(R3) one has∫
R3

|∇ψ|2 dx ≥ S3

(∫
R3

|ψ|6 dx
)1/3

(1.5)

with S3 = 3(π/2)4/3. Equality holds iff u(x) = c h(b(x − a)) for some a ∈ R3, b > 0

and c ∈ C, where

h(x) = (1 + x2)−1/2 .
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The complete proof of this theorem will be one of the main results of the first part

of this course. A simple proof, with a non-optimal constant, however, will be given in

Theorem 1.12. The complete result is in Theorem 4.1.

The non-linearity |ψ|6 in Sobolev’s inequality is dictated by scaling reasons in the

same way as the function |x|−2 is in Hardy’s inequality. That is, replacing ψ(x) by

ψ(λx) we see that an inequality of the form
∫
|∇ψ|2 dx ≥ C

(∫
|ψ|q dx

)2/q
can only

hold for q = 6 in N = 3.

Using Sobolev’s inequality (1.5) we arrive at the minimization problem

inf{hCoulomb[ψ] : ‖ψ‖ = 1} ≥ inf{S3

(∫
R3

ρ(x) dx

)1/3

−κ
∫
R3

|x|−1ρ(x) dx : ρ ≥ 0 ,

∫
R3

ρ(x) dx = 1} .

It is an easy exercise to compute the infimum on the right side. (No gradients are

involved anymore!) The optimal density is of the form ρ(x) = C(|x|−1 − Aκ)1/2 if

|x| < (Aκ)−1 and ρ(x) = 0 if if |x| ≥ (Aκ)−1 with two constants C and A. Eliminating

C via the constaint
∫
ρ dx = 1, optimizing in A and recalling the precise value of S3

from Theorem 1.3 we arrive at

inf{S3

(∫
R3

ρ(x) dx

)1/3

− κ
∫
R3

|x|−1ρ(x) dx : ρ ≥ 0 ,

∫
R3

ρ(x) dx = 1} = −1

3
κ2 .

This is remarkably close to the true answer

inf{hCoulomb[ψ] : ‖ψ‖ = 1} = −1

4
κ2 .

1.2. Hardy inequalities. We now explain how to prove Theorem 1.1 and its gener-

alization to higher dimensions.

Theorem 1.4 (Hardy’s inequality). Let N ≥ 3. Then for all u ∈ Ḣ1(RN)∫
RN
|∇u|2 dx ≥

(
N − 2

2

)2 ∫
RN

|u|2

|x|2
dx . (1.6)

The inequality is strict for every u 6≡ 0, but the constant ((N − 2)/2)2 cannot be

replaced by a smaller constant.

Lemma 1.5. Let ω be a positive function satisfying −∆ω + V ω ≥ 0 in Ω. Then for

all u ∈ C1
0(Ω) ∫

RN

(
|∇u|2 + V |u|2

)
dx ≥

∫
RN
|∇(ω−1u)|2ω2 dx .

Equality holds when −∆ω + V ω = 0.

Proof. We use the ground state substitution u = ωv and compute

|∇u|2 = |ω∇v + v∇ω|2 = ω2|∇v|2 +∇|v|2 · ω∇ω + |v|2|∇v|2 .
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Integrating this over RN yields∫
RN
|∇u|2 dx =

∫
RN

(
ω2|∇v|2 − |v|2 div(ω∇ω) + |v|2|∇v|2

)
dx

=

∫
RN

(
ω2|∇v|2 − |v|2ω(∆ω)

)
dx

≥
∫
RN

(
ω2|∇v|2 − V |v|2ωω

)
dx .

This is the claimed inequality. �

Proof of Theorem 1.4. A simple computation shows that ω(x) = |x|−(N−2)/2 satisfies

−∆ω+ V ω = 0 for V (x) = −((N − 2)/2)2|x|−2 in Ω = RN \ {0}. Theorem 1.4 follows

since C∞0 (Ω) is dense in Ḣ1(RN). The optimality claim is left as an exercise to the

reader. �

Examples 1.6. Here are a few further applications of Lemma 1.5.

(1) Heisenberg uncertainty principle. For ω(x) = e−αx
2/2 and V (x) = α2x2 − αN

we obtain ∫
RN

(
|∇u|2 + α2x2|u|2

)
dx ≥ αN

∫
RN
|u|2 dx

with equality iff u is proportional to ω. Optimizing in α, we find(∫
RN
|∇u|2 dx

)1/2(∫
RN
|x|2|u|2 dx

)1/2

≥ N

2

∫
RN
|u|2 dx .

(2) Hydrogen uncertainty principle. For N ≥ 2, ω(x) = e−α|x| and V (x) = −α(N−
1)|x|−1 + α2 we obtain∫

RN

(
|∇u|2 − α(N − 1)

|x|
|u|2
)
dx ≥ −α2

∫
RN
|u|2 dx

with equality iff u is proportional to ω. Optimizing in α, we find(∫
RN
|∇u|2 dx

)1/2(∫
RN
|u|2 dx

)1/2

≥ N − 1

2

∫
RN

|u|2

|x|
dx .

(3) Linearized Sobolev inequality. For N ≥ 3, ω(x) = (1 + x2)−(N−2)/2 and V (x) =

−N(N − 2)(1 + x2)−2 we obtain∫
RN
|∇u|2 dx ≥ N(N − 2)

∫
RN

|u|2

(1 + x2)2
dx

with equality iff u is proportional to ω. This inequality will prove useful in

Section 4 below.

Exercise 1.7. half-line inequality

Exercise 1.8. half-space inequality
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1.3. Sobolev inequalities. The proof of Sobolev’s inequality, even with non-sharp

constant, is substantially more difficult than that of Hardy’s inequality. Below we

follow the proof due to Gagliardo and Nirenberg which goes via the quantity
∫
|∇u| dx

instead of the quantity
∫
|∇u|2 dx.

Theorem 1.9 (Isoperimetric inequality). Let N ≥ 2. Then there is a constant CN > 0

such that for all u ∈ Ẇ 1(RN)∫
RN
|∇u| dx ≥ CN

(∫
RN
|u|N/(N−1) dx

)(N−1)/N

. (1.7)

The constant CN that our proof gives is not sharp. Essentially, we obtain the sharp

constant in Theorem 5.10. The reason why we call (1.7) an isoperimetric inequality will

be explained in Exercise 1.14. For bibliographical remarks we refer to the discussion

of Theorem 5.10.

The Gagliardo–Nirenberg argument of Theorem 1.9 relies on two lemmas. The first

one is a one-dimensional analogue of the inequality we want to establish. The second

one gives a method of how to pass from smaller to higher dimensions.

Lemma 1.10 (Easiest Sobolev inequality). If u ∈ Ẇ 1(R), then
∫
R |u

′| dx ≥ 2 supx∈R |u(x)|.
Equality holds iff there is a constant a ∈ R such that u is non-decreasing on (−∞, a)

and non-increasing on (a,∞).

Proof. Write u(x) = 1
2

(∫ x
−∞ u

′(y) dy −
∫∞
x
u′(y) dy

)
. �

In the statement of the next lemma, we shall use the following notation for x ∈ RN

and 1 ≤ j ≤ N ,

x̃j = (x1, . . . , xj−1, xj+1, . . . , xN) ∈ RN−1 .

Then one has

Lemma 1.11 (Loomis–Whitney inequality). Let N ≥ 2 and let f1, . . . , fN ∈ LN−1(RN−1).

Then the function f(x) := f1(x̃1) · · · fN(x̃N) belongs to L1(RN) and

‖f‖L1(RN ) ≤
N∏
j=1

‖fj‖LN−1(RN−1) .

Proof. Note that this is an equality for N = 2. The main idea behind the proof is

most clearly seen for N = 3, which we assume henceforth. We have∫
R3

|f(x)| dx =

∫∫
R×R

f1(x1, x2)I(x1, x2) dx1 dx2 ,

where

I(x1, x2) =

∫
R
f2(x1, x3)f3(x1, x2) dx3 .

By the Schwarz inequality, I(x1, x2) ≤
√
g2(x1)

√
g3(x2), where

g2(x1) =

∫
R
f2(x1, x3)2 dx3 and g3(x2) =

∫
R
f3(x1, x2)2 dx3 .
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Thus, again by Schwarz,∫
R3

|f(x)| dx ≤
∫
R
dx1

√
g2(x1)

(∫
R
f1(x1, x2)2 dx2

)1/2(∫
R
g3(x2) dx2

)1/2

= ‖f3‖2

∫
R
dx1

√
g2(x1)

√
g1(x1) ,

where g1 is defined similarly as g2 and g3. Applying Schwarz once again, we arrive at

the claimed inequality for N = 3. The case N ≥ 4 is proved similarly. �

Proof of Theorem 1.9. By Lemma 1.10 we have

|u(x)| ≤ 1

2

∫
R
|∂1u(y1, x2, . . . , xN)| dy1 = g1(x̃1) .

Defining g2, . . ., gN similarly with respect to the other coordinate directions and

multiplying the inequalities we find that

|u(x)|N ≤ g1(x̃1) · · · gN(x̃N) ,

which is the same as

|u(x)|N/(N−1) ≤ g1(x̃1)1/(N−1) · · · gN(x̃N)1/(N−1) .

Applying Lemma 1.11 with fj = g
1/(N−1)
j we infer that∫

RN
|u(x)|N/(N−1) dx ≤

N∏
j=1

‖g1/(N−1)
j ‖LN−1(RN−1) =

N∏
j=1

‖gj‖1/(N−1)

L1(RN−1)
.

The arithmetric-geometric mean inequality,(
N∏
j=1

aj

)1/N

≤ 1

N

N∑
j=1

aj

for aj ≥ 0, implies that(∫
RN
|u(x)|N/(N−1) dx

)(N−1)/N

≤ 1

N

N∑
j=1

‖gj‖L1(RN−1) =
1

2N

N∑
j=1

∫
RN
|∂ju| dx .

Estimating the `1-norm of the gradient in CN in terms of its `2-norm, we obtain the

claimed inequality. �

Corollary 1.12. Let 2 ≤ q ≤ ∞ if N = 1, 2 and let 2 ≤ q ≤ 2N/(N − 2) if N ≥ 3.

Then there is a constant SN,q > 0 such that for every u ∈ H1(RN) one has(∫
RN
|∇u|2 dx

)θ (∫
RN
|u|2 dx

)1−θ

≥ SN,q

(∫
RN
|u|q dx

)2/q

, (1.8)

where N/q = θ(N − 2)/2 + (1− θ)N/2.



8 RUPERT L. FRANK

Of course, the equation determining θ comes from scaling.

An important special case of (1.8) is, for N ≥ 3,∫
RN
|∇u|2 dx ≥ SN

(∫
RN
|u|2N/(N−2) dx

)(N−2)/N

.

(Here and in the following we write SN = SN,2N/(N−2) in the special case q = 2N/(N−
2).) This proves Theorem 1.3, except for the value of the constant S3 and the char-

acterization of optimizers. This inequality, which was stated for functions in the in-

homogeneous Sobolev space H1(RN) extends by continuity to the homogeneous space

Ḣ1(RN).

Proof. We first note that by Hölder’s inequality, if (1.8) holds for some q, it holds for

all smaller values of q ≥ 2. Hence it suffices to derive (1.8) only for large values of q,

and this is what we do in the following.

Case N ≥ 3 and q = 2N/(N − 2). For the proof we recall that if u ∈ Ẇ 1
1,loc and

α ≥ 1, then |u|α ∈ Ẇ 1
1,loc and |∇|u|α| = α|u|α−1|∇u| in the sense of distributions; see,

e.g., [LiLo, Thm. 6.17] for a similar argument. Hence, applying Theorem 1.9 with

|u|α in place of u, we obtain(∫
RN
|u|αN/(N−1) dx

)N/(N−1)

≤ αC−1
N

∫
RN
|u|α−1|∇u| dx

≤ αC−1
N

(∫
RN
|∇u|2 dx

)1/2(∫
RN
|u|2(α−1) dx

)1/2

.

Choosing α = (N−1)2/(N−2) yields (1.8) if we note that αN/(N−1) = 2N/(N−2) =

2(α− 1).

Case N = 2 and q ≥ 4. We use the same argument as before, but this time we

choose α = q/2 depending on q and obtain(∫
R2

|u|q dx
)2

≤ 2

q C2

(∫
R2

|∇u|2 dx
)1/2(∫

R2

|u|q−2 dx

)1/2

.

Since q ≥ 4, the term
∫
|u|q−2 dx can be estimated by Hölder in terms of

∫
|u|q dx and∫

|u|2 dx. This yields the desired inequality.

Case N = 1 and q =∞. We prefer to record this separately as Corollary 1.13, since

in this case we actually obtain the sharp constant.

According to the remark made at the beginning of the proof that large q is enough,

the proof of Corollary 1.12 is complete. �

Here is the announced sharp inequality in the one-dimensional case.

Corollary 1.13. Let N = 1 and q =∞. Then(∫
R
|u′|2 dx

)1/2(∫
R
|u|2 dx

)1/2

≥ sup
x∈R
|u(x)|2 ,
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with equality iff u(x) = c h(b(x − a)) for some a ∈ R, b > 0 and c ∈ C, where

h(x) = e−|x|.

Proof. The proof uses the same strategy as that of Corollary 1.12, except that we use

Lemma 1.10 instead of Theorem 1.9. Namely, we apply the inequality of Lemma 1.10

to u2 instead of u and use the Schwarz inequality for
∫
|u||u′| dx. We note that this

Schwarz inequality is an equality iff |u| and |u′| are proportional. The only functions

which satisfy this, together with the condition of Lemma 1.10 are the exponentials

stated in Theorem 1.13. �

The same argument as in Corollaries 1.12 and 1.13 yields Sobolev inequalities in

W 1
p (RN) as well. Namely, if p ≤ q ≤ Np/(N − p) for p < N and if p ≤ q < ∞ for

p ≥ N there is a constant SN,p,q > 0 such that for every u ∈ W 1
p (RN) one has(∫

RN
|∇u|p dx

)θ (∫
RN
|u|p dx

)1−θ

≥ SN,p,q

(∫
RN
|u|q dx

)p/q
,

where N/q = θ(N − p)/p+ (1− θ)N/p.

Exercise 1.14. Here is the reason why we call (1.7) an isoperimetric inequality.

(1) Deduce from Theorem 1.9 that for any sufficiently smooth domain Ω ⊂ RN

one has

|∂Ω| ≥ CN |Ω|(N−1)/N (1.9)

with the same constant CN as in (1.7). (Here |∂Ω| stands for the (N − 1)-

dimensional surface measure of ∂Ω, whereas |Ω| stands for the N -dimensional

volume measure. For the proof, take u to be an approximation to the charac-

teristic function of Ω.

(2) Denote by Ω∗ the ball in RN , centered at the origin, with the same volume as

Ω. Deduce that

|∂Ω| ≥ CNN
−(N−1)/N |SN−1|−1/N |∂Ω∗| .

This is an isoperimetric inequality, which says that the boundary of any set

cannot be much smaller (in a controlled way) than that of the ball with the

same volume. Actually, in Theorem 5.10 we shall see that balls have the

smallest boundary.

(3) Conversely, inequality (1.9) implies inequality (1.7). Deduce by accepting the

co-area formula ∫
RN
|∇u| dx =

∫ ∞
0

|{|u| = τ}| dτ ,

where |{|u| = τ}| denotes the (N −1)-dimensional surface measure of the level

set {|u| = τ}. The proof of this formula (in particular, for Sobolev functions)

is rather involved; see Reference
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2. An isoperimetric problem for the ground state energy of

Schrödinger operators

In this section we consider the following ‘isoperimetric’ problem: How negative can

the lowest eigenvalue of a Schrödinger operator −∆ + V be given an Lp-norm of the

potential? Can it be arbitrarily negative or are there p for which there is a universal

lower bound? If it exists, are there ‘optimal’ potentials? Are they unique?

To make this problem more precise, we define

λ1(−∆ + V ) = inf
u

∫
RN (|∇u|2 + V |u|2) dx∫

RN |u|2 dx

and

L
(1)
γ,N := sup

V

λ1(−∆ + V )γ−∫
RN V

γ+N/2
− dx

(2.1)

Hence the problems mentioned at the beginning of this section can be rephrased as

follows: For which values of γ is L
(1)
γ,N finite? If it is, for which V is the supremum

attained?

Dilation invariance; V 7→ b2V (bx)

The isoperimetric problem for Schrödinger eigenvalues goes back to Keller [Ke], who

gave an explicit solution in one-dimension. (The case p = 1 in N = 1 is an even older

result.) We will discuss Keller’s theorem and its extension to higher dimensions. A key

ingredient will be a link between this problem and the problem of the sharp constant

in the Sobolev interpolation inequalities from Corollary 1.12.

2.1. Duality for lowest eigenvalues of Schrödinger operators. The main result

of this section is an equivalent formulation of the problem of computing L
(1)
γ,N in terms

of Sobolev interpolation inequalities. We define

SN,q := inf
u

(∫
RN |∇u|

2 dx
)θ (∫

RN |u|
2 dx

)1−θ(∫
RN |u|q dx

)2/q
, θ =

N

2

(
1− 2

q

)
. (2.2)

Proposition 2.1 (Duality). Let γ and q be related by

1

γ +N/2
+

2

q
= 1 .

We assume that γ ≥ 1/2 if N = 1 and γ > 0 if N ≥ 2, that is, we assume that

2 < q ≤ ∞ if N = 1 and 2 < q < 2N/(N − 2) if N ≥ 2. Then problems (2.1) and

(2.2) are dual in the sense that(
L

(1)
γ,N

)1/(γ+N/2)

SN,q = θθ(1− θ)1−θ ,

where θ is given in (2.2) or, alternatively, θ = (N/2)/(γ +N/2). Moreover, u attains

the infimum in (2.2) iff V = −α|u|q−2 attains the supremum in (2.1).
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Proof. By definition of L
(1)
γ,N one has for every u ∈ H1(RN)∫

RN

(
|∇u|2 + V |u|2

)
dx ≥ −

(
L

(1)
γ,N

∫
RN
V
γ+N/2
− dx

)1/γ ∫
RN
|u|2 dx

We now assume that γ and q are related as in the statement of the theorem, i.e.,

(γ +N/2)(q − 2) = q, and choose for given u the function V = −α|u|q−2. Optimizing

the resulting inequality over α > 0 we find(∫
RN
|∇u|2 dx

)θ (∫
RN
|u|2 dx

)1−θ

≥
(
L

(1)
γ,N

)−1/(γ+N/2)

θθ(1− θ)1−θ
(∫

RN
|u|q dx

)2/q

.

By the definition of SN,q, this implies

SN,q ≥
(
L

(1)
γ,N

)−1/(γ+N/2)

θθ(1− θ)1−θ .

Conversely, by Hölder’s inequality (with 1/(γ+N/2)+2/q = 1) and by the definition

of SN,q we can bound for every u ∈ H1(RN) with
∫
|u|2 dx = 1∫

RN
V |u|2 dx ≥ −

(∫
RN
V
γ+N/2
− dx

)1/(γ+N/2)(∫
RN
|u|q dx

)2/q

≥ −S−1
N,q

(∫
RN
V
γ+N/2
− dx

)1/(γ+N/2)(∫
RN
|∇u|2 dx

)θ
.

Thus ∫
RN

(
|∇u|2 + V |u|2

)
dx ≥ T − S−1

N,q

(∫
RN
V
γ+N/2
− dx

)1/(γ+N/2)

T θ

with T =
∫
|∇u|2 dx. Minimizing the right side over all T we obtain the∫

RN

(
|∇u|2 + V |u|2

)
dx ≥ −θθ/(1−θ)(1− θ)S−1/(1−θ)

N,q

(∫
RN
V
γ+N/2
− dx

)1/(1−θ)(γ+N/2)

.

By the definition of L
(1)
γ,N , this implies that(

L
(1)
γ,N

)1/γ

≤ θθ/(1−θ)(1− θ)S−1/(1−θ)
N,q .

�

Exercise 2.2. Use Exercise insert! and a similar argument as in the previous proof

to show that L
(1)
γ,N = ∞ if 0 < γ < 1/2 and N = 1. Similar question in higher

dimensions

We next discuss the limiting case γ = 0 of Theorem 2.1. We define

L
(1)
0,N := sup

V : λ1(−∆+V )≥0

1∫
RN V

N/2
− dx

(2.3)
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In other words, L
(1)
γ,N is the smallest constant such that

∫
RN V

N/2
− dx ≤

(
L

(1)
0,N

)−1

implies that −∆ + V ≥ 0. Following the same argument as in the proof of Theorem

2.1 we find a duality principle with the critical Sobolev inequality,

SN := inf
u

∫
RN |∇u|

2 dx(∫
RN |u|2N/(N−2) dx

)(N−2)/N
. (2.4)

Theorem 2.3 (Absence of eigenvalues). For N ≥ 3 the problems (2.3) and (2.4) are

dual in the sense that (
L

(1)
0,N

)2/N

SN = 1 .

Moreover, u attains the infimum in (2.2) iff V = −α|u|4/(N−2) attains the supremum

in (2.1).

2.2. Sharp constants in the one-dimensional case. As we shall see now, in one

dimension the isoperimetric problem discussed at the beginning of this section can be

solved explicitly.

Theorem 2.4. Let N = 1 and γ ≥ 1/2. Then

λ1(−∆ + V )γ− ≤ L
(1)
γ,1

∫
R
V
γ+1/2
− dx

where L
(1)
1/2,1 = 1/2 for γ = 1/2 and

L
(1)
γ,1 =

1√
π

(γ − 1
2
)γ−

1
2

(γ + 1
2
)γ+

1
2

Γ(γ + 1)

Γ(γ + 1
2
)

for γ > 1/2. The inequality is strict for γ = 1/2, but the constant cannot be decreased.

For γ > 1/2 equality holds iff V (x) = b2w(b(x− a)) for some a ∈ R and b > 0 where

w(x) = −(γ2 − 1
4
) cosh−2 x .

Remark about δ functions; reference to Spruch and Keller

In view of the duality established in Proposition 2.1, this theorem is equivalent to

computing the sharp value of the constant S1,q. For q = ∞ (which corresponds to

γ = 1/2) this has already been done in Corollary 1.13. The following proposition

settles the case q <∞ (which corresponds to γ > 1/2).

Proposition 2.5. Let N = 1 and 2 < q <∞. Then(∫
R
|u′|2 dx

)θ (∫
R
|u|2 dx

)1−θ

≥ S1,q

(∫
R
|u|q dx

)2/q

, θ =
1

2

(
1− 2

q

)
,

where

S1,q = θθ(1− θ)1−θ q

22/q(q − 2)(q−2)/q

(√
π Γ( q

q−2
)

Γ( q
q−2

+ 1
2
)

)(q−2)/q
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with equality iff u(x) = ch(b(x− a)) for some a ∈ R, b > 0 and c ∈ C, where

h(x) = cosh−2/(q−2) x .

Proof. We consider the minimization problem

Iq := inf
u

(∫
R |u

′|2 dx
)θ (∫

R |u|
2 dx

)1−θ(∫
R |u|q dx

)2/q
.

According to Corollary 1.12 this defines a strictly positive number.

Step 1. The infimum Iq is attained. This can be shown by some compactness

arguments. (The one-dimensional case is actually simpler than the multi-dimensional

case that we will study in detail below.) Moreover, since replacing u by |u| does not

decrease the quotient involved in the definition of Iq, we may henceforth assume that

the infimum is attained by a non-negative function u. The Euler-Lagrange equation

for u reads

−u′′ − λuq−1 = −µu (2.5)

and one easily shows that both Lagrange multipliers λ and µ are positive. Hence,

after a scaling and after multiplication by a positive constant, we can assume that

λ = µ = 1.

Step 2. We shall show that the only non-negative and non-zero solution in H1(R)

of (2.5) with µ = ν = 1 is given by

u(x) =
(q

2

)1/(q−2)

cosh−2/(q−2)

(
q − 2

2
(x− a)

)
(2.6)

for some a ∈ R. Once this is proved, the value of the constant follows by a straight-

forward (but tedious) computation, using the fact that∫
R

cosh−α x dx =
√
π

Γ(α/2)

Γ((α + 1)/2)
.

To prove (2.6), we multiply the equation by u′ and find the first integral

−1

2
(u′)2 − 1

q
uq = −1

2
u2 + C

for some constant C. Since u ∈ H1(R), we have lim|x|→∞ u(x) = 0 and we deduce

from the previous formula that lim|x|→∞(u′(x))2 exists and is given by −C. From this

we conclude that C = 0 and consequently

u′ = ±
√
u2 − 2

q
uq .

(When solving the quadratic equation for u′ a sign ambiguity arises. This ambi-

guity will disappear later in the proof.) This is a equation with separate variables

which, in principle, can be solved in terms of an anti-derivative of (u2 − 2
q
uq)−1/2.

We proceed somewhat differently and introduce, following, e.g., [Fa], the function
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v(u) =
√

1− 2
q
uq−2. The equation becomes u′ = ±uv. On the other hand, we com-

pute
dv

du
= −q − 2

q

uq−3

v
= −q − 2

2

1− v2

uv
and obtain

dv

dx
=
dv

du

du

dx
= ∓q − 2

2
(1− v2) .

Recalling that (1 − v2)−1 has anti-derivative arctanh we can integrate this equation

and find that

x− a = ∓ 2

q − 2
arctanh v ,

that is,

tanh

(
∓q − 2

2
(x− a)

)
= v =

√
1− 2

q
uq−2 .

Since tanh is odd, we conclude that

1− cosh−2

(
q − 2

2
(x− a)

)
= tanh2

(
q − 2

2
(x− a)

)
= 1− 2

q
uq−2 ,

which is what we claimed in (2.6). �

The proof of Proposition 2.5 shows, in particular, that the Euler–Lagrange equation

(2.5) has a unique (up to translations) positive solution in H1(R). This can be proved

in greater generality.

Proposition 2.6. Let f be a Lipschitz continuous function on R with f(0) = 0 and

assume that for F (z) =
∫ z

0
f(s) ds the infimum

ζ0 := inf{ζ > 0 : F (ζ) = 0}

is attained and satisfies ζ0 > 0 and f(ζ0) > 0. Then the problem

−u′′ = f(u) , lim
|x|→∞

u(x) = 0 , u(x0) > 0 for some x0 ∈ R ,

has a unique solution up to translations. This solution is (after a translation) a posi-

tive, even and decreasing (wrt |x|) function with u(0) = ζ0.

This result is stated in [BeLi]. This paper also shows that the above conditions on

ζ0 are not only necessary, but also sufficient.

2.3. The multi-dimensional case. Here we state the multi-dimensional analogue

of Theorem 2.4.

Theorem 2.7. Let N ≥ 2 and γ > 0. Then there is a negative, radial and increasing

function w such that the supremum

L
(1)
γ,N = sup

V

λ1(−∆ + V )γ−∫
RN V

γ+N/2
− dx

is attained iff V (x) = b2w(b(x− a)) for some a ∈ RN and b > 0.



SOBOLEV INEQUALITIES AND UNCERTAINTY PRINCIPLES — July 30, 2011 15

In contrast to the one-dimensional case, the explicit values of the constants are not

known. It is remarkable that one can nevertheless prove uniqueness (up to the natural

symmetries of the problem).

A complete proof of this result is beyond the scope of these lectures. We only

sketch the main steps in the argument. By the duality argument of Proposition 2.1

the theorem follows from

Proposition 2.8. Let N ≥ 2 and 2 < q < 2N/(N − 2). Then there is a positive,

radial and decreasing function h such that the infimum

SN,q = inf
u

(∫
RN |∇u|

2 dx
)θ (∫

RN |u|
2 dx

)1−θ(∫
RN |u|q dx

)2/q
, θ =

N

2

(
1− 2

q

)
.

is attained iff u(x) = c h(b(x− a)) for some a ∈ RN and b > 0.

The proof of this proposition consists in three major steps.

Step 1. Existence of a minimizer. This is relatively standard. In the following

section we will prove the existence of a minimizer for a minimization problem in

Ḣ1(RN). The case here of a problem in H1(RN) is simpler.

Step 2. Any minimizer is radial. This follows from the method of moving planes.

This method goes back to Alexandrov and Serrin and was further developed and pop-

ularized by Gidas-Ni-Nirenberg. Note that the result does not follow by Schwarz

symmetrization for
∫
|∇u|2 dx (see Proposition 5.4), since there is no strict rearrange-

ment inequality.

Step 3. Uniqueness of radial solutions. This is a non-trivial result of Kwong (build-

ing upon previous works of Insert); see also Tao’s book for an exposition of the

proof. We emphasis that the non-linear ODE, which arises as Euler-Lagrange equa-

tion,

−u′′ − (N − 1)r−1u′ − uq−1 = −u on (0,∞) ,

is non-autonomous because of the first order term. This makes the uniqueness proof

considerably harder than that in the one-dimensional case, where one deals with the

autonomous equation 2.5.

3. A refined Sobolev inequality and its consequences

Our goal is to prove that the variational problem corresponding to the Sobolev

inequality

SN = inf
u∈Ḣ1(RN )

∫
RN |∇u|

2 dx(∫
RN |u|q dx

)N−2
N

admits a minimizer. Throughout this section we will assume that N ≥ 3 and that

q = 2N/(N − 2).

History, concentration compactness, symmetrization

Proof of Talenti gives existence + sharp constant; existence relies on

explicit solution of 1D problem
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3.1. A refined Sobolev inequality. We shall deduce the existence of a minimizer

for the Sobolev inequality and a form of the concentration compactness principle from

a refinement of the Sobolev inequality. In order to state this, we introduce the operator

et∆ as the integral operator on RN with integral kernel t−N/2G((x − y)/
√
t), where

G(y) = (4π)−N/2e−y
2/4, i.e.,(
et∆u

)
(x) =

∫
RN
t−N/2G((x− y)/

√
t)u(y) dy . (3.1)

This notation is consistent with the functional calculus from spectral theory, but the

only fact we need in the following is the alternative representation

êt∆u(p) = e−tp
2

û(p) , (3.2)

where û is the Fourier transform of u, see (1.2). This follows by computing the Fourier

transform of G. We are now ready to state the main result of this subsection.

Theorem 3.1 (Refined Sobolev inequality). Let N ≥ 3. Then there is a constant

CN > 0 such that for all u ∈ Ḣ1(RN)(∫
RN
|u|

2N
N−2 dx

)N−2
2N

≤ CN

(∫
RN
|∇u|2 dx

)N−2
2N
(

sup
t>0

t(N−2)/4‖et∆u‖∞
) 2

N

. (3.3)

In other words, (3.3) says that the Sobolev inequality holds with a right side which

is a certain interpolation between the usual term
∫
|∇u|2 dx and a term I[u] =

supt>0 t
(N−2)/4‖et∆u‖∞. We note that both terms behave in the same way under a

rescaling of u; they have the same dimension lengthN−2.

Inequality (3.3) is a refinement of the Sobolev inequality, since I ≤ cN‖u‖2N/(N−2).

Indeed, by Hölder’s inequality

‖et∆u‖∞ ≤ (4πt)−
N
2

(∫
RN
e−2Nx2/(N+2)4t dx

)N+2
2N

‖u‖2N/(N−2) = cN t
−N−2

4 ‖u‖2N/(N−2) .

The space of tempered distributions u for which I[u] < ∞ is the Besov space

B
−(N−2)/2
∞,∞ and I[u] is a norm in this space. However, we will not need the theory of

Besov spaces in the following.

Inequality (3.3) appears in [GeMeOr]. Our proof below follows [Le2]. Lp norms

Proof. We abbreviate q = 2N/(N − 2) and, by homogeneity, we assume that I[u] ≤ 1,

i.e., |et∆u(x)| ≤ t−(N−2)/4 for all x and t > 0. In this way the assertion becomes∫
RN
|u|q dx ≤ Cq

N

∫
RN
|∇u|2 dx . (3.4)

For the proof of this, we recall that

|u(x)|q =

∫ ∞
0

χ{|u(x)|q>λ} dλ = q

∫ ∞
0

χ{|u(x)|>τ} τ
q−1 dτ
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(‘the layer cake representation’) and therefore∫
RN
|u|q dx = q

∫ ∞
0

|{|u| > τ}| τ q−1 dτ .

Now we decompose u = (u− et∆u) + et∆u for some t > 0 to be chosen below and note

that

|{|u| > τ}| ≤ |{|u− et∆u| > τ/2}|+ |{|et∆u| > τ/2}| .
In particular, if we pick t = tτ depending on τ in such a way that τ/2 = t−(N−2)/4,

then by our normalization condition

|{|et∆u| > τ/2}| = 0 ,

and hence ∫
RN
|u|q dx ≤ q

∫ ∞
0

|{|u− etτ∆u| > τ/2}| τ q−1 dτ . (3.5)

The idea now is to use the (non-sharp) inequality

‖v − et∆v‖2 ≤ t‖∇v‖2 (3.6)

for any v ∈ Ḣ1(RN). This easily follows in Fourier space from (3.2) and the bound

(1− e−x)2 ≤ 1− e−x ≤ x for all x ≥ 0, applied to x = tp2.

We now explain a direct application of (3.6) to (3.5), which, however, is not good

enough to yield (3.4). The correct argument will be a slight refinement of this idea

and will be presented below. The direct way is to use Chebyshev and (3.6) to get

|{|u− etτ∆u| > τ/2}| ≤ (τ/2)−2

∫
Rd
|u− etτ∆u|2 dx

≤ (τ/2)−2(τ/2)−4/(N−2)

∫
Rd
|∇u|2 dx = (τ/2)−q

∫
Rd
|∇u|2 dx .

Inserting this back into (3.5) we obtain∫
RN
|u|q dx ≤ q2q

∫ ∞
0

τ−1 dτ

∫
Rd
|∇u|2 dx ,

which, unfortunately, is infinite! The τ -integral diverges only logarithmically, however,

which gives some hope. . .

The argument can be saved by applying (3.6) not directly to u, but to an ap-

proximation to u. This approximation will be chosen in a τ dependent way in or-

der to make the logarithmic divergence disappear. Before giving a precise formula

for the approximation uτ we note that, in any case, the decomposition u − et∆u =

(uτ − et∆uτ )− et∆(u− uτ ) + (u− uτ ) leads to

|{|u− etτ∆u| > τ
2
}| ≤ |{|uτ − etτ∆uτ | > τ

4
}|+ |{|et∆(u− uτ )| > τ

8
}|+ |{|u− uτ | > τ

8
}| .

(3.7)

We begin by treating the first term and show that a clever choice of uτ makes the

argument above work.
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We fix a constant c ≥ 1/16 and define for every τ > 0 a function uτ on RN by

uτ (x) =



(c− 1
16

)τ if u(x) > cτ ,

u(x)− τ
16

if cτ ≥ u(x) ≥ τ
16
,

0 if τ
16
> u(x) > − τ

16
,

u(x) + τ
16

if − τ
16
≥ u(x) ≥ −cτ ,

−(c− 1
16

)τ if u(x) < −cτ .

We note that uτ ∈ Ḣ1(RN) with∫
RN
|∇uτ |2 dx =

∫
τ/16≤|u|≤cτ

|∇u|2 dx .

Applying (3.6) to uτ we obtain, as before,

|{|uτ − etτ∆uτ | > τ
4
}| ≤ (τ/4)−2

∫
Rd
|uτ − etτ∆uτ |2 dx ≤ 4(τ/2)−q

∫
τ/16≤|u|≤cτ

|∇u|2 dx .

The key observation now is that∫ ∞
0

|{|uτ − etτ∆uτ | > τ
4
}| τ q−1 dτ ≤ 2q+2

∫
RN

dx |∇u|2
∫ 16|u|

|u|/c

dτ

τ

= 2q+2 log(16c)

∫
RN

dx |∇u|2 ,

which, indeed, is finite.

Finally, it remains to control the error we made by replacing u by uτ , that is, we

need to bound the last two terms in (3.7). For that purpose, we estimate

|uτ − u| = |uτ − u| χ{|u|≤cτ} + |uτ − u| χ{|u|>cτ} ≤
τ

16
+ |u| χ{|u|>cτ} , (3.8)

which again by Chebyshev leads to

|{|u− uτ | > τ
8
}| ≤ |{|u| χ{|u|>cτ} > τ

16
}| ≤ (τ/16)−1

∫
RN
|u| χ{|u|>cτ} dx .

Similarly, since the heat kernel is positive and has integral one, we deduce from (3.8)

that

|et∆uτ − et∆u| ≤ et∆|uτ − u| ≤
τ

16
+ et∆(|u| χ{|u|>cτ}) ,

and therefore

|{|et∆u− et∆uτ | > τ
8
}| ≤ |{et∆(|u| χ{|u|>cτ}) > τ

16
}| ≤ (τ/16)−1

∫
Rd
et∆(|u| χ{|u|>cτ}) dx

= (τ/16)−1

∫
Rd
|u| χ{|u|>cτ} dx .
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We conclude that∫ ∞
0

(
|{|et∆(u− uτ )| > τ

8
}|+ |{|u− uτ | > τ

8
}|
)
τ q−1 dτ ≤ 32

∫
RN
dx |u|

∫ |u|/c
0

dτ τ q−2

=
32

q − 1
c−q+1

∫
RN
dx |u|q .

To summarize, we have shown that

1

q

∫
RN
|u|q dx ≤ 2q+2 log(16c)

∫
RN

dx |∇u|2 +
32

q − 1
c−q+1

∫
RN
dx |u|q .

Choosing c sufficiently large, we arrive at (3.4). �

3.2. Existence of optimizers.

Corollary 3.2. Let N ≥ 3 and let (uj) be a bounded sequence in Ḣ1(RN). Then one

of the following alternatives occurs.

(1) (uj) converges to zero in L2N/(N−2)(RN).

(2) There is a subsequence (ujm) and sequences (am) ⊂ RN and (bm) ⊂ (0,∞)

such that

vm(x) := b(N−2)/2
m ujm(bm(x− am))

converges weakly in Ḣ1(RN) to a function v 6≡ 0. Moreover, (vm) converges

a.e. and in Lq,loc(RN), q < 2N/(N − 2), to v.

Proof. Assume that (1) does not hold, i.e., ‖uj‖2N/(N−2) ≥ ε > 0 for all sufficiently

large j. Hence by the refined Sobolev inequality (3.3) and by the fact that ‖∇uj‖ ≤ A

for all j, we have (
sup
t>0

t(N−2)/4‖et∆uj‖∞
) 2

N

≥ C−1
N A−

N−2
2N ε .

Hence there are tj > 0 and xj ∈ RN such that wj(y) := t
(N−2)/4
j uj(

√
tjy + xj) satisfies∣∣∣∣∫

RN
G(y)wj(y) dy

∣∣∣∣ = t
(N−2)/4
j

∣∣∣∣∫
RN
t
−N/2
j G((x− xj)/

√
tj)uj(x) dx

∣∣∣∣
= t

(N−2)/4
j |et∆uj(xj)| ≥

1

2
C
−N

2
N A−

N−2
4 ε

where G(y) = (4π)−N/2e−y
2/4. Since ‖∇wj‖ = ‖∇uj‖ ≤ A, the Banach–Alaoglu

theorem implies that wj has a weakly convergent subsequence in Ḣ1(RN). Since

G ∈
(
Ḣ1(RN)

)∗
, the dual of Ḣ1(RN), we conclude that the limit w is not identically

zero. This proves the first part of (ii). The remaining assertions follow from the

Rellich–Kondrachov theorem, see, e.g., [LiLo, Thms. 8.6 and 8.7]. �

Recall that Fatou’s lemma states that the pointwise limit f of a sequence of non-

negative functions (fj) satisfies

lim inf
j→∞

∫
fj dx ≥ inf f dx .
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Here, in general, one cannot expect equality. The next lemma, however, provides the

‘missing term’ in Fatou’s lemma.

Lemma 3.3 (Brezis–Lieb lemma). Let (X, dx) be a measure space and let (fj) be a

bounded sequence in Lp(X), 0 < p <∞, which converges pointwise a.e. to a function

f . Then

lim
j→∞

∫
X

||fj|p − |fj − f |p − |f |p| dx = 0 .

Proof. We write fj = f + gj with gj → 0 pointwise a.e. and estimate∫
||fj|p − |fj − f |p − |f |p| dx ≤ ε

∫
|gj|p dx+

∫
Gj dx

with

Gj = (||f + gj|p − |gj|p − |f |p| − ε|gj|p)+ .

We shall prove that (gj) is uniformly bounded in Lp and that
∫
Gj dx → 0 for every

ε > 0. Since ε > 0 can be taken arbitrarily small, this implies the assertion.

Since ‖fj‖p ≤ C we have ‖f‖p ≤ C, and therefore∫
|gj|p dx ≤

∫
|fj − f |p dx ≤ 2p

∫
(|fj|p + |f |p) dx ≤ 2p+1C ,

as claimed. In order to prove the claim about Gj we first note that for any ε > 0 (and

p > 0) there is a Cε such that for all numbers a, b ∈ C

||a+ b|p − |b|p| ≤ ε|b|p + Cε|a|p .

This implies that∣∣|f + gj|p − |gj|p − |f |p
∣∣ ≤ ∣∣|f + gj|p − |gj|p

∣∣+ |f |p ≤ ε|gj|p + (1 + Cε)|f |p ,

and hence Gj ≤ (1 +Cε)|f |p. Since gj → 0 a.e. one has Gj → 0 a.e. as well, and since

|f |p is integrable, dominated convergence implies that
∫
Gj dx → 0. This completes

the proof. �

Theorem 3.4. Let N ≥ 3. Then the infimum

SN = inf

∫
RN |∇u|

2 dx(∫
RN |u|

2N
N−2 dx

)N−2
N

is attained.

Proof. Let (uj) be a minimizing sequence, which we can assume to be normalized in

L2N/(N−2)(RN). Then (uj) is bounded in Ḣ1(RN) and from Lemma 3.2 we infer that,

after a translation and a dilation if necessary, (uj) converges weakly in Ḣ1(RN) and

a.e. to a u 6≡ 0. The weak convergence in Ḣ1(RN) implies that∫
RN
|∇uj|2 dx =

∫
RN
|∇(uj − u)|2 dx+

∫
RN
|∇u|2 dx+ o(1)
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and the a.e. convergence together with the Brezis–Lieb lemma 3.3 implies that

1 =

∫
RN
|uj|

2N
N−2 dx =

∫
RN
|uj − u|

2N
N−2 dx+

∫
RN
|u|

2N
N−2 dx+ o(1) .

As a consequence,

1 =

(∫
RN
|uj|

2N
N−2 dx

)N−2
N

≤
(∫

RN
|uj − u|

2N
N−2 dx

)N−2
N

+

(∫
RN
|u|

2N
N−2 dx

)N−2
N

+ o(1) .

Thus

SN + o(1) =

∫
RN
|∇uj|2 dx

≥
∫
RN |∇(uj − u)|2 dx+

∫
RN |∇u|

2 dx+ o(1)(∫
RN |uj − u|

2N
N−2 dx

)N−2
N

+
(∫

RN |u|
2N
N−2 dx

)N−2
N

+ o(1)

≥
SN

(∫
RN |uj − u|

2N
N−2 dx

)N−2
N

+
∫
RN |∇u|

2 dx+ o(1)(∫
RN |uj − u|

2N
N−2 dx

)N−2
N

+
(∫

RN |u|
2N
N−2 dx

)N−2
N

+ o(1)

,

which is the same as

SN + o(1) ≥
∫
RN |∇u|

2 dx+ o(1)(∫
RN |u|

2N
N−2 dx

)N−2
N

+ o(1)

This means that u is a minimizer. �

The above argument shows also that
∫
RN |uj−u|

2N
N−2 dx→ 0, that is, any minimizing

sequence has a subsequence which converges in L2N/(N−2)(RN) after an appropriate

translation and dilation.

3.3. Bubble decomposition in Ḣ1(RN).

Theorem 3.5 (Bubble decomposition). Let N ≥ 3 and let (uj) be a bounded sequence

in Ḣ1(RN). Then for any k ∈ N there is a function φk ∈ Ḣ1(RN), a sequence

(akj ) ⊂ RN and a sequence (λkj ) ∈ (0,∞) such that, along a subsequence, one has

uj(x) =
K∑
k=1

(
λkj
)−N−2

2 φk((x− akj )/λkj ) + rKj (x) for any K ∈ N ,

where, for q = 2N/(N − 2),

lim sup
K→∞

lim sup
j→∞

‖rKj ‖q = 0 , (3.9)

sup
K

lim sup
j→∞

∣∣∣∣∣‖∇uj‖2 −
K∑
k=1

‖∇φk‖2 − ‖∇rKj ‖2

∣∣∣∣∣ = 0 , (3.10)
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lim sup
K→∞

lim sup
j→∞

∣∣∣∣∣‖uj‖qq −
K∑
k=1

‖φk‖qq

∣∣∣∣∣ = 0 , (3.11)

lim inf
j→∞

(
|akj − ak

′
j |2

λkjλ
k′
j

+
λkj
λk
′
j

+
λk
′
j

λkj

)
=∞ for all k 6= k′ , (3.12)

(
λkj
)N−2

2 rKj (λkj · −akj ) ⇀ 0 in Ḣ1(RN) for all 1 ≤ k ≤ K . (3.13)

We emphasize that there may be only finitely many non-zero φk.

The heart of the proof of Theorem 3.5 is the following

Lemma 3.6. Let N ≥ 3 and let (uj) be a sequence in Ḣ1(RN) with

lim
j→∞
‖∇uj‖ = A and lim inf

j→∞
‖uj‖q ≥ ε > 0 .

Then there is a 0 6≡ φ ∈ Ḣ1(RN) and sequences (aj) ⊂ RN and (λj) ⊂ (0,∞) such

that, along a subsequence, with q = 2N/(N − 2)

(λj)
N−2

2 uj(λj · −aj) ⇀ φ in Ḣ1(RN) , (3.14)

lim
j→∞

(
‖∇uj‖2 − ‖∇(uj − (λj)

−N−2
2 φ((· − aj)/λj))‖2

)
= ‖∇φ‖2 ≥ const A2(ε/A)d

2/4 ,

(3.15)

lim sup
j→∞

‖uj − (λj)
−N−2

2 φ((· − aj)/λj)‖qq ≤ ε2N/(N−2)
(
1− const (ε/A)d(d+2)/2

)
. (3.16)

Proof. Since the argument is rather similar to that of Corollary 3.2 and Theorem 3.4

we only sketch the main steps. First of all, by passing to a subsequence, we may

assume that limj→∞ ‖uj‖q = ε. (This will only be important in ... below.) Then, as

in the proof of Corollary 3.2,

lim inf
j→∞

(
sup
t>0

t(N−2)/4‖et∆uj‖∞
) 2

N

≥ C−1
N A−

N−2
2N ε

and therefore there are tj > 0 and xj ∈ RN such that wj(y) := t
(N−2)/4
j uj(

√
tjy + xj)

satisfies ∣∣∣∣∫
RN
G(y)wj(y) dy

∣∣∣∣ ≥ 1

2
C
−N

2
N A−

N−2
4 ε

where G(y) = (4π)−N/2e−y
2/4. Since G ∈ Lq′(RN) the weak limit in Ḣ1(RN) of a

subsequence of the (wj) satisfies ‖∇w‖2 ≥ SN‖w‖2
q ≥ const A−

N−2
4 ε. This bound to-

gether with the weak convergence property implies (3.15). Once again we use Rellich–

Kondrachov (see, e.g., [LiLo, Thms. 8.6 and 8.7]) to obtain a.e. convergence, and

then the Brezis–Lieb lemma 3.3 implies

lim sup
j→∞

‖t(N−2)/4
j uj(

√
tj ·+xj)− φ‖qq = εq − ‖φ‖qq ,

which yields (3.16) and completes the sketch of the proof. �
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4. The sharp Sobolev inequality

Our goal in this section is to prove the following

Theorem 4.1 (Sharp Sobolev inequality). For all u ∈ Ḣ1(RN), N ≥ 3, one has∫
RN
|∇u|2 dx ≥ πN(N − 2)

(
Γ(N/2)

Γ(N)

)2/N (∫
RN
|u|2N/(N−2) dx

)(N−2)/N

, (4.1)

with equality if and only if u(x) = c h(b(x − a)) for some a ∈ RN , b > 0 and c ∈ C,

where

h(x) = (1 + x2)−(N−2)/2 . (4.2)

In the remainder of this section we will write q = 2N/(N − 2).

Aubin, Talenti, Rosen, Bliss; check whether they prove existence

Proof of Theorem 4.1. We know from Theorem 3.4 that there is an optimizer U for

inequality (4.1).

As a preliminary remark we note that if u = a + ib with a and b real functions,

then
∫
|∇u|2 dx =

∫
(|∇a|2 + |∇b|2) dx. We also note that the right side of (4.1) is

‖a2 + b2‖q/2 with q = 2N/(N − 2) > 2. By the triangle inequality, ‖a2 + b2‖q/2 ≤
‖a2‖q/2 + ‖b2‖q/2. Therefore, if U = a+ ib is an optimizer for (4.1), then either one of

a and b is identically equal to zero, or else both a and b are optimizers. Hence in any

case, we may assume the optimizer U to be real. We may also assume U ≥ 0 because

for any u ∈ Ḣ1(RN), ∂|u|/∂xk = (sgnu)∂u/∂xk in the sense of distributions. (This

can be proved similarly to [LiLo, Thm. 6.17].)

It is important for us to know that we may confine our search for optimizers to func-

tions u satisfying a certain ‘center of mass condition’ with respect to N + 1 functions

Sj, defined by

Sj(x) =
2xj

1 + x2
for j = 1, . . . , N , SN+1(x) =

1− x2

1 + x2
.

Lemma 4.2 (Center of mass). Let u ∈ Ḣ1(RN). Then there is a v ∈ Ḣ1(RN) with

‖∇v‖ = ‖∇u‖ , ‖v‖q = ‖u‖q

and ∫
RN
Sj(x) |v(x)|q dx = 0 , j = 1, . . . , N + 1 . (4.3)

Moreover, if u is non-negative, then v is so as well.

We shall prove this lemma at the end of this section. It allows us to assume,

without loss of generality, that our optimizer U satisfies the conditions (4.3). Now

we shall prove that the only non-negative optimizers satisfying (4.3) are non-negative

multiples of the function h. In other words, the center of mass condition breaks the

large symmetry group and leads to uniqueness.
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Since U is an optimizer, the second variation of the minimization quotient must be

non-negative, i.e.,

d2

dε2
|ε=0

∫
RN |∇(U + εv)|2 dx(∫

RN |U + εv|2N/(N−2) dx
)(N−2)/N

≥ 0

for all v ∈ Ḣ1(RN). After a quick computation, we deduce that∫
RN
|∇v|2 dx

∫
RN
U q dx− (q − 1)

∫
RN
|∇U |2 dx

∫
RN
U q−2|v|2 dx ≥ 0 (4.4)

for all v with
∫
U q−1v dx = 0.

Because U satisfies condition (4.3) we may choose v(x) = Sj(x)U(x) in (4.4) and

sum over j. Using the fact that

N+1∑
j=1

|Sj(x)|2 = 1 (4.5)

we find that
N+1∑
j=1

∫
RN
|∇(SjU)|2 dx− (q − 1)

∫
RN
|∇U |2 dx ≥ 0 . (4.6)

On the other hand, an integration by parts (similarly as in the proof of Lemma 1.5)

leads to ∫
RN
|∇(SjU)|2 dx =

∫
RN

(
(Sj)2|∇U |2 − Sj∆SjU2

)
dx .

Computing ∆Sj and summing over j yields that

N+1∑
j=1

∫
RN
|∇(SjU)|2 dx =

∫
RN
|∇U |2 dx+N

∫
RN

(
2

1 + x2

)2

U2 dx ,

which, together with (4.6), implies that

N

∫
RN

(
2

1 + x2

)2

U2 dx− (q − 2)

∫
RN
|∇U |2 dx ≥ 0 .

Recalling that q − 2 = 4
N−2

, we see that this is the same as∫
RN
|∇U |2 dx−N(N − 2)

∫
RN

2

1 + x2
U2 dx ≤ 0 .

This is the reverse inequality of what we have shown in Section 1.2. The arguments

there imply that the left side can be written as∫
RN
|∇(U/ω)|2ω2 dx with ω(x) = (1 + x2)−(N−2)/2 .

We conclude that U is proportional to ω, as we intended to prove. �



SOBOLEV INEQUALITIES AND UNCERTAINTY PRINCIPLES — July 30, 2011 25

We now turn to the proof of Lemma 4.2. The first observation is that the map

x 7→ (S1(x), . . . ,SN+1(x)) is the stereographic projection from RN to SN+1 = {ω ∈
RN+1 :

∑N+1
j=1 ω2

j = 1}. (The fact that the range of this map is contained in the

sphere was already used in (4.5).) The Jacobi matrix DS(x) = (∂Sj/∂xk)j,k is an

N × (N + 1)-matrix, and a tedious but straightforward computation shows that

DS(x)TDS(x) =

(
2

1 + x2

)2

(1− |S(x)〉〈S(x)|) ,

where 1 stands for the (N + 1) × (N + 1) identity matrix. From this formula we

conclude that the Jacobian of S is

J (x) =

(
2

1 + x2

)N
,

and therefore, if u ∈ Lq(RN) and f ∈ Lq(SN) are related by

u(x) = J (x)1/qf(S(x)) , (4.7)

then

‖u‖q = ‖f‖q . (4.8)

Moreover, the formula for DS(x)TDS(x) together with some straightforward compu-

tations yields ∫
RN
|∇u|2 dx =

∫
SN

(
|∇f |2 +

N(N − 2)

4
|f |2
)
dω . (4.9)

The upshot of this discussion is that we have discovered a large group of symmetries

of the Sobolev inequality: apart from the translations, dilations and rotation, which

are obvious in the RN version, we infer that the inequality is also invariant under

rotations of the sphere SN ! This will be the key in proving Lemma 4.2.

We shall define a family of maps γδ,ξ : SN → SN depending on two parameters

δ > 0 and ξ ∈ SN . To do so, we denote dilation on RN by Dδ, that is, Dδ(x) = δx.

Moreover, for any ξ ∈ SN we choose an orthogonal (N + 1)× (N + 1) matrix O such

that Oξ = (0, . . . , 0, 1) and we put

γδ,ξ(ω) := OTS
(
Dδ
(
S−1 (Oω)

))
for all ω ∈ SN \ {−ξ} and γδ,ξ(−ξ) := −ξ. This transformation depends only on ξ

(and δ) and not on the particular choice of O. Indeed, a straightforward computation

shows that

γδ,ξ(ω) =
2δ

(1 + ω · ξ) + δ2(1− ω · ξ)
(ω − (ω · ξ) ξ) +

(1 + ω · ξ)− δ2(1− ω · ξ)
(1 + ω · ξ) + δ2(1− ω · ξ)

ξ .

Lemma 4.3. Let ρ ∈ L1(SN) with
∫
SN ρ(ω) dω 6= 0. Then there is a transformation

γδ,ξ of SN such that ∫
SN
γδ,ξ(ω)ρ(ω) dω = 0 .



26 RUPERT L. FRANK

In order to derive Lemma 4.2 from Lemma 4.3 we assume that u on RN and f on

SN are related by (4.7). Applying Lemma 4.3 to ρ = |f |q we obtain a γ = γδ,ξ and

then a change of variables shows that the new function σ(ω) = |Jγ−1(ω)|ρ(γ−1(ω))

satisfies ∫
SN
ωσ(ω) dω = 0 .

Finally, we write σ = gq and, if v on RN corresponds to g via (4.7), then the center of

mass condition for gq is equivalent to the condition (4.3) for v. Both the Lq and the

gradient norm are invariant under this procedure, since γ is a composition of a dilation,

a rotation and the stereographic projection, all of which preserve both norms; (cf. (4.8)

and (4.9) for the stereographic projection.) Obviously, non-negativity of functions is

preserved.

Proof. We may assume that ρ ∈ L1(SN) is normalized by
∫
SN ρ(ω) dω = 1. We shall

show that the RN+1-valued function

F (rξ) :=

∫
SN
γ1−r,ξ(ω)ρ(ω) dω , 0 < r < 1 , ξ ∈ SN ,

has a zero. First, note that because of γ1,ξ(ω) = ω for all ξ and all ω, the limit of

F (rξ) as r → 0 is independent of ξ. In other words, F is a continuous function on

the open unit ball of RN+1. In order to understand its boundary behavior, one easily

checks that for any ω 6= −ξ one has limδ→0 γδ,ξ(ω) = ξ, and that this convergence is

uniform on {(ω, ξ) ∈ SN × SN : 1 + ω · ξ ≥ ε} for any ε > 0. This implies that

lim
r→1

F (rξ) = ξ uniformly in ξ . (4.10)

Hence F is a continuous function on the closed unit ball, which is the identity on the

boundary.

We claim that there is an ε > 0 such that

|x− εF (x)| ≤ 1 for all x ∈ B . (4.11)

Once this is shown, Brouwer’s fixed point theorem Reference applied to x − εF (x)

implies that there is an x0 such that x0− εF (x0) = x0, that is, F (x0) = 0, as claimed.

In order to prove (4.11), we note that by (4.10) there is an r0 such that

x · F (x) ≥ 1/2 provided |x| ≥ r0 .

Hence, using that |x| ≤ 1 and that |F (x)| ≤ ‖ρ‖1 we see that

|x− εF (x)|2 ≤ ε2‖ρ‖2
1 − 2εx · F (x) + 1 ≤ ε2‖ρ‖2

1 − ε+ 1

for |x| ≥ r0. Hence there is an ε0 > 0 such that (4.11) is true for any |x| ≥ r0 and any

0 < ε ≤ ε0. Decreasing ε0 if necessary such that ε ≤ (1 − r0)‖ρ‖−1
1 , we have for any

|x| ≤ r0

|x− εF (x)| ≤ r0 + ε‖ρ‖1 ≤ 1 ,

and hence (4.11) is true for all x ∈ B. This concludes the proof of Lemma 4.3. �
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5. Schwarz symmetrization

On physical grounds it is very natural to expect that solutions of certain rotation-

invariant minimization problems will be radially symmetric. One effective way of

verifying this expectation is a symmetrization procedure called Schwarz symmetriza-

tion, which we introduce and study in this section. In particular, we shall see that this

procedure reduces the kinetic energy of a quantum mechanical (single-particle) state

and we shall derive the sharp version of the isoperimetric inequality.

5.1. Definition and properties. Let Ω ⊂ RN be a set with finite measure. We

define its Schwarz symmetrization Ω∗ to be the ball in RN centered at the origin with

the same measure as Ω, i.e.,

Ω∗ = {x ∈ RN : |x| < ω
−1/N
N |Ω|1/N} ,

where ωN = |{x ∈ RN : |x| < 1}| is the measure of the unit ball. The Schwarz

symmetrization of a measurable function f on RN satisfying

|{|f | > µ}| <∞ for all µ > 0 (5.1)

is defined by

f ∗(x) =

∫ ∞
0

χ{|f |>τ}∗(x) dτ . (5.2)

This formula should be compared to the ‘layer cake representation’ of |f |,

|f(x)| =
∫ ∞

0

χ{|f |>τ}(x) dτ . (5.3)

By definition, f ∗ is a non-negative, radially symmetric and non-increasing function.

It is a rearrangement of f in the sense that |{|f ∗| > µ}| = |{|f | > µ}| for every µ > 0.

This implies, in particular, that∫
RN
|f ∗|p dx =

∫
RN
|f |p dx (5.4)

for any p > 0. Here is another simple property of rearrangement.

Lemma 5.1. For any non-negative functions f and g on RN satisfying (5.1),∫
RN
fg dx ≤

∫
RN
f ∗g∗ dx . (5.5)

Proof. Using (5.3), (5.2) and similar formulas for g we see that it suffices to prove that

|A ∩B| =
∫
RN
χA(x)χB(x) dx ≤

∫
RN
χA∗(x)χB∗(x) dx = |A∗ ∩B∗| ,

where A = {f > τ} and B = {g > σ}. This is obvious, however, since |A ∩ B| ≤
min{|A|, |B|} = min{|A∗|, |B∗|} = |A∗ ∩B∗|. �
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The next result also compares integrals of functions before and after rearrangement.

The result, however, is much deeper and its proof is rather involved. The case of one

dimension is due to Riesz [Ri] (see also insert for a version about sequences, higher

dimensions). As we shall see, it this lemma has far reaching consequences.

Lemma 5.2 (Riesz lemma). For any non-negative functions f , g and h on RN satis-

fying (5.1),∫∫
RN×RN

f(x)g(x− y)h(y) dx dy ≤
∫∫

RN×RN
f ∗(x)g∗(x− y)h∗(y) dx dy . (5.6)

Proof. Since the proof is rather involved we only sketch the one-dimensional case and

refer the reader to [LiLo, Thm. 3.7] for the argument of how to reduce the multi-

dimensional case to the one-dimensional one.

As in the proof of Lemma 5.1 we may assume that f , g and h are characteristic

functions of sets of finite measure. In order to explain the main idea of the proof we

assume that f and g are characteristic functions of intervals centered at the origin and

h is the characteristic function of two disjoint intervals. That is, h is of the form

h(x) = h1(x− a1) + h2(x− a2)

where h1 and h2 are again characteristic functions of intervals centered at the origin

and a1 and a2 are two real numbers.

We want to show that the left side of (5.6) does not decrease if the two intervals

are joint. In order to move the intervals together, we introduce a paramater 0 ≤ t ≤ 1

and set

Ij(t) =

∫
RN
k(y)hj(y − taj) dy , k(x) =

∫
RN
f(x)g(x− y) dx .

In this way, the left side of (5.6) coincides with I1(1) + I2(1). The function k is

symmetric decreasing, and therefore a similar argument as in the proof of Lemma 5.1

shows that Ij(t) is non-decreasing as t varies from 1 to 0. This proves that I1(t)+I2(t)

is non-decreasing as t varies from 1 to 0. As t decreases the two intervals that make up

h move together. We stop this movement when their endpoints touch. In this way we

have obtained one single interval, and again by Lemma 5.1 this single interval wants

to be centered at the origin, as claimed.

This explains the main idea of the proof. In order to treat the general case one uses

some approximation arguments to put oneself in the situation where each of f , g and

h is the characteristic function of disjoint intervals. Repeated use of the argument we

just explained then proves the claim. �

This lemma has been substantially generalized by Brascamp–Lieb–Luttinger [BLL].

Instead of three function f , g and h of two variables x and y, they consider m functions

of k variables. While the Riesz lemma will allow us to control single eigenvalues, the

BLL extension will allow us to control (exponential) sums of eigenvalues.
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Lemma 5.3 (BLL lemma). For any non-negative functions f1, . . . , fm on RN satis-

fying (5.1) and any k ×m matrix (bij) with k ≤ m,∫
RN
· · ·
∫
RN

m∏
j=1

fj(
k∑
i=1

bijxi) dx1 . . . dxk ≤
∫
RN
· · ·
∫
RN

m∏
j=1

f ∗j (
k∑
i=1

bijxi) dx1 . . . dxk .

For the proof we refer to the original paper [BLL].

5.2. The Pólya–Szegő principle. The main reason why Schwarz symmetrization

is useful for us is that it decreases (strictly speaking: does not increase) the kinetic

energy. In many variational problems this allows one to restrict one’s attention to

radial function, which makes the problem one-dimensional and therefore considerably

easier.

This property of Schwarz symmetrization was popularized in [PoSz] and is of-

ten called the Pólya–Szegő principle, although the result actually is older Check

Hardy--Littlewood-Polya. The classical proofs rely on the isoperimetric inequal-

ity and delicate regularity considerations. The proof below, which is based on the

Riesz lemma and symmetry/monotonicity properties of the heat kernel, is due to Lieb

[Li].

Proposition 5.4. For any u with |{|u| > µ}| <∞ for all µ > 0 and
∫
|∇u|2 dx <∞

one has ∫
RN
|∇u|2 dx ≥

∫
RN
|∇u∗|2 dx . (5.7)

Inequality (5.7) is, in general, not strict for u 6≡ u∗. For counterexamples and a

characterization of the cases of equality we refer to [BrZi].

Proof. We recall formula (3.1) for the heat kernel. Using its representation (3.2) in

Fourier space it is easy to prove that for any u ∈ H1(RN)

lim
t→0

t−1
(
u,
(
1− et∆

)
u
)

=

∫
RN
|∇u|2 dx .

Since the heat kernel is a symmetric decreasing function, the Riesz lemma together

with (5.4) implies that for any t > 0(
u,
(
1− et∆

)
u
)
≥
(
u∗,
(
1− et∆

)
u∗
)
.

We conclude that for u ∈ H1(RN) one has

lim sup
t→0

t−1
(
u∗,
(
1− et∆

)
u∗
)
≤
∫
RN
|∇u|2 dx .

By monotone converges in Fourier space, one deduces that u∗ ∈ H1(RN) and that its

gradient satisfies (5.7).

This proves the inequality for u ∈ H1(RN). In the general case, we note that we can

restrict our attention to non-negative u (since the rearrangement only depends on |u|
and the gradients of u and |u| coincide in magnitude as distributions). The function
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uτ (x) := min{(u(x) − τ)+, τ
−1} (compare with the regularization in the proof of

Theorem 3.1) belongs to H1(RN) and therefore the H1-result together with monotone

convergence conclude the proof. �

Corollary 5.5. λ1(−∆ + V ) ≥ λ1(−∆− (V−)∗)

Indeed, one has
∫
|ψ|2 dx =

∫
|ψ∗|2 dx by (5.4) and∫

RN

(
|∇ψ|2 + V |ψ|2

)
dx ≥

∫
RN

(
|∇ψ∗|2 − (V−)∗|ψ|2

)
dx

by (5.7) and (5.5).

Remark 5.6. Proposition 5.4 can be used to give an alternative proof of the sharp

Sobolev inequality. Indeed, in view of (5.7) and (5.4) it suffices to consider radial

functions in the minimization problem for SN , i.e.,

SN = |SN−1|2/N inf

∫∞
0
|u′|2rN−1 dr(∫∞

0
|u|2N/(N−2)rN−1 dr

)(N−2)/N
.

Now we introduce logarithmic coordinates and define for each u on (0,∞) a function

v on R by

u(r) = r−(N−2)/2 v(ln r) .

A quick computation shows that∫ ∞
0

|u|2N/(N−2)rN−1 dr =

∫
R
|v|2N/(N−2) dx

and ∫ ∞
0

|u′|2rN−1 dr =

∫
R

(
|v′|2 +

(
N − 2

2

)2

|v|2
)
dx .

Using scaling it is an easy exercise to express the value of the infimum

inf

∫
R

(
|v′|2 +

(
N−2

2

)2 |v|2
)
dx∫

R |v|2N/(N−2) dx

in terms of the value S1,2N/(N−2) from Proposition 2.5. In this way we obtain the sharp

constant in Theorem 4.1 and we also obtain the functions (1+x2)−(N−2)/2. (Note that

these correspond to a negative power of cosh in logarithmic coordinates.) Since (5.7)

is not strict, in general, this argument does not imply that these are the only functions

(up to translations and dilations) on which the infimum is attained.

Exercise 5.7. Carry out the steps in the previous remark. More generally, find the

sharp constant in the inequality∫
RN
|∇u|2 dx ≥ KN,b

(∫
RN

|u|q

|x|bq
dx

)2/q

, 0 ≤ b < 1 , q =
2N

N − 2 + 2b
,

which interpolates between the Sobolev inequality and the Hardy inequality. Further-

more, show that this inequality remains valid in the range −(N − 2)/2 < b < 0 when
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restricted to radial functions, and compute the corresponding optimal constant. An

early reference for this inequality is [Ok]. The sharp constant and the extension to

negative values of b appears in [GlMaGrTh].

Remark 5.8. While the Sobolev inequality seems to be stronger than Hardy’s inequal-

ity (at least its proof is considerably more involved), there is a quick way to deduce the

Sobolev inequality from the Hardy inequality via symmetrization. Indeed, if u = u∗

is a symmetric decreasing function on RN , then for any q > 0 and any R > 0∫
RN
|u|q dx ≥

∫
|x|<R

|u|q dx ≥ N−1|SN−1| |u(R)|q RN , (5.8)

where, of course, u(R) denotes the common value of u(x) when |x| = R. Thus |u(x)| ≤
N1/q|SN−1|−1/q|x|−N/q‖u‖q. We now specialize to the case q = 2N/(N − 2) and raise

the previous inequality to the power q − 2 = 4/(N − 2) to obtain∫
RN
|u|2N/(N−2) dx ≤ |u(x)| ≤ N2/N |SN−1|−2/N‖u‖4/(N−2)

2N/(N−2)

∫
RN

|u|2

|x|2
dx .

Bounding the right side by Hardy’s inequality,∫
RN
|u|2N/(N−2) dx ≤ |u(x)| ≤ (N − 2)2

4
N2/N |SN−1|−2/N‖u‖4/(N−2)

2N/(N−2)

∫
RN
|∇u|2 dx ,

we yields the Sobolev inequality for symmeric decreasing functions. By Proposition

5.4 and (5.4), this implies the inequality for arbitrary functions.

Exercise 5.9. In this exercise we derive an improved Sobolev inequality by being less

crude in estimate (5.8).

(1) Find a formula for
∫
|x|−2(u∗)2 dx in N ≥ 3 in terms of the measure of the sets

{|u| > µ} and use Hardy’s inequality (Theorem 1.4) to conclude that∫
RN
|∇u|2 dx ≥

(
N − 2

2

)2( |SN−1|
N

)2/N
2N

N − 2

∫ ∞
0

|{|u| > µ}|
N−2
N µ dµ .

(2) Here left side is a constant times the square of the norm of u in the Lorentz

space L2N/(N−2),2(RN). Show that this space is contained in the usual Lebesgue

space L2N/(N−2)(RN). Give an example of a function in L2N/(N−2),2(RN), which

does not lie in L2N/(N−2)(RN).

(3) Use the inequality from Exercise 5.7 to prove a similar inequality. (The corre-

sponding space will be the Lorentz space LNq/(N−2),q(RN) with q = 2N
N−2+2b

.)

Reference to Alvino + interpolation people

5.3. The isoperimetric inequality. The isoperimetric inequality in the plane states

that among all domains with the same length of the boundary, the ball has the largest

area. Equivalently, among all domains of the same area, the boundary of the ball

has the shortest length. The following is the multi-dimensional generalization of this

result.
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Theorem 5.10. For any sufficiently smooth domain Ω ⊂ RN of finite measure one

has |∂Ω| ≥ |∂Ω∗|.

Of course, |∂Ω| stands for the (N − 1)-dimensional measure of the boundary. This

is certainly well-defined for Lipschitz boundaries. The perimeter in the sense of de

Giorgi can also be defined for domains with very low regularity, but we do not want

to enter this topic.

Sharp version due to Federer--Fleming and Fleming--Rishel[6] -- they really

prove the isoperimetric inequality and then deduce Sobolev

We have already remarked that the isoperimetric inequality is closely related to

the Sobolev inequality
∫
|∇u| dx ≥ CN

(∫
|u|N/(N−1) dx

)(N−1)/N
. Therefore it is not

surprising that it can be proved via a rearrangement inequality for
∫
|∇u| dx, similarly

to that of Proposition 5.7. Again, the main tool will be the Riesz lemma 5.2.

The other ingredient is a study of the limit (χΩc , exp(t∆)χΩ) as t→ 0. Lemma 5.11

gives an upper bound on this quantity, which Lemma 5.12 proves to be sharp in the

case of balls.

Lemma 5.11. For any f : RN → R with ∇f ∈ L1, one has∥∥(exp(t∆)f − f)+

∥∥
1
≤
(
t

π

)1/2 ∫
RN
|∇f | dx .

Lemma 5.12. If B ⊂ RN is a ball, then

lim
t→0

t−1/2(χBc , exp(t∆)χB) = π−1/2|∂B| .

Assuming these two lemmas for the moment, we follow [Le2] for the

Proof of Theorem 5.10. Let Ω by an open set of finite measure with sufficiently smooth

boundary. Then by Lemma 5.11

(χΩc , exp(t∆)χΩ) = (χΩc , exp(t∆)χΩ−χΩ) ≤
∥∥(exp(t∆)χΩ − χΩ)+

∥∥
1
≤
(
t

π

)1/2

|∂Ω| .

On the other hand, by Lemma 5.2

(χ(Ω∗)c , exp(t∆)χΩ∗) = |Ω∗| − (χΩ∗ , exp(t∆)χΩ∗)

≤ |Ω| − (χΩ, exp(t∆)χΩ) = (χΩc , exp(t∆)χΩ)

Dividing by t1/2 and letting t→ 0, Lemma 5.12 yields the assertion. �

It remains to prove the two lemmas.

Proof of Lemma 5.11. Since exp(t∆)f − f =
∫ t

0
∆ exp(s∆)f ds, we have for any g

(g, exp(t∆)f − f) = −
∫ t

0

(∇ exp(s∆)g,∇f) ds .
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Using the fact that

(exp(s∆)g)(x) =

∫
RN
g(x+

√
2sy)

e−y
2/2 dy

(2π)N/2

we find

(∇ exp(s∆)g)(x) = (2s)−1/2

∫
RN
yg(x+

√
2sy)

e−y
2/2 dy

(2π)N/2

and hence

(g, exp(t∆)f − f) = −
∫ t

0

ds

∫
RN
dx

∫
RN

e−y
2/2 dy

(2π)N/2
(2s)−1/2g(x+

√
2sy) y · ∇f(x) .

In particular, if 0 ≤ g ∈ L∞(RN) we can bound

(g, exp(t∆)f − f) ≤ ‖g‖∞
∫ t

0

ds

∫
RN
dx

∫
RN

e−y
2/2 dy

(2π)N/2
(2s)−1/2 (y · ∇f(x))− .

For fixed x and s, we perform the y-integration and arrive at

(g, exp(t∆)f−f) ≤ ‖g‖∞
∫ t

0

ds

∫
RN
dx (4πs)−1/2 |∇f(x)| = ‖g‖∞

√
t

π

∫
RN
dx |∇f(x)| .

By duality, this implies the assertion. �

Proof of Lemma 5.12. By translation and dilation invariance, we may assume that B

is centered at the origin and has radius one. We have

(χBc , exp(t∆)χB) =

∫
|x|>1

dx

∫
{y: |x+

√
2ty|≤1}

e−y
2/2 dy

(2π)N/2

=

∫
SN−1

dω

∫ ∞
1

dr rN−1

∫
{y: |rω+

√
2ty|≤1}

e−y
2/2 dy

(2π)N/2

= |SN−1|
∫ ∞

1

dr rN−1

∫
{y: 2t(y′)2+(r+

√
2tyd)2≤1}

e−y
2/2 dy

(2π)N/2

= |SN−1|
∫
RN

e−y
2/2 dy

(2π)N/2
It(y)

where

It(y) = χ{2t(y′)2≤1} χ{
√

2tyd≤
√

1−2t(y′)2−1}

∫ ∞
1

dr rN−1 χ{(r+
√

2tyd)2≤1−2t(y′)2} .

A quick computation shows that

lim
t→0

t−1/2It(y) =
√

2(y1)− ,

and therefore, by dominated convergence,

lim
t→0

t−1/2(χBc , exp(t∆)χB) =
√

2|SN−1|
∫
RN

e−y
2/2 dy

(2π)N/2
(y1)− = π−1/2|SN−1| .

This completes the proof. �
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Remark 5.13. Alternatively, one can check that the terms that were thrown away in

the proof of Lemma 5.11, that is,∫ t

0

ds

∫
SN−1

dω

∫
{y:|ω+

√
2sy|>1}

e−y
2/2 dy

(2π)N/2
(2s)−1/2 (y · ω)+

+

∫ t

0

ds

∫
SN−1

dω

∫
{y:|ω+

√
2sy|≤1}

e−y
2/2 dy

(2π)N/2
(2s)−1/2 (y · ω)− ,

tend to zero as t→ 0.
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