
GROUND STATES OF SEMI-LINEAR PDES

RUPERT L. FRANK

Abstract. These are lecture notes from a course given at the summer school on

‘Current topics in Mathematical Physics’, held at Luminy in September 2013. We

discuss ground state solutions for semi-linear PDEs in RN . In particular, we prove

their existence, radial symmetry and uniqueness up to translations.
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1. Introduction

The goal of these lectures is to prove the following two theorems. The first one

concerns minimizers of a quotient that appears in certain Sobolev-type inequalities.

Theorem 1.1. Let 2 < q <∞ if N = 1, 2 and 2 < q < 2N/(N − 2) if N ≥ 3. Then

there is a positive, radial and decreasing function Q such that the infimum

SN,q = inf
06≡u∈H1(RN )

(∫
RN |∇u|

2 dx
)θ (∫

RN |u|
2 dx

)1−θ(∫
RN |u|q dx

)2/q
, θ =

N

2

(
1− 2

q

)
, (1.1)

is attained iff u(x) = cQ(b(x− a)) for some a ∈ RN , b > 0 and c ∈ C \ {0}.

The second theorem concerns solutions of a semi-linear PDE.

Theorem 1.2. Let 2 < q <∞ if N = 1, 2 and 2 < q < 2N/(N − 2) if N ≥ 3. Then

there is a positive, radial and decreasing function Q such that any non-negative weak

solution 0 6≡ u ∈ H1(RN) of

−∆u− uq−1 = −u in RN (1.2)

is given by u(x) = Q(x− a) for some a ∈ RN . Moreover, the linearization of (1.2) is

non-degenerate in the sense that the kernel of L = −∆ − (q − 1)uq−2 + 1, considered

as a self-adjoint operator in L2(RN), satisfies

kerL = span{∂1u, . . . , ∂Nu} .

The link between these two theorems is, of course, that (1.2) arises (possibly af-

ter rescaling and multiplying by a constant) as the Euler–Lagrange equation for the

minimization problem (1.1).

Let us mention a few motivations for studying the minimization problem (1.1) and

the equation (1.2).

(1) By a duality argument, the infimum (1.1) appears when asking ‘how small

can one make the lowest eigenvalue of a Schrödinger operator −∆ + V for a

given Lp norm of V ?’ This isoperimetric problem for Schrödinger eigenvalues

was introduced by Keller [Ke] and plays a key role in a famous conjecture of

Lieb and Thirring [LiTh] about inequalities for sums of eigenvalues; see also

[CaFrLi].

(2) The minimizer for (1.1) appears in the blow-up theory of the non-linear Schrö-

dinger equation. Moreover, the methods to analyze minimal mass blow-up are

closely related to the arguments we need to show that there is a solution to

the minimization problem; see, e.g., the lecture notes [Ra] for more about this.

(3) By a scaling argument (write ψ(x) = l−N/2u(x/l)), the minimization problem

inf

{∫
RN
|∇ψ|2 dx−

∫
RN
|ψ|q dx :

∫
RN
|ψ|2 dx = 1

}
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is equivalent to the problem discussed in Theorem 1.1, provided q < 2(N +

2)/N . The latter minimization problem appears in many physical applications.

For instance, with q = 4 and N = 1 in the analysis of the delta function Fermi

gas [dLLi] or with q = 5/2 and N = 3 in the analysis of the two-component

charged Bose gas [Dy, LiSo]. The case q = 4 and N = 1, 2 also appears in

non-linear optics [ChGaTo, Kel, Ta, AkSuKh].

(4) From a purely mathematical point of view (1.1) and (1.2) serve as model cases

for more complicated non-linearities. Before studying these more complicated

(and possibly more realistic) non-linearities it is crucial to understand the

model cases first in great detail.

The proof of Theorems 1.1 and 1.2 will take up the main part of these lectures,

indeed, all sections except for the last one. In the last section we discuss the usefulness

of the non-degeneracy statement in Theorem 1.2.

The case N = 1 in Theorems 1.1 and 1.2 is much simpler than its higher-dimensional

analogue, since it is explicitly solvable. We discuss this further in Appendix A and

focus otherwise mostly on N ≥ 2.

In the remainder of this introduction we describe the main steps in the proof of

Theorems 1.1 and 1.2 for N ≥ 2.

Step 1. The Sobolev interpolation inequality. In Section 2 we prove that the infi-

mum SN,q, defined in (1.1), is strictly positive. In other words, we prove the Sobolev

interpolation inequality(∫
RN
|∇u|2 dx

)θ (∫
RN
|u|2 dx

)1−θ

≥ SN,q

(∫
RN
|u|q dx

)2/q

, θ =
N

2

(
1− 2

q

)
,

for all u ∈ H1(RN). We follow classical arguments of Gagliardo [Ga] and Nirenberg

[Ni].

Step 2. Existence of a minimizer. In Section 3 we shall show that the infimum in

Theorem 1.1 is attained. It was observed by Weinstein [We1] that this follows from

Lions’ concentration compactness principle [Lio1, Lio2]. Here we present a different

and older approach based on a compactness lemma by Lieb [Li2].

Before proceeding, let us note that any minimizer of (1.1) is a constant times a

non-negative function. For the details of this argument we refer to Step 2 in the proof

of Theorem A.1. We also note that, similarly as in Step 3 of that proof, an optimizer

can be normalized so that it is a non-negative weak solution of the Euler–Lagrange

equation (1.2). From the weak-strong maximum principle (Lemma 4.3) we infer that

u > 0 in RN .

Step 3. Any minimizer is radial. In Section 4 we prove that any non-negative weak

solution of (1.2) is radially symmetric with respect to some point and a decreasing

function with respect to the distance from this point. This follows via the method

of moving planes, which goes back to Alexandrov [Ale] and Serrin [Se] and was fur-

ther developed and popularized by Gidas–Ni–Nirenberg [GiNiNi1, GiNiNi2]. Note
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that the result does not follow by Schwarz symmetrization, since there is no strict

rearrangement inequality for
∫
|∇u|2 dx.

Step 4. Uniqueness of radial solutions. In Section 5 we prove uniqueness (up to

translations) of positive finite energy solutions of (1.2). Having established radial

symmetry, one has to prove uniqueness of positive finite energy solutions of the ODE

−u′′ − (N − 1)r−1u′ − uq−1 = −u on (0,∞) .

This is a celebrated result of Kwong [Kw] which we state and prove in Theorem 5.1. (In

fact, uniqueness of energy-minimizing solutions is an earlier result of Zhang [Zh]. We

refer to Section 5 for further references.) We emphasize that for N > 1 the above ODE

is non-autonomous because of the first order term. This makes the uniqueness proof

considerably harder than that in the one-dimensional case discussed in the appendix,

where one deals with an autonomous equation.

2. Sobolev inequalities

In this section we prove that the infimum in (1.1) is strictly positive, that is, we prove

Sobolev interpolation inequalities. Our arguments follow the proof due to Gagliardo

[Ga] and Nirenberg [Ni] which goes via the quantity
∫
|∇u| dx instead of the quantity∫

|∇u|2 dx.

Theorem 2.1 (Isoperimetric inequality). Let N ≥ 2. Then there is a constant CN > 0

such that for all u ∈ Ẇ 1,1(RN)∫
RN
|∇u| dx ≥ CN

(∫
RN
|u|N/(N−1) dx

)(N−1)/N

. (2.1)

The constant CN that our proof gives is explicit, but not sharp. The reason why

we call (2.1) an isoperimetric inequality will be explained in Exercise 2.7, which also

explains what the value of the sharp constant is.

The Gagliardo–Nirenberg argument of Theorem 2.1 relies on two lemmas. The first

one is a one-dimensional analogue of the inequality we want to establish. The second

one gives a method of how to pass from smaller to higher dimensions.

Lemma 2.2 (Easiest Sobolev inequality). If u ∈ Ẇ 1,1(R), then∫
R
|u′| dx ≥ 2 sup

x∈R
|u(x)| .

Equality holds iff there is a constant a ∈ R such that u is non-decreasing on (−∞, a)

and non-increasing on (a,∞).

Proof. Write u(x) = 1
2

(∫ x
−∞ u

′(y) dy −
∫∞
x
u′(y) dy

)
and take absolute values. �

In the statement of the next lemma, we shall use the following notation for x ∈ RN

and 1 ≤ j ≤ N ,

x̃j = (x1, . . . , xj−1, xj+1, . . . , xN) ∈ RN−1 .
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Then one has

Lemma 2.3 (Loomis–Whitney inequality). Let N ≥ 2 and let f1, . . . , fN ∈ LN−1(RN−1).

Then the function f(x) := f1(x̃1) · · · fN(x̃N) belongs to L1(RN) and

‖f‖L1(RN ) ≤
N∏
j=1

‖fj‖LN−1(RN−1) .

Proof. Note that this is an equality for N = 2. The main idea behind the proof is

most clearly seen for N = 3, which we assume henceforth. We have∫
R3

|f(x)| dx =

∫∫
R×R

I(x1, x2)|f3(x1, x2)| dx1 dx2 ,

where

I(x1, x2) =

∫
R
|f1(x2, x3)f2(x1, x3)| dx3 .

By the Schwarz inequality, I(x1, x2) ≤
√
g1(x2)

√
g2(x1), where

g1(x2) =

∫
R
|f1(x2, x3)|2 dx3 and g2(x1) =

∫
R
|f2(x1, x3)|2 dx3 .

Thus, again by Schwarz,∫
R3

|f(x)| dx ≤
∫
R
dx1

√
g2(x1)

(∫
R
|f3(x1, x2)|2 dx2

)1/2(∫
R
g1(x2) dx2

)1/2

= ‖f1‖2

∫
R
dx1

√
g2(x1)

√
g3(x1) ,

where g3 is defined similarly as g1 and g2. Applying Schwarz once again, we arrive at

the claimed inequality for N = 3. The case N ≥ 4 is proved similarly. �

Proof of Theorem 2.1. By an approximation argument we may assume that u ∈ C1
c (RN).

Then, by Lemma 2.2, we have

|u(x)| ≤ 1

2

∫
R
|∂1u(y1, x2, . . . , xN)| dy1 = g1(x̃1) .

Defining g2, . . ., gN similarly with respect to the other coordinate directions and

multiplying the corresponding inequalities we find that

|u(x)|N ≤ g1(x̃1) · · · gN(x̃N) ,

which is the same as

|u(x)|N/(N−1) ≤ g1(x̃1)1/(N−1) · · · gN(x̃N)1/(N−1) .

Applying Lemma 2.3 with fj = g
1/(N−1)
j we infer that∫

RN
|u(x)|N/(N−1) dx ≤

N∏
j=1

‖g1/(N−1)
j ‖LN−1(RN−1) =

N∏
j=1

(
1

2

∫
RN
|∂ju| dx

)1/(N−1)

.
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This is almost the inequality we wanted to prove. To arrive at the inequality stated

in the theorem, we apply the arithmetric-geometric mean inequality,(
N∏
j=1

aj

)1/N

≤ 1

N

N∑
j=1

aj

for aj ≥ 0, which yields(∫
RN
|u(x)|N/(N−1) dx

)(N−1)/N

≤ 1

2N

N∑
j=1

∫
RN
|∂ju| dx .

Finally, we bound the `1-norm of the gradient in CN in terms of its `2-norm and

complete the proof. �

Corollary 2.4 (Sobolev interpolation inequalities). Let 2 ≤ q ≤ ∞ if N = 1, let

2 ≤ q <∞ if N = 2 and let 2 ≤ q ≤ 2N/(N − 2) if N ≥ 3. Then u ∈ H1(RN) implies

u ∈ Lq(RN) and there is a constant SN,q > 0 such that for every u ∈ H1(RN) one has(∫
RN
|∇u|2 dx

)θ (∫
RN
|u|2 dx

)1−θ

≥ SN,q

(∫
RN
|u|q dx

)2/q

, (2.2)

where N/q = θ(N − 2)/2 + (1− θ)N/2.

Of course, the equation determining θ comes from scaling.

An important special case of (2.2) is, for N ≥ 3,∫
RN
|∇u|2 dx ≥ SN

(∫
RN
|u|2N/(N−2) dx

)(N−2)/N

. (2.3)

(Here and in the following we write SN = SN,2N/(N−2) in the special case q = 2N/(N−
2).) This inequality, which was stated for functions in the inhomogeneous Sobolev

space H1(RN), extends by continuity to the homogeneous space Ḣ1(RN).

A simple consequence of (2.2) is the inequality∫
RN
|∇u|2 dx ≥ CN |{u 6= 0}|−2/N

∫
RN
|u|2 dx , (2.4)

valid for functions u ∈ H1(RN) which vanish outside a set of finite measure. Indeed,

in order to obtain (2.4) from (2.2) we only have to use Hölder’s inequality∫
RN
|u|2 dx ≤ |{u 6= 0}|(q−2)/2

(∫
RN
|u|q dx

)2/q

.

Inequality (2.4) with the sharp constant is called Faber–Krahn inequality. Again the

precise statement is that if u ∈ L1
loc(RN) with ∇u ∈ L2(RN) and with |{u 6= 0}| <∞,

then u ∈ L2(RN) and the inequality holds.

Proof. We first note that by Hölder’s inequality, if (2.2) holds for some q, it holds for

all smaller values of q ≥ 2 as well. Hence it suffices to derive (2.2) only for large values

of q, and this is what we do in the following.
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Case N ≥ 3 and q = 2N/(N − 2). For the proof we assume, by an approximation

argument, that u ∈ C1
c (RN). Then for α ≥ 1 we have |∇|u|α| = α|u|α−1|∇u| and

hence, applying Theorem 2.1 with |u|α in place of u, we obtain(∫
RN
|u|αN/(N−1) dx

)(N−1)/N

≤ αC−1
N

∫
RN
|u|α−1|∇u| dx

≤ αC−1
N

(∫
RN
|∇u|2 dx

)1/2(∫
RN
|u|2(α−1) dx

)1/2

.

Choosing α = (N−1)2/(N−2) yields (2.2) if we note that αN/(N−1) = 2N/(N−2) =

2(α− 1).

Case N = 2 and q ≥ 4. We use the same argument as before, but this time we

choose α = q/2 depending on q and obtain(∫
R2

|u|q dx
)1/2

≤ q

2 C2

(∫
R2

|∇u|2 dx
)1/2(∫

R2

|u|q−2 dx

)1/2

. (2.5)

Since q ≥ 4, the term
∫
|u|q−2 dx can be estimated by Hölder in terms of

∫
|u|q dx and∫

|u|2 dx. This yields the desired inequality.

Case N = 1 and q =∞. We prefer to record this separately as Corollary 2.5, since

in this case we actually obtain the sharp constant.

According to the remark made at the beginning of the proof that large q is enough,

the proof of Corollary 2.4 is complete. �

Here is the announced sharp inequality in the one-dimensional case.

Corollary 2.5. Let N = 1 and q =∞. Then for every u ∈ H1(R)(∫
R
|u′|2 dx

)1/2(∫
R
|u|2 dx

)1/2

≥ sup
x∈R
|u(x)|2 , (2.6)

with equality iff u(x) = c h(b(x − a)) for some a ∈ R, b > 0 and c ∈ C, where

h(x) = e−|x|.

Proof. The proof uses the same strategy as that of Corollary 2.4, except that we use

Lemma 2.2 instead of Theorem 2.1. Namely, we apply the inequality of Lemma 2.2

to |u|2 instead of u and use the Schwarz inequality for
∫
|u||u′| dx. We note that this

Schwarz inequality is an equality iff |u| and |u′| are proportional. The only functions

which satisfy this, together with the condition of Lemma 2.2 are the exponentials

stated in Theorem 2.5. �

Remark 2.6 (Additive Sobolev inequality). In the literature, the Sobolev interpolation

inequality (2.2) is often stated in the additive form∫
RN

(
|∇u|2 + |u|2

)
dx ≥ S ′N,q

(∫
RN
|u|q dx

)2/q

, (2.7)

the restrictions on q being the same as in Corollary 2.4. For us, the multiplicative

form (2.2) will be more useful (besides making sense dimensionally, as we explain
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shortly). Let us nevertheless show that the two forms are completely equivalent and

the respective optimal constants are related by

SN,q = θθ(1− θ)1−θS ′N,q

with θ as in the corollary. Given (2.2) we arrive at (2.7) immediately by Young’s

inequality

ab ≤ θa1/θ + (1− θ)b1/(1−θ) , (2.8)

valid for all a, b ≥ 0 and 0 < θ < 1. The converse is only slightly more complicated.

The key observation is that the two terms on the left side of (2.7) have a different

behavior under scaling (‘a different dimensionality’). To capitalize on this fact we

replace u(x) in (2.7) by u(lx), where l > 0 is an arbitrary parameter. We obtain∫
RN

(
|∇u|2 + l−2|u|2

)
dx ≥ S ′N,ql

−2N( 1
q
−N−2

2N )
(∫

RN
|u|q dx

)2/q

. (2.9)

Thus, for any fixed u, the term
∫
|∇u|2 dx is bounded from below by a function of l.

Maximizing this function with respect to l > 0 we obtain (2.2).

As the reader might have already noticed, the same argument as in Corollaries 2.4

and 2.5 yields Sobolev inequalities in W 1,p(RN) as well, that is, lower bounds for∫
|∇u|p dx in terms of suitable Lq-norms. Since those will not play a role in what

follows we do not state them explicitly.

Exercise 2.7. Here is the reason why we call (2.1) an isoperimetric inequality. The

following argument is due to Federer and Fleming [FeFl] and Maz’ya [Ma1].

(1) Deduce from Theorem 2.1 that for any sufficiently smooth domain Ω ⊂ RN

one has

|∂Ω| ≥ CN |Ω|(N−1)/N (2.10)

with the same constant CN as in (2.1). Here |∂Ω| stands for the (N − 1)-

dimensional surface measure of ∂Ω, whereas |Ω| stands for the N -dimensional

Lebesgue measure. For the proof, take u to be an approximation to the char-

acteristic function of Ω.

(2) Denote by Ω∗ the ball in RN , centered at the origin, with the same measure as

Ω. Deduce that

|∂Ω| ≥ CNN
−(N−1)/N |SN−1|−1/N |∂Ω∗| .

This is an isoperimetric inequality, which says that the boundary of any set

cannot be much smaller (in a controlled way) than that of the ball with the

same measure. Actually, it is known that balls have the smallest boundary

among all sets of fixed measure, i.e., |∂Ω| ≥ |∂Ω∗|.
(3) Prove the following elementary version of the co-area formula. For u ∈ CN

0 (RN)

real-valued and g ∈ C1
0(RN),∫

RN
g(x)|∇u(x)| dx =

∫ ∞
0

∫
{|u|=τ}

g(x) dσ(x) dτ . (2.11)
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On the right side, dσ is (N − 1)-dimensional surface measure on {|u| = τ}
which, according to Morse’s theorem, is a smooth manifold for a.e. τ > 0.

(This is where the smoothness assumption on u enters.) For the proof, show

that ∫
RN
w∇u dx =

∫ ∞
0

∫
{|u|=τ}

w · ∇u
|∇u|

dσ(x) dτ

for any w ∈ C1
0(RN ,RN), pick w = g(|∇u|2 + ε2)−1/2∇u and let ε → 0. We

remark that the co-area formula is valid in much greater generality. The proof

(in particular, for Sobolev functions u) is rather involved; see, e.g., [Fe].

(4) Conversely, inequality (2.10) implies inequality (2.1). Prove this first for u ∈
CN

0 (RN) real-valued by using the following consequence of (2.11),∫
RN
|∇u| dx =

∫ ∞
0

|{|u| = τ}| dτ .

In addition, one also needs the fact that for any non-increasing function f on

[0,∞) with limτ→∞ f(τ) = 0 and for any real ν > 1 one has∫ ∞
0

f(τ)(ν−1)/ν dτ ≥
(

ν

ν − 1

∫ ∞
0

f(τ)τ 1/(ν−1) dτ

)(ν−1)/ν

. (2.12)

For the proof of (2.12) write f (ν−1)/ν =
∫∞

0
χ{f (ν−1)/ν>t} dt as a superposition of

characteristic functions (layer cake formula). Since f is non-increasing, these

are characteristic functions of intervals having zero as left endpoint. Now use

Minkowski’s inequality to reduce the proof to the case of a single characteristic

function of the form described.

Exercise 2.8. The purpose of this exercise is to show that the Sobolev inequality (2.2)

does not hold for q = ∞ if N = 2. Prove this by examining the family of functions

uβ with uβ(x) = 1 if |x| ≤ 1 and uβ(x) = (1− ln |x|/ ln β)+ if |x| > 1.

Exercise 2.9. Show the following limiting form of the Sobolev inequality in the two-

dimensional case. Namely, there are constants α,C > 0 such that for any u ∈ H1(R2)

one has ∫
R2

(
exp

(
α|u|2

‖∇u‖2

)
− 1

)
dx ≤ C

‖u‖2

‖∇u‖2
. (2.13)

This inequality from [Og] has its roots in a bound for functions with support in a given

set of finite measure, which is independently due to Yudovič [Yu], Pohozaev [Po2] and

Trudinger [Tr1]. For the proof of (2.13) proceed as follows:

(1) In arbitrary dimension N , use (2.7) to show that the optimal Sobolev constant

in (2.2) can be expressed via the norm of a convolution operator,

θθ(1− θ)1−θS−1
N,q = sup

‖k ∗ f‖2
q

‖f‖2
,

where k(x) = (2π)−N
∫
RN (p2 + 1)−1/2eip·x dp.
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(2) Specializing to N = 2, prove that

k(x) = (2π)−1|x|−1e−|x| .

(Hint: Since k is radially symmetric, one can assume that x = (|x|, 0). Now

deform the p1 integration to the ‘cut’ i[
√
p2

2 + 1,∞) and perform the p2 inte-

gration.)

(3) Use (1), (2) and Young’s inequality to get a lower bound on S2,q of the form

S2,q ≥ c (q + 2)−(q+2)/q .

for all 2 ≤ q <∞ and some c > 0. Use this to prove that the series
∞∑
k=1

αk

k!

(
‖u‖2k

‖∇u‖

)2k

≤
∞∑
k=1

S−k2,2k α
k

k!

‖u‖2

‖∇u‖2

converges for α < c/(2e). (Note that the important point in the proof was a

lower bound on S2,q which is almost as large as q−1 as q →∞. A straightfor-

ward application of (2.5) gives only a lower bound of the order of q−2, which

is not good enough to prove (2.13).

3. Existence of optimizers

Our goal in this section is to introduce some compactness methods to show that

certain minimization problems in Sobolev spaces admit minimizers. In particular, we

show that the infimum

SN,q = inf
06≡u∈H1(RN )

(∫
RN |∇u|

2 dx
)θ (∫

RN |u|
2 dx

)1−θ(∫
RN |u|q dx

)2/q
, θ =

N

2

(
1− 2

q

)
,

is attained for 2 < q <∞ if N = 1, 2 and 2 < q < 2N/(N − 2) if N ≥ 3.

If (uj) ⊂ H1(RN) is a minimizing sequence for SN,q than by scaling and multipli-

cation by a constant one can achieve that ‖∇uj‖ = 1 = ‖uj‖ for all j. Thus, (uj) is

bounded in H1(RN) and, by the Banach–Alaoglu theorem, has a weakly convergent

subsequence. This information, however, is not very useful in our context, as we shall

explain now.

The difficulty that we have to overcome when proving the existence of an optimizer

is that the above minimization problem is invariant under translations. These (non-

compact) symmetry groups allow a minimizing sequence to converge weakly to zero.

For example, if uj(x) = ϕ(x − aj) for a fixed function ϕ and a sequence |aj| → ∞,

then the quotient in the definition of SN,q remains invariant, but uj converges weakly

to zero in H1(RN). Roughly speaking, the results in this section say that translations

are the only ways in which compactness in H1(RN) can fail.

Results of this kind go back to Lieb [Li2] (see also [BrLi2] for an application to

minimization problems) and were later termed ‘concentration compactness principle’

by Lions [Lio1, Lio2]. Earlier methods to prove the existence of a minimizer of the

similar variational problem are based on Schwarz symmetrization, see [Tal, Str, Li1].
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The concentration compactness method has an important advantage over the sym-

metrization method: it shows that any minimizing sequence is relatively compact in

H1(RN) (up to translations). We will see an application of this fact in Section 6.

3.1. Two results from measure theory. In this preliminary subsection we collect

two measure theoretic results that will play a key role in our proofs of existence of

optimizers.

In order to motivate the first result, we recall that Fatou’s lemma states that the

pointwise limit f of a sequence of functions (fj) ⊂ Lp(X) satisfies

lim inf
j→∞

∫
X

|fj|p dx ≥
∫
X

|f |p dx (3.1)

for any p > 0. Here, in general, one cannot expect equality. The next lemma [BrLi],

however, provides the ‘missing term’ in Fatou’s lemma.

Lemma 3.1 (Brézis–Lieb lemma). Let (X, dx) be a measure space and let (fj) be a

bounded sequence in Lp(X), 0 < p <∞, which converges pointwise a.e. to a function

f . Then

lim
j→∞

∫
X

||fj|p − |fj − f |p − |f |p| dx = 0 .

Proof. We write fj = f + gj with gj → 0 pointwise a.e. and estimate for any ε > 0∫
||fj|p − |fj − f |p − |f |p| dx ≤ ε

∫
|gj|p dx+

∫
G

(ε)
j dx

with

G
(ε)
j = (||f + gj|p − |gj|p − |f |p| − ε|gj|p)+ .

We shall prove that (gj) is bounded in Lp and that
∫
G

(ε)
j dx→ 0 as j →∞ for every

fixed ε > 0. Since ε > 0 can be taken arbitrarily small, this will imply the assertion.

Since ‖fj‖p ≤ C we have ‖f‖p ≤ C by (3.1), and therefore∫
|gj|p dx =

∫
|fj − f |p dx ≤ 2p

∫
(|fj|p + |f |p) dx ≤ 2p+1C ,

as claimed. In order to prove the claim about G
(ε)
j we first note that for any ε > 0

(and p > 0) there is a Cε such that for all numbers a, b ∈ C

||a+ b|p − |b|p| ≤ ε|b|p + Cε|a|p .

This implies that

||f + gj|p − |gj|p − |f |p| ≤ ||f + gj|p − |gj|p|+ |f |p ≤ ε|gj|p + (1 + Cε)|f |p ,

and hence G
(ε)
j ≤ (1 + Cε)|f |p. Since gj → 0 a.e. one has G

(ε)
j → 0 a.e. as well,

and since |f |p is integrable, dominated convergence implies that
∫
G

(ε)
j dx → 0. This

completes the proof. �
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Our second measure theoretic result in this section is taken from [FrLiLo]. It gives

a useful condition for preventing a sequence of functions from converging to zero in

measure.

Lemma 3.2 (pqr theorem). For any 0 < p < q < r ≤ ∞ and any Cp, cq, Cr > 0

there are ε > 0 and δ > 0 such that for any function f on a measure space X the

inequalities ‖f‖p ≤ Cp, ‖f‖q ≥ cq and ‖f‖r ≤ Cr imply

|{|f | > ε}| ≥ δ .

In other words, if the Lp and Lr norms are controlled from above and the Lq norm

is controlled from below for a sequence of f ’s, then this sequence cannot converge to

zero in measure.

Proof. By means of the layer cake representation we find that

‖f‖qq = q

∫ ∞
0

|{|f | > λ}|λq−1 dλ .

For any 0 < ε ≤M <∞ we obtain from the q-norm bound

q−1cqq ≤
∫ ε

0

|{|f | > λ}|λq−1 dλ+

∫ M

ε

|{|f | > λ}|λq−1 dλ+

∫ ∞
M

|{|f | > λ}|λq−1 dλ .

We show that the first and the last term on the right side can be made arbitrarily

small by choosing ε small and M large. Namely, we bound∫ ε

0

|{|f | > λ}|λq−1 dλ ≤ εq−p
∫ ε

0

|{|f | > λ}|λp−1 dλ ≤ εq−pp−1‖f‖pp ≤ εq−pp−1Cp
p

and similarly ∫ ∞
M

|{|f | > λ}|λq−1 dλ ≤M q−rr−1Cr
r .

Now we can choose ε so small and M so large that

εq−p
q

p
Cp
p +M q−r q

r
Cr
r < cqq .

Then

|{|f | > ε}| ≥ q

M q − εq

∫ M

ε

|{|f | > λ}|λq−1 dλ ≥
cqq − εq−p

q
p
Cp
p −M q−r q

r
Cr
r

M q − εq
,

which is a positive number. This proves the claim. �

3.2. A concentration compactness lemma. The following theorem describes bounded

sequences in the Sobolev space H1(RN).

Theorem 3.3 (First concentration compactness lemma). Let N ≥ 1 and let (uj) be

a bounded sequence in H1(RN). Then one of the following alternatives occurs.

(1) (uj) converges to zero in Lq(RN) for every 2 < q < ∞ if N = 1, 2 and for

every 2 < q < 2N/(N − 2) if N ≥ 3.
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(2) There is a subsequence (ujm) and a sequence (am) ⊂ RN such that

vm(x) := ujm(x+ am)

converges weakly in H1(RN) to a function v 6≡ 0. Moreover, (vm) converges to v

a.e. and in Lqloc(RN) for every q <∞ if N = 1, 2 and for every q < 2N/(N−2)

if N ≥ 3.

The key in the proof is the following result due to Lieb [Li2].

Lemma 3.4 (Lieb’s translation lemma). Let (uj) be a bounded sequence of functions

in H1(RN) and suppose that there are ε, δ > 0 such that

|{|uj| > ε}| ≥ δ (3.2)

for all j. Then there is a sequence (aj) ⊂ RN such that the translated sequence

uj(x + aj) has a subsequence that converges weakly in H1(RN) to a function that is

not identically zero.

Before turning to the proof of Lemma 3.4, let us show that it implies the concen-

tration compactness lemma.

Proof of Theorem 3.3. Assume that (1) does not hold, that is, there is a q ∈ (2,∞)

if N = 1, 2 or a q ∈ (2, 2N/(N − 2)) if N ≥ 3 such that lim supj→∞ ‖uj‖q > 0. Our

goal is to apply the pqr theorem (Lemma 3.2). Since (1) is not valid we have a lower

bound on the q-norm. We still need two upper bounds on norms. By assumption

the p = 2-norm of the uj’s is bounded from above. Moreover, by Sobolev inequalities

(2.2) there is an r > q such that the r-norm of the uj’s is bounded from above as well.

Thus, the pqr theorem (Lemma 3.2) tells us that the non-vanishing assumption (3.2)

in Lemma 3.4 is satisfied.

Thus, Lemma 3.4 provides us with vectors am and a subsequence such that the

translated sequence vm has a weak limit v in H1(RN) that is not identically zero.

The fact that vm converges to v strongly in Lqloc(RN) for every q < ∞ if N = 1, 2

and for every q < 2N/(N − 2) if N ≥ 3 follows from Rellich’s compactness lemma

(see, e.g., [LiLo, Thm. 8.9]). Thus, on every compact set there is a subsequence that

converges pointwise a.e. on that set. Taking an increasing sequence of compact sets

(e.g., balls with radii tending to infinity) and employing a diagonal argument gives us a

subsequence that converges pointwise a.e. on all of RN . This concludes the proof. �

We now turn to the proof of Lieb’s compactness lemma, which is a slight modifica-

tion of that in [Li2].

Proof of Lemma 3.4. Let us begin by showing the following inequality, valid for any

function u ∈ H1(RN), N ≥ 1, and any r > 0,∫
RN
|u|2 dx ≤ C ′N sup

a∈RN
|{Br(a) ∩ {u 6= 0}|2/N

(∫
RN
|∇u|2 dx+ cNr

−2

∫
RN
|u|2 dx

)
.

(3.3)
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Here Br(a) is the ball of radius r centered at a ∈ RN .

Let χ be a real-valued Lipschitz function with ‖χ‖ = 1 and support in the unit ball

B1(0). Then by the so-called IMS localization formula,∫
RN
|∇u|2 dx =

∫
RN

∫
RN

(
|∇(χa,ru)|2 − r−2‖∇χ‖2|χa,ru|2

)
dx da ,

where χa,r(x) = r−N/2χ((x − a)/r). According to the (non-sharp) Faber–Krahn in-

equality (2.4) we have∫
RN
|∇(χa,ru)|2 dx ≥ CN |Br(a) ∩ {u 6= 0}|−2/N

∫
RN
|χa,ru|2 dx

and, therefore,∫
RN
|∇u|2 dx ≥

∫
RN

(
CN |Br(a) ∩ {u 6= 0}|−2/N − r−2‖∇χ‖2

) ∫
RN
|χa,ru|2 dx da

≥
(
CN inf

a∈RN
|Br(a) ∩ {u 6= 0}|−2/N − r−2‖∇χ‖2

)∫
RN
|u|2 dx .

This is the claimed inequality.

We now show that (3.3) implies the statement of the lemma. Indeed, let (uj) be

a bounded sequence in H1(RN) satisfying (3.2). Then vj := (|uj| − ε/2)+ belongs to

H1(RN) (see, e.g., [LiLo, Thm. 6.18]) and satisfies∫
RN
|∇vj|2 dx ≤

∫
RN
|∇uj|2 dx ≤ sup

k

∫
RN
|∇uk|2 dx =: C <∞

and, by the Markov inequality,∫
RN
|vj|2 dx ≥ (ε/2)2|{vj > ε/2}| = (ε/2)2|{|uj| > ε}| ≥ (ε/2)2δ .

Thus, from (3.3), with u = vj and r = 1,

1 ≤ C ′N sup
a∈RN

|{B1(a) ∩ {vj > 0}|2/N
(

C

(ε/2)2δ
+ cN

)
.

This proves that for every j there is an aj ∈ RN such that

1

2
≤ C ′N |{B1(aj) ∩ {vj > 0}|2/N

(
C

(ε/2)2δ
+ cN

)
.

Thus, ∫
B1(aj)

|uj| dx ≥ (ε/2) |B1(aj) ∩ {|uj| > ε/2}|

= (ε/2) |B1(aj) ∩ {vj > 0}|

≥ (ε/2)(2C ′N)−N/2
(

C

(ε/2)2δ
+ cN

)−N/2
.
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Now consider the translated sequence ũj(x) = uj(x+ aj), which satisfies∫
B1(0)

|ũj| dx =

∫
B1(aj)

|uj| dx ≥ (ε/2)(2C ′N)−N/2
(

C

(ε/2)2δ
+ cN

)−N/2
. (3.4)

Since (ũj) is bounded in H1, it has a weakly convergent subsequence. By Rellich’s

compactness lemma (see, e.g., [LiLo, Thm. 8.9]) this subsequence converges strongly

in L1(B1(0)). Now (3.4) shows that the limit is not identically zero. This proves the

lemma. �

3.3. Existence of minimizers in the subcritial case. Our goal in this subsection

is to prove the following theorem.

Theorem 3.5 (Existence of minimizers). Let 2 < q < ∞ if N = 1, 2 and 2 < q <

2N/(N − 2) if N ≥ 3. Then the infimum

inf
0 6≡u∈H1(RN )

(∫
RN |∇u|

2 dx
)θ (∫

RN |u|
2 dx

)1−θ(∫
RN |u|q dx

)2/q
, θ =

N

2

(
1− 2

q

)
,

is attained. Moreover, any minimizing sequence is relatively compact in H1(RN) up

to translations, dilations and multiplication by constants.

We know already from the Sobolev inequality (2.2) that the infimum is strictly

positive.

With the concentration compactness lemma (Theorem 3.3) at hand, the proof of

Theorem 3.5 is rather short. This lemma takes care of the loss of compactness due to

translations and produces a non-trivial weak limit u. What still needs to be proved

is that the Lq-norm does not decrease in the limit. To exclude this, the idea is to

consider simultaneously a weak limit point u of a minimizing sequence (uj) and the

remainder uj − u. The general proof strategy goes back to [Li3]. Brézis and Lieb

[BrLi2] combined this technique with Lieb’s translation lemma (Lemma 3.4) to solve

minimization problems posed on RN .

Proof. Let (uj) be a minimizing sequence for the infimum in the theorem, which we

denote by SN,q. After multiplying uj by a constant and after rescaling we may assume

that ∫
RN
|∇uj|2 dx =

∫
Rd
|uj|2 dx = 1 (3.5)

for all j. Thus, (uj) is a bounded sequence in H1(RN). Since SN,q > 0 and∫
RN
|uj|q dx = S

−q/2
N,q + o(1) ,

the first alternative in Theorem 3.3 does not occur. Therefore, we infer from that

theorem that, after a translation if necessary, (uj) converges weakly in H1(RN) and
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a.e. to a function u 6≡ 0. We introduce the ‘remainder’ rj = uj − u. The weak

convergence in H1(RN) implies that

1 =

∫
RN
|∇uj|2 dx =

∫
RN
|∇u|2 dx+

∫
RN
|∇rj|2 dx+ o(1) (3.6)

and

1 =

∫
RN
|uj|2 dx =

∫
RN
|u|2 dx+

∫
RN
|rj|2 dx+ o(1) . (3.7)

Moreover, the almost everywhere convergence together with the Brézis–Lieb lemma

(Lemma 3.1) implies that

S
−q/2
N,q + o(1) =

∫
RN
|uj|q dx =

∫
RN
|u|q dx+

∫
RN
|rj|q dx+ o(1) . (3.8)

We now use the elementary inequality

(t1 + t2 + t3)θq/2(m1 +m2 +m3)(1−θ)q/2 ≥ t
θq/2
1 m

(1−θ)q/2
1 + t

θq/2
2 m

(1−θ)q/2
2 + t

θq/2
3 m

(1−θ)q/2
3

for all t1, t2, t3,m1,m2,m3 ≥ 0. Indeed, by Hölder’s inequality in R3 applied to the

vectors (tθ1, t
θ
2, t

θ
3) and (m1−θ

1 ,m1−θ
2 ,m1−θ

3 ), the left side is bounded from below by(
tθ1m

1−θ
1 + tθ2m

1−θ
2 + tθ3m

1−θ
3

)q/2
,

and this in turn can be bounded from below by the claimed expression if we use (twice)

the elementary inequality

(a+ b)q/2 ≥ aq/2 + bq/2 (3.9)

for a, b ≥ 0. (Here we use q ≥ 2.)

From this inequality and (3.6), (3.7) and (3.8) we deduce that

1 =

(∫
RN
|∇u|2 dx+

∫
RN
|∇rj|2 dx+ o(1)

)θq/2(∫
RN
|u|2 dx+

∫
RN
|rj|2 dx+ o(1)

)(1−θ)q/2

≥
(∫

RN
|∇u|2 dx

)θq/2(∫
RN
|u|2 dx

)(1−θ)q/2

+

(∫
RN
|∇rj|2 dx

)θq/2(∫
RN
|rj|2 dx

)(1−θ)q/2

+ o(1)

≥
(∫

RN
|∇u|2 dx

)θq/2(∫
RN
|u|2 dx

)(1−θ)q/2

+ S
q/2
N,q

∫
RN
|rj|q dx+ o(1)

=

(∫
RN
|∇u|2 dx

)θq/2(∫
RN
|u|2 dx

)(1−θ)q/2

+ S
q/2
N,q

(
S
−q/2
N,q −

∫
RN
|u|q dx

)
+ o(1) .

Subtracting 1 from both sides, this becomes

0 ≥
(∫

RN
|∇u|2 dx

)θq/2(∫
RN
|u|2 dx

)(1−θ)q/2

− Sq/2N,q

∫
RN
|u|q dx+ o(1) ,

which (recall that u 6≡ 0) means that u is a minimizer.
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To prove relative compactness of the minimizing sequence, we need to prove that

uj converges to u strongly in H1(RN), which follows if we can prove that
∫
|∇u|2 dx =∫

|u|2 dx = 1. Our proof will rely on the fact that the inequality

(t1 + t2)θq/2(m1 +m2)(1−θ)q/2 ≥ t
θq/2
1 m

(1−θ)q/2
1 + t

θq/2
2 m

(1−θ)q/2
2

is strict, unless t1 = m1 = 0 or t2 = m2 = 0. (This follows from conditions of

equality in Hölder’s inequality and in inequality (3.9).) Now let T1 =
∫
|∇u|2 dx and

M1 =
∫
|u|2 dx and note that 0 < T1 ≤ 1 and 0 < M1 ≤ 1. It follows from (3.6) and

(3.7) that

T2 = 1− T1 = lim
j→∞

∫
|∇rj|2 dx , M2 = 1−M1 = lim

j→∞

∫
|rj|2 dx .

Thus, if we had T1 < 1 or M1 < 1, then we would have the strict inequality

1 = (T1 + T2)θq/2(M1 +M2)(1−θ)q/2 > T
θq/2
1 M

(1−θ)q/2
1 + T

θq/2
2 M

(1−θ)q/2
2 ,

which, because of the bound

T
θq/2
2 M

(1−θ)q/2
2 ≥ S

q/2
N,q lim

j→∞

∫
RN
|rj|q dx = 1− Sq/2N,q

∫
RN
|u|q dx ,

would lead to a contradiction. Thus, T1 = M1 = 1, as we set out to prove. �

4. The method of moving planes

4.1. Symmetry of positive solutions of semi-linear equations. We now intro-

duce a method to prove that positive solutions of semi-linear PDEs are necessarily

radial and decreasing. Thus, while Schwarz symmetrization tells one that if certain

functionals have a minimizer, they also have a radial decreasing minimizer, a conse-

quence of the theorem in this section is that any minimizer is radial decreasing. The

argument uses the so-called method of moving planes.

Theorem 4.1 (Symmetry of positive solutions). Let N ≥ 2 and let f be a function

on [0,∞) satisfying

f(b)− f(a)

b− a
≤ −τ 2 + Cbα for all 0 ≤ a < b (4.1)

for some C ≥ 0, τ > 0 and α > 0. Assume that u ∈ H1(RN) ∩ Lq(RN) for some

q > αN/2 is non-negative and solves

−∆u = f(u) . (4.2)

Then u is radial with respect to some point and (unless u ≡ 0) strictly decreasing with

respect to the distance from this point. The same conclusion holds for τ = 0, provided

N ≥ 3 and u ∈ Ḣ1(RN) ∩ LαN/2(RN).

Note that we do not assume f to be continuous. We only require a one-sided

condition.
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Example 4.2. The function f(u) = uq−1 − u with q > 2 satisfies (4.1). To see this,

we write for a < b,

f(b)− f(a)

b− a
= −1 + (q − 1)

∫ 1

0

((b− a)t+ a)q−2 dt .

Since (b − a)t + a ≤ b for 0 ≤ t ≤ 1, we obtain (4.1) with τ = 1, C = q − 1 and

α = q − 2.

Thus, the non-linearity of our equation (1.2) satisfies assumption (4.1). We also

observe that for q as in Theorem 1.2 the integrability condition in Theorem 4.1 is

automatically satisfied for H1 functions due to the Sobolev interpolation inequality

(2.2). Thus, Theorem 4.1 implies that u in Theorem 1.2 is radial with respect to some

point and a decreasing function with respect to the radius.

The method of moving planes goes back to Alexandrov [Ale] and was popularized

by Serrin [Se] and, in particular, by Gidas–Ni–Nirenberg [GiNiNi1, GiNiNi2]. It has

been extended in various directions and our theorem gives only a glimpse of the power

of the method. In particular, we assume for simplicity that u ∈ Lq(RN) which, in

some sense, means that u vanishes at infinity. This assumption allows us to follow

an argument by Terracini [Te] which is mostly based on Sobolev inequalities and uses

only weak versions of the Hopf lemma and the maximum principle. We discuss those

in the following subsection, before turning to the main proof of Theorem 4.1.

4.2. Maximum principles. Our proof of Theorem 4.1 is based on two versions of

the maximum principle. To motivate the first one, assume that −w′′ + V w = 0 on an

interval (a, b) and w ≥ 0 on that interval. If there is a point c ∈ (a, b) with w(c) = 0,

then (at least if w is smooth) w′(c) = 0 as well and therefore, by uniqueness for second

order ODEs, w ≡ 0. The following lemma is a PDE version of this result. It is a weak

version of the strong maximum principle due to Trudinger [Tr2].

Lemma 4.3. Let Ω ⊂ RN be an open and connected set and let V ∈ L1
loc(Ω). Assume

that w ∈ H1
loc(Ω) ∩ L2

loc(Ω, |V | dx) satisfies

−∆w + V w ≥ 0 in Ω ,

w ≥ 0 in Ω .
(4.3)

Then either w ≡ 0 or else |{w = 0} ∩ Ω| = 0.

The first equation in (4.3) means, by definition, that∫
Ω

(∇ψ · ∇w + V ψw) dx ≥ 0 (4.4)

for all 0 ≤ ψ ∈ H1(Ω) ∩ L2(Ω, |V | dx) with compact support in Ω.

For readers familiar with the notion of capacity we note that our proof of Lemma

4.3 shows that either w ≡ 0 or {w = 0} has zero capacity.
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Proof. Let B be a ball with B ⊂ Ω. We are going to show that if |{w = 0} ∩ B| > 0,

then w ≡ 0 on B. Since Ω is connected, this implies the result.

Thus, let B be a ball and let B′ be a larger open ball with B ⊂ B′ ⊂ B′ ⊂ Ω.

We choose a real-valued function ζ ∈ C∞0 (B′) with ζ ≡ 1 on B. Then (w + ε)−1ζ2 is

non-negative, has compact support in Ω and belongs to H1(Ω)∩L2(Ω, |V | dx) for any

ε > 0. Assumption (4.4) with ψ = (w + ε)−1ζ2 implies that∫
Ω

ζ2(w + ε)−2|∇w|2 dx ≤
∫

Ω

(
2ζ(w + ε)−1∇ζ · ∇w + ζ2V (w + ε)−1w

)
dx .

The right side is bounded from above by

2

(∫
Ω

ζ2(w + ε)−2|∇w|2 dx
)1/2(∫

Ω

|∇ζ|2 dx
)1/2

+

∫
Ω

ζ2V+ dx

≤ 1

2

∫
Ω

ζ2(w + ε)−2|∇w|2 dx+

∫
Ω

(
2|∇ζ|2 + ζ2V+

)
dx ,

and therefore we have shown that∫
Ω

ζ2(w + ε)−2|∇w|2 dx ≤ 2

∫
Ω

(
2|∇ζ|2 + ζ2V+

)
dx =: C

with a constant C independent of ε. In terms of uε = ln(1 + w/ε), the previous

inequality can be written as∫
B

|∇uε|2 dx ≤
∫

Ω

ζ2|∇uε|2 dx ≤ C .

On the other hand, let K = {w = 0} ∩ B and assume that |K| > 0. Since uε
vanishes on this set, a version of the Poincaré inequality (proved via contradiction in

the same way as the ‘usual’ Poincaré inequality with a mean value zero condition; see,

e.g., [LiLo, Thm. 8.11]) implies that∫
B

|∇uε|2 dx ≥ CP

∫
B

|uε|2 dx ,

where CP > 0 depends on |B|, |K| and N , but not on uε. Combining the last two

inequalities we learn that ∫
B

|uε|2 dx ≤ C−1
P C

for all ε > 0. Since uε →∞ pointwise on B \K as ε→ 0, we infer from the monotone

convergence theorem that |B \K| = 0. That is, w ≡ 0 a.e. on B, as claimed. �

To motivate our next lemma and its proof we assume that w ∈ H1(RN) satisfies

−∆w + V w ≥ 0 for some non-negative V . We want to conclude that w ≥ 0. Indeed,

since w− ∈ H1(RN), we can use this function in the weak form of this equation and

obtain −
∫
w(x)<0

(|∇w|2 + V |w|2) dx ≥ 0. Since the integrand is non-negative, this

implies that w is non-negative, as claimed. In the following we show that the same

conclusion remains valid in N ≥ 3 if V is ‘not too negative’. We also find a similar

result for N = 2.
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Lemma 4.4. Let γ > 0 if N = 2 and γ ≥ 0 if N ≥ 3, let Ω ⊂ RN be an open set and

let V− ∈ Lγ+N/2(Ω) and V+ ∈ L1
loc(Ω). Let τ > 0 if γ > 0 and τ ≥ 0 if γ = 0 and

assume that w ∈ H1
0 (Ω) ∩ L2(Ω, V+ dx) satisfies in the weak sense

−∆w + V w ≥ −τ 2w in Ω . (4.5)

If ∫
{x∈Ω:w(x)<0}

V
γ+N/2
− dx < τ 2γ

(
L

(1)
γ,N

)−1

,

then w ≥ 0 in Ω. Here L
(1)
γ,N = γγ (N/2)N/2 (γ +N/2)−(γ+N/2)S

−(γ+N/2)
N,2(γ+N/2)/(γ+N/2−1).

If τ = γ = 0 we interpret τ 2γ = 1.

Proof. As in the discussion before the proposition, w− ∈ H1
0 (Ω) ∩ L2(Ω, V+ dx) and

therefore the weak definition of (4.5) implies that∫
Ω

(
|∇w−|2 + V w2

−
)
dx ≤ −τ 2

∫
Ω

w2
− dx

Let us assume γ > 0. We bound the left side from below using Hölder’s inequality

with 1/(γ+N/2)+2/q = 1 and the Sobolev inequalities (2.2) with θ = (N/2)(1−2/q),∫
Ω

(
|∇w−|2 + V w2

−
)
dx ≥

∫
Ω

|∇w−|2 dx− ‖V−χ{w<0}‖γ+N/2‖w−‖2
q

≥
∫

Ω

|∇w−|2 dx− S−1
N,q‖V−χ{w<0}‖γ+N/2‖∇w−‖2θ‖w−‖2(1−θ)

≥ −θθ/(1−θ)(1− θ)S−1−N/(2γ))
N,q ‖V−χ{w<0}‖1+N/(2γ)

γ+N/2 ‖w−‖2 .

For the last inequality we minimized over ‖∇w−‖. Thus, we have shown that if w− 6≡ 0

then

θθ/(1−θ)(1− θ)S−1−N/(2γ))
N,q ‖V−χ{w<0}‖1+N/(2γ)

γ+d/2 ≥ τ 2 ,

that is,

‖V−χ{w<0}‖γ+N/2
γ+d/2 ≥ θ−γθ/(1−θ)(1− θ)−γ Sγ+N/2

N,q τ 2γ =
(γ +N/2)γ+N/2

(N/2)N/2 γγ
S
γ+N/2
N,q τ 2γ .

This implies the statement of the proposition for γ > 0. The case γ = 0 if N ≥ 3 is

handled similarly using the Sobolev inequality (2.3). �

4.3. Proof of Theorem 4.1. Before beginnning with the proof of Theorem 4.1 we

observe the following strategy of how to prove that a function is radially symmetric

functions.

Lemma 4.5. Let u be a non-negative, measurable function on RN such that |{u >

τ}| <∞ for any τ > 0. Assume that for any e ∈ SN−1 there is an a ∈ R such that

u(x) = u(x− 2(x · e− a)e) a.e. x ∈ RN . (4.6)

Then there is an x0 ∈ RN and a function ũ on [0,∞) such that u(x) = ũ(|x− x0|) for

a.e. x ∈ RN .
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In other words, if for every direction there is a hyperplane normal to this direction

such that u is reflection symmetric with respect to this hyperplane (this is (4.6)), then

u is radial with respect to some origin.

Proof. We shall prove the following

Claim. Let E ⊂ RN be a set of finite measure and let e ∈ SN−1 and a ∈ R. If E

is invariant (up to a set of measure zero) both under the map x 7→ −x and under the

map x 7→ x− 2(x · e− a)e, then a = 0, unless |E| = 0.

Before proving this claim, let us show that it implies the statement of the lemma.

We fix an orthonormal basis e1, . . . , eN of RN . Then, after translating u if necessary,

we may assume that u(. . . , xj, . . .) = u(. . . ,−xj, . . .) for every 1 ≤ j ≤ N and a.e.

x ∈ RN . (Note that (4.6) remains valid, possibly with a different a.) In particular,

u(x) = u(−x) for a.e. x ∈ RN .

Now we fix τ > 0 and let E = {u > τ}. Then (4.6) and the property u(x) = u(−x)

for a.e. x ∈ RN imply that E satisfies the assumptions of the claim for every e ∈ SN−1

and some a ∈ R (depending on e). We infer that E is reflection symmetric with respect

to any hyperplane passing through the origin. Thus, E is radial with respect to the

origin and, since τ is arbitrary, u is radial with respect to the origin, as required.

Thus, it remains to prove the claim. Replacing e by −e if necessary, we may assume

that a ≥ 0. By the invariance under that map x 7→ x− 2(x · e− a)e we have

|{x ∈ E : x · e > a}| = |{x ∈ E : x · e < a}| .

On the other hand, by the invariance under x 7→ −x we have

|{x ∈ E : x · e > 0}| = |{x ∈ E : x · e < 0}| .

We conclude from this that |{x ∈ E : 0 < x · e < a}| = 0.

Now assume that a > 0. By iterating reflections and inversions we shall deduce

that |E| = 0. Indeed, since E is invariant under x 7→ x − 2(x · e − a)e, the fact that

|{x ∈ E : 0 < x · e < a}| = 0 implies that |{x ∈ E : 0 < x · e < 2a}| = 0 and

then, since E is invariant under x 7→ −x, |{x ∈ E : −2a < x · e < 2a}| = 0. Using

again the reflection invariance we find |{x ∈ E : −2a < x · e < 4a}| = 0 and then by

inversion invariance |{x ∈ E : −4a < x ·e < 4a}| = 0. Continuing similarly, we obtain

|{x ∈ E : −2na < x · e < 2na}| = 0 and, since |{x ∈ E : −2na < x · e < 2na}| → |E|
for a > 0 by monotone convergence, we conclude that |E| = 0. This proves the

claim. �

We now turn to the proof of Theorem 4.1. We denote coordinates in RN by x =

(x1, x
′) with x1 ∈ R and x′ ∈ RN−1. Our goal is to prove that there is a λ∗ ∈ R such

that u(2λ∗ − x1, x
′) = u(x1, x

′) for all x ∈ RN and that for all x′ ∈ RN−1 the function

x1 7→ u(x1, x
′) is strictly decreasing for x1 > λ∗. Since the choice of the x1-axis is

arbitrary, this, together with Lemma 4.5 will imply the radial symmetry part of the

theorem. We will comment on the monotonicity after the proof.
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We first introduce some notation. For λ ∈ R and a point x = (x1, x
′) we denote by

xλ := (2λ− x1, x
′) its reflection on the hyperplane {x1 = λ}. Moreover, the reflection

of a function v on RN is defined by vλ(x) := v(xλ). Assume now that u solves (4.2)

and put

Λ := {µ ∈ R : for all λ > µ and for all x with x1 < λ one has u(x) ≥ uλ(x)} .

Moreover, let wλ := u− uλ.
Step 1. Λ is non-empty and bounded below. Since −∆ commutes with reflections,

the function wλ satisfies the equation

−∆wλ + V wλ = −τ 2wλ with V := −g(u)− g(uλ)

u− uλ
,

where g(a) = f(a) + τ 2a. Since wλ ∈ H1
0 ({x1 < λ}) we can apply Lemma 4.4. To do

so, we write q = α(γ + N/2) for some γ > 0. If N ≥ 3 and τ = 0, we take γ = 0.

Then, using (4.1), we have on the set {wλ < 0} the bound V ≥ −Cuαλ and, therefore,∫
{x1<λ,wλ<0}

V
γ+N/2
− dx ≤ Cγ+N/2

∫
{x1<λ}

uqλ dx = Cγ+N/2

∫
{x1>λ}

uq dx .

Since u ∈ Lq(RN) there is a µ ∈ R such that

Cγ+N/2

∫
{x1>λ}

uq dx < τ 2γ
(
L

(1)
γ,N

)−1

for all λ > µ. Hence Lemma 4.4 implies that wλ ≥ 0 on {x1 < λ} for all λ > µ, i.e.,

µ ∈ Λ.

It is easy to see that Λ is bounded from below. Indeed, otherwise u(x) were non-

increasing with respect to x1 for any x′, which would contradict u ∈ Lq(RN) – unless

u ≡ 0, of course.

Step 2. Proof that uλ∗ = u, where

λ∗ := inf Λ .

One has wλ ≥ 0 in {x1 < λ} for all λ > λ∗ and hence, since wλ → wλ∗ in Lq, also

wλ∗ ≥ 0 in {x1 < λ∗}. According to the maximum principle (Lemma 4.3) the claim

will follow if we can prove that wλ∗ is not positive almost everywhere on {x1 < λ∗}.
We argue by contradiction, assuming that wλ∗ > 0 a.e. We define

I(λ) :=

∫
χ{x1<λ}χ{wλ<0}u

q
λ dx =

∫
χ{x1>λ}χ{wλ>0}u

q dx

and claim that there is a δ > 0 such that I(λ) < C−γ−N/2τ 2γ
(
L

(1)
γ,N

)−1

for all λ ∈
(λ∗ − δ, λ∗). Assuming this for the moment, we deduce as in Step 1 that wλ ≥ 0 on

{x1 < λ} for all λ ∈ (λ∗ − δ, λ∗), in contradiction to the definition of λ∗.

In order to prove the above claim we shall show that any sequence (λn) with λn → λ∗
has a subsequence (λnj) with I(λnj) → I(λ∗) = 0. Indeed, since translations are

continuous in Lq, one has uλn → uλ∗ in Lq and hence uλnj → uλ∗ a.e. for a subsequence.
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Thus wλnj → wλ∗ a.e. Since wλ∗ > 0 a.e. on {x1 < λ∗} and therefore wλ∗ < 0 a.e.

on {x1 > λ∗} , this implies also that χ{wλnj<0} → χ{wλ∗<0} a.e. (Note that the strict

negativity of wλ∗ is crucial at this point.) Since χ{x1>λn} → χ{x1>λ∗} pointwise and

uq ∈ L1, the assertion follows by dominated convergence. This completes the proof of

the Step 2 and, therefore as explained before, by means of Lemma 4.5, the proof of

the radial symmetry part of Theorem 4.1.

Note that we also have shown that x1 7→ u(x1, x
′) is non-increasing on (λ∗,∞).

Since u is radial with respect to some point, this means that u is a non-increasing

function of the radius. In particular, if we write ∂ju = u′(r)xj/r then u′ ≤ 0 on

(0,∞). Since u′ solves the second-order equation(
−∂2

r − (N − 1)r−1∂r + (N − 1)r−2 − f ′(u(r))
)
u′ = 0

and is not identically zero, we conclude by ODE uniqueness that u′ is strictly negative.

Thus, u is strictly decreasing. This completes the proof of Theorem 4.1.

5. Uniqueness of ground states

5.1. Kwong’s uniqueness theorem. In this section we prove uniqueness (up to

translation) of positive H1-solutions of the equation −∆u−uq−1 = −u in RN , N ≥ 2.

According to our discussion following Example 4.2 we know that any positive solution

is radial with respect to some point and therefore it suffices to prove uniqueness for

positive, finite-energy solutions of the ODE

− ∂2
ru−

N − 1

r
∂ru− uq−1 = −u in (0,∞) (5.1)

with boundary condition u′(0) = 0. We note that N enters this equation only as a

parameter and, in fact, we will never use the fact that it is integer. Thus, from now

on in this section we replace N by an arbitrary real number ν > 1.

It turns out that uniqueness of positive solutions of (5.1) with finite energy is a

remarkably deep result, which is due to Kwong [Kw]. Earlier works include [Co,

McLSe], as well as [Zh], where uniqueness was proved for a certain notion of ‘ground

state solutions’. Kwong’s proof was later simplified by McLeod [McL] and we follow

mostly his arguments and their exposition in [Tao]. For more general uniqueness

results obtained by a different method we refer for instance to [SeTa].

Here is Kwong’s theorem.

Theorem 5.1. Let ν > 1 and q > 2. Then the problem
−∂2

rQ− ν−1
r
∂rQ−Qq−1 = −Q in (0,∞) ,

Q′(0) = 0 , limr→∞Q(r) = 0 ,

Q > 0 in (0,∞) ,

(5.2)

has at most one solution.
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We emphasize that this theorem is a conditional result which does not assume the

existence of a solution of (5.2). It is not difficult, however, to show that a solution

exists for every q > 2 if 1 < ν ≤ 2 and for every 2 < q < 2ν/(ν − 2) if ν > 2. (We

know this already for integer values of ν.) Moreover, using Pohozaev’s identity one

can show that (5.2) does not have a solution if ν > 2 and q ≥ 2ν/(ν − 2).

Remark 5.2. We note that the boundary conditions in (5.2) are pointwise conditions

and not ‘energy’ conditions. We leave it as a simple exercise to show that if Q satisfies

(5.2) then Q ∈ H1((0,∞), rν−1dr), that is,∫ ∞
0

(|Q′|2 + |Q|2)rν−1 dr <∞ .

Conversely, if 0 < Q ∈ H1((0,∞), rν−1dr) satisfies∫ ∞
0

(
ψ′Q′ − ψQq−1 + ψQ

)
rν−1 dr = 0 for all ψ ∈ H1((0,∞), rν−1dr) ,

then Q is smooth and satisfies ∂rQ(0) = 0 and limr→∞Q(r) = 0.

Throughout this subsection the parameters ν and q are fixed and satisfy the as-

sumptions of this theorem.

We are going to prove Theorem 5.1 using the shooting method. The use of this

method in connection with uniqueness proofs originates in the works of Kolodner [Ko]

and Coffman [Co]. It consists in considering for any a ∈ (0,∞) the solution Qa of{
−∂2

rQa − ν−1
r
∂rQa − |Qa|q−2Qa = −Qa

Qa(0) = a , Q′a(0) = 0 .
(5.3)

By standard results about initial value problems, there is a unique solution Qa for each

a > 0 and this solution is defined on all of [0,∞). Moreover, Qa depends smoothly

on a. (We leave it as a simple exercise to show that the singular term (ν − 1)r−1 does

not destroy the smoothness of Q at the origin.)

We are going to classify the shooting parameter a as follows,

S+ = {a > 0 : inf Qa > 0} ,
S0 = {a > 0 : inf Qa = 0} ,
S− = {a > 0 : inf Qa < 0} .

This is a decomposition of the interval (0,∞) into three disjoint sets. Since Theorem

5.1 is only interesting if a solution to the problem in the theorem exists, we will in the

following assume that

S0 6= ∅ , (5.4)

Theorem 5.1 follows immediately from



GROUND STATES — February 25, 2013 25

Proposition 5.3 (Classification of initial conditions). Assume (5.4). Then there is

an a0 > 0 such that

S+ = (0, a0) , S0 = {a0} , S− = (a0,∞) .

To appreciate the statement of this proposition we will consider in the next subsec-

tion the (much simpler) case ν = 1. We shall prove by elementary means the analogue

of Proposition 5.3.

5.2. A warm-up problem. In the case ν = 1 we obtain the autonomous equation

Q̈ = −V ′(Q) in R , (5.5)

where we now denote the independent variable by t and differentiation with respect

to t by a dot. The case we have in mind is

V (Q) =
1

q
|Q|q − 1

2
|Q|2 , (5.6)

but our discussion here applies to general real C1 functions V on R.

The key observation, on which everything in this subsection hinges, is that the

energy

E(t) =
1

2
|Q̇(t)|2 + V (Q(t))

is independent of t. This can be easily verified by differentiation.

One consequence of energy conservation is that the solution remains for all times in

the potential well {Q ∈ R : V (Q) ≤ E}, where E = E(t0) for some arbitrary time t0.

Another consequence is that if I is an interval such that Q̇ does not vanish in the

interior of I (which is the same thing as V (Q)−E does not vanish), then Q solves in

I

either Q̇ =
√

2(E − V (Q)) or Q̇ = −
√

2(E − V (Q)) , (5.7)

depending on the (constant) sign of Q̇ in I. Equations (5.7) is a first-order ODE with

separated variables, and therefore Q is given implicitly by the equation

t = t0 −
∫ Q(t)

Q0

dq√
2(E − V (q))

, (5.8)

where t0 ∈ I, Q(t0) = Q0 and, to be specific, Q̇(t0) < 0.

For simplicity, in the following we only discuss the case Q̇(t0) = 0. (We will have

t0 ∈ ∂I and Q̇ < 0 in I, so (5.8) is still valid.)

Proposition 5.4. Let V be a real C1 function on R, let E > inf V and assume that

there are A < B with

V (A) = V (B) = E , V (q) < E if q ∈ (A,B)

and

V ′(B) > 0 . (5.9)
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Let t0 ∈ R. Then there is a unique solution Q of (5.5) satisfying Q(t0) = B and

Q̇(t0) = 0. Let

T = 2

∫ B

A

dq√
2(E − V (q))

.

If T < ∞, then Q is periodic with minimal period T . If T = ∞, then Q is strictly

decreasing with limt→∞Q(t) = A.

Note the assumption (5.9). Of course, if V ′(B) = 0, then Q ≡ B is a constant

solution.

It is easy to see that because of (5.9) the integral defining T converges at q = B

and any possible divergence comes from the behavior of V at A. In particular, if

V ′(A) < 0, then T <∞. Conversely, if V ′(A) = 0 and V is twice differentiable at A,

then T =∞.

Proof. Since (E − V (q))−1/2 is integrable near q = B by (5.9), it is easy to see that

(5.8) with Q0 = B defines a function Q in a neighborhood of t = t0 with Q(t0) = B.

This function is differentiable and satisfies the first and the second equation in (5.7)

on the left and on the right of t0, respectively, and Q̇(t0) = 0. Equations (5.7) together

with the C1 regularity of V imply that Q solves (5.5) in a neighborhood of t0.

Conversely, as explained before, any solution of (5.5) satisfies (5.7) and therefore

(5.8). This proves existence and uniqueness of Q near t = t0.

Let us introduce t1 := sup{t ≥ t0 : Q̇ < 0 on (t0, t)} and C := limt→t1 Q(t), which

exists by monotonicity, although its finiteness is not clear a-priori. But, indeed, C ≥ A

for, if Q(t) = A for some t ∈ (t0, t1), then Q̇(t) = 0 by energy conservation. Thus, in

particular, C > −∞ and, therefore, limt→t1 Q̇(t) = 0. (This is clear if t1 = ∞ and, if

t1 <∞, we use the fact that if Q̇(t1) < 0, then the solution could be extended beyond

t1 with negative derivative.) Now energy conservation implies that C = A.

Finally, we pass to the limit t → t1 in (5.8). If t1 = ∞, we find that T = ∞. We

extend the solution by reflection at t = t0 to all of R. Since Q̇(t0) = 0, the extended

function is C2 on R and solves the required equation (5.5). This completes the proof

for t1 =∞.

In the case t1 <∞, (5.8) yields

t1 − t0 =

∫ B

A

dq√
2(E − V (q))

=
T

2
.

We extend Q by reflection to the interval [t1, 2t1− t0] and then by translation to all of

R. By construction this is a periodic function of period T . Using Q̇(t0) = Q̇(t1) = 0

we verify that we have found a solution of (5.5). This proves the claim. �

Finally, let us return to the special case where V is of the form (5.6) with some q > 2.

Similarly to the previous subsection, for a > 0 we denote by Qa the solution of (5.5)

satisfying Qa(0) = a and Q̇a(0) = 0. Then clearly Q1 ≡ 1. Moreover, Proposition

5.4 together with the remark following the proposition implies that Qa is periodic
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for a ∈ (0, 1) ∪ (1, a0) ∪ (a0,∞), where a0 = (q/2)1/(q−2). (This is the point where

V (a0) = V (0) = 0 and V ′(0) = 0.) Moreover, Qa0 is a strictly decreasing function

tending to zero at infinity. This proves that

S+ = (0, (q/2)1/(q−2)) , S0 = {(q/2)1/(q−2)} , S− = ((q/2)1/(q−2),∞) .

Let us compare this with Kwong’s theorem. Proposition 5.3 says that the situation

does not change qualitatively if the non-autonomous term (ν− 1)t−1Q̇ is added to the

left side of (5.5). The situation does change quantitatively, however, as below we shall

see that a0 > (q/2)1/(q−2) for ν > 1.

5.3. Strategy of the proof of Theorem 5.1. We begin by observing that

S− is open . (5.10)

Indeed, this is a simple consequence of the continuous dependence of Qa on a. The

fact that S+ is open as well (and contains a neighborhood of zero) is more involved.

We state it as a lemma which we shall prove in the following subsection.

Lemma 5.5. The set S+ is open. Moreover, (0, (q/2)1/(q−2)] ⊂ S+.

According to this lemma, (5.10) and (5.4) there is an a0 > (q/2)1/(q−2) such that

(0, a0) ⊂ S+ and a0 ∈ S0 . (5.11)

Thus, to prove Proposition 5.3 we need to show that any a > a0 belongs to S−. We

shall do this by analyzing the first zero of Qa in (0,∞) for a ∈ S−. (This zero exists

by definition of S−.) We denote this zero by Ra, so that

Qa(r) > 0 in [0, Ra) and Qa(Ra) = 0 . (5.12)

We set Ra = +∞ for a ∈ S0. We observe that

the function a 7→ Ra is continuous on S0 ∪ S− . (5.13)

By continuity at a point a ∈ S0 we mean that if a sequence (an) ⊂ S− converges to

a ∈ S0, then Ran → Ra = ∞. The proof of (5.13) relies on the unique solvability of

the Cauchy problem, which excludes double zeroes, and the smooth dependence of Qa

on a. We leave it as an exercise.

We are now ready to state the key observation in the proof of Proposition 5.3.

Proposition 5.6 (Monotonicity of zeroes). Let a0 be defined by (5.11). Then (a0, a0 +

ε) ⊂ S− for some ε > 0. Moreover, define

a− := sup{a > a0 : (a0, a) ⊂ S−} ∈ (a0,+∞] .

Then the function a 7→ Ra is strictly decreasing on (a0, a−).

Before discussing the proof of this proposition, let us see how it implies Proposi-

tion 5.3.
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Proof of Proposition 5.3 given Proposition 5.6. By (5.10) and Lemma 5.5 either a− =

∞ or a− ∈ S0 and, in order to prove Proposition 5.3, we have to exclude the second

possibility. By the second statement of Proposition 5.6, a 7→ Ra is a strictly decreasing

function on (a0, a−) and therefore lim supa→a− Ra <∞. By (5.13) this is incompatible

with a− ∈ S0 (which would mean Ra− =∞), and therefore proves Proposition 5.3. �

Thus, everything is reduced to studying the monotonicity of the first zero Ra of Qa.

The following lemma gives a convenient condition for this in terms of the function

δa :=
∂Q

∂a
.

Note that this is the (unique) solution of{
−∂2

r δa − ν−1
r
∂rδa − (q − 1)|Qa|q−2δa = −δa

δa(0) = 1 , δ′a(0) = 0 .
(5.14)

Lemma 5.7. If a ∈ S− and δa(Ra) < 0, then dR
da

(a) < 0. Moreover, if a ∈ S0 and

limr→∞ δa(r) = −∞, then (a, a+ ε) ⊂ S− for some ε > 0.

Proof. We differentiate the equation Qa(Ra) = 0 with respect to a at a point in S−
and obtain

dR

da
= − δa(Ra)

∂rQa(Ra)
(5.15)

Because Cauchy uniqueness for equation (5.3), we have ∂rQa(Ra) < 0 and therefore

the monotonicity stated in Proposition 5.6 is equivalent to δa(Ra) < 0, proving the

first part of the lemma.

The proof for a ∈ S0 is similar (treating Ra = +∞ in the same way as Ra <∞ for

a ∈ S−) and is left as an exercise; see also [McL, Lemma 3]. �

We prove Proposition 5.6 via Lemma 5.7, that is, we prove that limr→∞ δa0(r) = −∞
and that δa(Ra) < 0 for every a ∈ (a0, a−). To do this we employ a continuity

argument. That is, we verify a certain property of a at a = a0 and show that it

persists as a is increased continuously above a0 and stays in S−. The property in

question is that δa has exactly one zero in (0, Ra) and that δa(Ra) < 0. (If a ∈ S0 the

last condition should be interpreted as limr→∞ δa(r) = −∞.)

The continuity method relies on two lemmas, which we state now and prove later

in Subsection 5.5.

Lemma 5.8. For every a ∈ S0 ∪ S−, δa has at least one zero in (0, Ra). Moreover,

for a0 from (5.11), δa0 has exactly one zero in (0,∞).

The second lemma is the technical main result which lies at the heart of the proof.

Lemma 5.9. Let a ∈ S0 ∪ S− and assume that δa has exactly one zero in (0, Ra).

Then δa(Ra) < 0 if a ∈ S− and limr→∞ δa(r) = −∞ if a ∈ S0.

We now reduce the proof of Proposition 5.6 to the proof of these two lemmas.
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Proof of Proposition 5.6 given Lemmas 5.8 and 5.9. Let a0 be defined by (5.11). Ac-

cording to Lemma 5.8, δa0 has a unique zero in (0,∞) and therefore, by Lemma

5.9, limr→∞ δa0(r) = −∞. By the second statement in Lemma 5.7 this implies that

(a0, a0 + ε) ⊂ S− for some ε > 0. This proves the first statement of Proposition 5.6.

Now we introduce the set

A = {a > a0 : a ∈ S− , δa has exactly one zero in (0, Ra)}

and define

a1 = sup{a > a0 : (a0, a) ⊂ A} ∈ [a0,+∞] .

Then, by Lemma 5.9, δa(Ra) < 0 for a ∈ A and therefore, by the first statement in

Lemma 5.7, a 7→ Ra is strictly decreasing on (a0, a1). Clearly, a1 ≤ a− and to conclude

the proof we need to show that

a1 ≥ a− . (5.16)

The proof of this fact will be based on several properties of the set A. First note that

since δa0 has a unique zero in (0,∞) and satisfies limr→∞ δa0(r) = −∞, the continuous

dependence on a shows that (a0, a0 +ε) ⊂ A for some ε > 0. Thus, A 6= ∅ and a1 > a0.

A similar argument, based again on the continuous dependence on a and on the fact

that δa(Ra) < 0 for a ∈ A (Lemma 5.9), shows that

if a ∈ A , then [a, a+ ε) ⊂ A for some ε > 0 . (5.17)

We now prove that

if a ∈ S− and (a− ε, a) ⊂ A for some ε > 0 , then a ∈ A . (5.18)

Indeed, by assumption δb has exactly one zero in (0, Rb) for all b ∈ (a − ε, a) and by

Lemma 5.8 δa has at least one zero in (0, Ra). Moreover, δb(0) = 1 for all b. Finally,

δa cannot have a double zero because it solves a second-order equation. All these facts

imply that δa has exactly one zero in (0, Ra), which proves (5.18).

With (5.17) and (5.18) at hand it is easy to prove (5.16). We argue by contradiction

and assume that a1 < a−. Then a1 ∈ S− and (a0, a1) ⊂ A, so that by (5.18), a1 ∈ A.

Thus, by (5.17), [a1, a1+ε) ⊂ A, which contradicts the definition of a1. This completes

the proof of Proposition 5.6. �

It remains to prove the lemmas. This is the content of the following subsections.

5.4. Analysis of S+. The analysis in this subsection bears some similarities with the

arguments in the autonomous case ν = 1. It is based on the function

Ea(r) =
1

2
|∂rQa(r)|2 + V (Qa(r))

with V from (5.6) and the monotonicity formula

∂rEa(r) = −ν − 1

r
|∂rQa(r)|2 , (5.19)

which implies that Ea is non-increasing.
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As a first consequence of this formula and the fact that

Ea(r) ≥ inf V > −∞ ,

we infer that Ea(∞) = limr→∞Ea(r) exists and is finite. We also infer that any Qa is

a bounded function.

Proof of Lemma 5.5. First part. We prove that (0, (q/2)1/(q−2)] ⊂ S+. First, let a ∈
(0, (q/2)1/(q−2)). Then, by (5.19),

V (Qa(r)) ≤ Ea(r) ≤ Ea(0) = V (a) =
1

q
aq − 1

2
a2 < 0 .

Since V (a) < 0 we have

{Q ∈ R : V (Q) ≤ V (a)} = [−Q>,−Q<] ∪ [Q<, Q>]

for some 0 < Q< ≤ Q> <∞ (depending on a). Since Qa(0) = a > 0, we conclude by

continuity that

Q< ≤ Qq(r) ≤ Q> for all r ≥ 0 .

Thus, inf Qa ≥ Q< > 0 and therefore a ∈ S+.

Now let a = (q/2)1/(q−2). Then, by continuity, inf [0,ε] Qa > 0 for some ε > 0.

Moreover, by (5.19) and the fact that Qa is non-constant, Ea(ε) < 0. Now the same

argument as before shows that inf [ε,∞) Qa > 0 and we are done. �

Lemma 5.10 (Monotonicity of solutions). (1) If a ∈ S+ ∩ (0, 1), then there is an

R̃a > 0 such that ∂rQa(r) > 0 for all r ∈ (0, R̃a) and ∂rQa(R̃a) = 0. Moreover,

Qa(R̃a) > 1.

(2) If a = 1, then Qa ≡ 1.

(3) If a ∈ S+ ∩ (1,∞), then there is an R̃a > 0 such that ∂rQa(r) < 0 for all

r ∈ (0, R̃a) and ∂rQa(R̃a) = 0. Moreover, Qa(R̃a) < 1.

(4) If a ∈ S0, then ∂rQa(r) < 0 for all r ∈ (0,∞).

(5) If a ∈ S−, then ∂rQa(r) < 0 for all r ∈ (0, Ra].

Proof. Let us assume a > 1. (The case 0 < a < 1 is similar and the case a = 1 is

clear.) Let r∗ ≥ 0 such that ∂rQa(r∗) = 0. (Such a point always exists, e.g., r∗ = 0.)

From (5.3) we learn that

∂2
rQa(r∗) = −Qa(r∗)

(
|Qa(r∗)|q−2 − 1

)
,

By unique solvability of (5.3) we have Qa(r∗) 6= 0, 1 (since a 6= 0, 1). Thus, Qa has a

local maximum (minimum, respectively) at r∗ if either Qa(r∗) > 1 or −1 < Qa(r∗) < 0

(either Qa(r∗) < −1 or 0 < Qa(r∗) < 1, respectively). In particular, taking r∗ = 0, we

conclude that Qa has a local maximum at zero.

Thus, only the following cases can occur

(i) Qa decreases up to some r∗∗ > 0, where Qa has a local minimum and where

0 < Qa(r∗∗) < 1;
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(ii) Qa decreases up to some r∗∗ > 0, where Qa has a local minimum and where

Qa(r∗∗) < −1;

(iii) Qa decreases for all r ≥ 0.

We claim that for a ∈ S0 ∪ S− case (i) cannot occur. Indeed, for a ∈ S− one has

Ea(Ra) > 0. In case (i) one would have Ea(r∗∗) < 0 and Ra > r∗∗, which contradicts

(5.19). The argument for a ∈ S0 is similar with Ea(∞) = 0.

Thus, if a ∈ S−, then either (ii) or (iii) occurs (with limr→∞Q(r) < 0 in case (iii)),

which implies the assertion in this case. Similarly, if a ∈ S0, then (iii) occurs (with

limr→∞Q(r) = 0), which again implies the assertion in this case.

Thus, it remains to discuss the case a ∈ S+. Clearly, in this case (ii) cannot occur,

and it remains to prove the (iii) does not occur. We argue by contradition and assume

that Qa decreases for all r ≥ 0. Let α = limr→∞Qa(r). Since a ∈ S+, we have α > 0.

Moreover, it follows from (5.3) that limr→∞ ∂
2
rQa(r) exists and equals −α(αq−2 − 1).

But the limit of ∂2
rQa, if it exists, is necessarily equal to zero, and therefore α = 1.

The following part of the argument is taken from [BeLiPe]; see [Kw] for a different

argument. Let v(r) = r(ν−1)/2(Qa(r)− 1). Then v ≥ 0 and, by a simple computation,

−∂2
rv +

(
(ν − 1)(ν − 3)

4r2
− Qa(r)

q−1 −Qa(r)

Qa(r)− 1

)
v = 0 .

As r → ∞, (Qa(r)
q−1 − Qa(r))/(Qa(r)− 1) → q − 1 and therefore there is an R ≥ 0

such that

(ν − 1)(ν − 3)

4r2
− Qa(r)

q−1 −Qa(r)

Qa(r)− 1
≤ −q − 1

2
for all r ≥ R .

In particular, ∂2
rv < 0 in [R,∞) and, therefore, ∂rv is decreasing towards a limit

L ∈ R ∪ {−∞}. If L < 0, then v(r) → −∞ as r → ∞, which contradicts v ≥ 0.

On the other hand, if L ≥ 0, then ∂rv ≥ 0 on [R,∞) and, in particular, v ≥ v(R)

on [R,∞). Thus, from the equation, −∂2
rv ≥ (q − 1)v(R)/2 > 0. This implies

∂rv(r) → −∞ as r → ∞, contradicting L ≥ 0. Thus we have shown that Qa cannot

be decreasing on [0,∞), which concludes the proof of the lemma for a > 1. �

Remark 5.11. By a similar argument one can show that for a ∈ S+ ∩ (1,∞), Qa

has infinitely many local maxima and minima and if 0 = r0 < r2 < r4 < . . . and

0 < r1 < r3 < . . . denote the points where Qa attains its local maxima and minima,

respectively, then

Qa(r0) > Qa(r2) > . . . > 1 > . . . > Qa(r3) > Qa(r1) .

A similar statement is valid for a ∈ S+ ∩ (0, 1).

Proof of Lemma 5.5. Second part. According to the first part that we have already

shown, it suffices to prove that S+∩(1,∞) is open. Let a ∈ S+∩(1,∞). Then we know

from Lemma 5.10 that there is an R̃a such that ∂rQa(R̃a) = 0 and 0 < Qa(R̃a) < 1.

Thus, Ea(R̃a) < 0. Since Qa(r) and ∂rQa(r) depend continuously on r, we have

Eb(R̃a) < 0 for all b in a neighborhood of a. By the same argument as in the first part
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of the proof, this implies inf [R̃a,∞)Qb > 0 for all b in this neighborhood. On the other

hand, since inf [0,R̃a] Qa > 0 (because of a ∈ S+), we have in view of the continuous

dependence also inf [0,R̃a] Qb > 0 for all b in a (possibly smaller) neighborhood of a.

Therefore a neighborhood of a belongs to S+, which concludes the proof. �

The idea of the following proof is from [KwZh].

Proof of Lemma 5.8. First part. We prove that δa0 has at most one zero in (0,∞).

Since Qa0 is decreasing by Lemma 5.10, the function Q1 − Qa0 = 1 − Qa0 changes

sign exactly once. We now consider the sign changes of the function Qa −Qa0 as a is

continuously increased from a = 1 towards a = a0. Our goal is to show that there is

exactly one sign change for any a ∈ [1, a0).

The idea is that, since Qa0 and Qa solve the same differential equation, Qa − Qa0

cannot have a double zero. Thus, in order to change the number of sign changes, a

zero must enter the interval [0,∞) either through the origin or through infinity. We

shall show that both possibilities do not occur.

The function Qa − Qa0 is equal to a − a0 < 0 at the origin and, since a ∈ S+,

positive and bounded away from zero at infinity, locally uniformly in a ∈ [1, a0).

Indeed, according to Lemma 5.10 there is an R̃a such that Ea(R̃a) < 0. Since Ea(r)

depends continuously on a we learn that Eb(R̃a) ≤ −ε < 0 for all b in a neighborhood

of a fixed a ∈ [1, a0). By the argument in the proof of Lemma 5.5 this implies that

Qb(r) ≥ δ > 0 for all r ≥ R̃a and all b in this neighborhood. If R ≥ R̃a is such

that Qa0 ≤ δ/2 in [R,∞), we learn that Qb − Qa0 ≥ δ/2 in [R,∞) and all b in a

neighborhood of a fixed a ∈ [1, a0). This bound, together with the fact that Qa−Qa0

cannot have a double zero, shows that Qa − Qa0 has exactly one sign change for any

a ∈ [1, a0).

To complete the proof, it suffices to note that if δa0 = lima→a0(Qa − Qa0)/(a − a0)

had more than one sign change, then Qa−Qa0 would have more than one sign change

for all a sufficiently close to a0. But we have just seen that this is impossible. This

proves the second assertion in Lemma 5.8. �

5.5. Analysis of S0 ∪ S−. While initial positions a ∈ S+ can be discussed using the

energy Ea similarly as in the autonomous case, one needs a different argument to treat

a ∈ S0∪S−. The proofs of Lemmas 5.8 and 5.9 in [McL] (similarly to [Kw]) are based

on Sturm oscillation theory. Following [Tao], we avoid this general theory and derive

the needed facts directly using the Wronskian

rν−1(f∂rg − g∂rf) .

The key computation is

∂r
(
rν−1(f∂rg − g∂rf)

)
= rν−1

(
f

(
∂2
rg +

ν − 1

r
∂rg

)
− g

(
∂2
rf +

ν − 1

r
∂rf

))
.

(5.20)
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Proof of Lemma 5.8. Second part. We begin by proving that for every a ∈ S−, δa has

at least one zero in (0, Ra).

Using equations (5.3) and (5.14) for Qa and δa, as well as (5.20), we compute

∂r
(
rν−1 (Qa∂rδa − δa∂rQa)

)
= −(q − 2)rν−1|Qa|q−2Qaδa ,

and obtain after integration

rν−1 (Qa∂rδa − δa∂rQa) = −(q − 2)

∫ r

0

sν−1|Qa(s)|q−2Qa(s)δa(s) ds . (5.21)

We now argue by contradiction and assume that the δa ≥ 0 in (0, Ra). Then, by

(5.21), in (0, Ra),

∂r
δa
Qa

=
Qa∂rδa − δa∂rQa

Q2
a

= −(q − 2)r−ν+1Qa(r)
−2

∫ r

0

sν−1Qa(s)
q−1δa(s) ds ≤ 0 ,

Since δa(0) = 1 and Qa(0) = a, integration shows that

δa(r)

Qa(r)
≤ 1

a
for r ∈ [0, Ra) .

Thus, δa(r) ≤ Qa(r)/a for r ∈ [0, Ra) and by continuity also at r = Ra. This shows

that δa(Ra) ≤ 0 and, since δa ≥ 0 on (0, Ra), that δa(Ra) = 0.

We now evaluate (5.21) at r = Ra. Since the left side vanishes and since Qa > 0 in

[0, Ra), we conclude that δa ≡ 0 in [0, Ra), which contradicts δa(0) = 1. This proves

the first assertion of Lemma 5.8 for a ∈ S−.

It remains to prove that also for a ∈ S0, δa has at least one zero in (0,∞). The

proof is similar to the case a ∈ S−, but the property that a solution ‘vanish’/‘does

not vanish’ at Ra has to be replaced by the property that a solution is ‘exponentially

decreasing’/‘exponentially increasing’ at ∞; see also [Tao, Lemma B.12]. �

The proof of Lemma 5.9 is based on similar arguments.

Proof of Lemma 5.9. Similarly to the proof of Lemma 5.8 we give the proof only in

the case a ∈ S− and leave the modifications for a ∈ S0 to the reader; see again [Tao,

Appendix B] for that case.

Thus, let a ∈ S− and let ra be the (unique) zero of δa in (0, Ra). We introduce the

function

Pa(r) = Qa(r) + car∂rQa(r) , ca = − Qa(ra)

ra∂rQa(ra)
.

Note that the constant ca is chosen in such a way that Pa vanishes at ra. A short

computation shows that

−∂2
rPa −

ν − 1

r
∂rPa − (q − 1)|Qa|q−2Pa + Pa = −2caQa − (q − 2− 2ca)|Qa|q−2Qa ,
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which, together with (5.14) and (5.20), implies that

∂r
(
rν−1 (Pa∂rδa − δa∂rPa)

)
= −rν−1

(
2ca + (q − 2− 2ca)|Qa|q−2

)
Qaδa . (5.22)

Since δa(ra) = Pa(ra) = 0, the left side integrates to zero over [0, ra] and therefore

there must be an r′ ∈ (0, ra) such that

2ca + (q − 2− 2ca)Qa(r
′)q−2 ≥ 0 .

We claim that this implies that

2ca + (q − 2− 2ca)Q
q−2
a ≥ 0 in [r′, Ra] . (5.23)

Indeed, first note that ca ≥ 0, which follows from the fact that Qa is decreasing in

[0, Ra] (Lemma 5.10). Thus, if ca ≤ (q − 2)/2, then (5.23) is trivially true, and if

ca > (q − 2)/2, then what we have shown is Qa(r
′)q−2 ≤ 2ca/(2ca − q + 2), and (5.23)

follows again from the monotonicity of Qa.

According to (5.23),(
2ca + (q − 2− 2ca)Q

q−2
a

)
Qaδa ≤ 0 in [ra, Ra] .

With this information at hand we integrate (5.22) over [ra, Ra] and infer that

Pa(Ra)∂rδa(Ra)− δa(Ra)∂rPa(Ra) > 0 .

(The strictness comes from the fact that the derivative does not vanish identically.)

We claim that this implies δa(Ra) < 0. Indeed, since δa(0) = 1 and δa has a

unique zero in (0, Ra), we know that δa(Ra) ≤ 0. To complete the proof we argue by

contradiction and assume that δa(Ra) = 0 (which implies that ∂rδa(Ra) ≥ 0). Then

the previous inequality reads Pa(Ra)∂rδa(Ra) > 0, which is the same as

ca∂rQa(Ra)∂rδa(Ra) > 0

This is a contradiction, because ca ≥ 0, ∂rQa(Ra) ≤ 0 and ∂rδa(Ra) ≥ 0. This

completes the proof. �

5.6. Non-degeneracy. In this subsection we prove the non-degeneracy statement

in Theorem 1.2. Assume that N ≥ 2 and that q satisfies the assumptions of that

theorem. Let u be the unique positive, finite energy solution of (1.2) which is radial

with respect to a given point, which we take to be the origin. We are interested in the

linearization

L = −∆− (q − 1)uq−2 + 1

considered as a self-adjoint operator in L2(RN). Clearly, by differentiating equation

(1.2) with respect to the j-th coordinate, we find that ∂ju ∈ kerL. The main result of

this subsection is that these N function span kerL. This is essentially a consequence

of the proof of Kwong’s theorem. It was first noted by Weinstein [We2].
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To prove this, we first observe that L is a Schrödinger operator with radial potential.

From the theory of spherical harmonics (or, equivalently, the representation theory of

SO(N)) it follows that L is unitarily equivalent to an operator

∞⊕
`=0

L` ⊗ 1Cν`,N

in the Hilbert space

∞⊕
`=0

L2((0,∞), rN−1 dr)⊗ Cν`,N

for some integers ν`,N . These integers are explicit, but we only need to know that

ν0,N = 1 and ν1,N = N for any N ≥ 2. The operators L` are given by

L` = −∂2
r − (N − 1)r−1∂r + `(`+N − 2)r−2 − (q − 1)u(r)q−2 + 1 .

Together with Dirichlet boundary conditions these are self-adjoint operators in the

Hilbert space L2((0,∞), rN−1 dr). (More precisely, by ‘Dirichlet boundary condi-

tions’ we mean that the Friedrichs extension of the corresponding operators defined

on C∞0 (0,∞). Here we use the fact that C∞0 (RN \ {0}) is dense in H1(RN).) Our

assertion about the operator L will follow if we can show that

kerL` = {0} if ` 6= 1 , dim kerL1 = 1 .

Note that the operator L0 is the same operator that appeared in the proof of Kwong’s

theorem and that we proved there that kerL0 = {0}. (Technically speaking, L0 is

considered with a Neumann boundary condition. Thus, by ODE uniqueness, any

solution in kerL0 would be a multiple of δa0 in (5.14), but in Lemma 5.9 we have

shown that δa0 is not square-integrable at infinity. Thus, kerL0 = {0}.)
Let us now discuss ` = 1. If we identify u with a radial function, we have

∂ju = u′xj/r and a short computation yields that L1u
′ = 0. Moreover, one can

show that u is C∞ and decays exponentially together with all its derivatives. Thus,

u′ ∈ H1((0,∞), rN−1 dr) and therefore u′ ∈ kerL1. Since u is a decreasing function,

u′ is non-positive. By the Perron–Frobenius theorem u′ is the unique ground state of

L1. Thus, dim kerL1 = 1, as claimed.

Finally, for ` ≥ 2 we note that, due to the `(` + N − 2)r−2-term, L` > L`−1

in the sense that domL` ⊂ domL`−1 and (ψ,L`ψ) > (ψ,L`−1ψ) for all 0 6≡ ψ ∈
domL`. Since the essential spectrum of all operators L` starts at 1, we deduce that

either inf specL` = inf specL`−1 = 1 or inf specL` > inf specL`−1. In any case we

have inf specL` > inf specL1 = 0. This concludes the proof of the non-degeneracy

statement in Theorem 1.2.

The proof of both Theorems 1.1 and 1.2 is now complete.
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6. A remainder estimate in a Sobolev inequality

6.1. Setting of the problem and main result. In this section we consider the

minimization problem

EN,q = inf

{
E [ψ] : ψ ∈ H1(RN) ,

∫
RN
ψ2 dx = 1

}
(6.1)

for the functional

E [ψ] =

∫
RN
|∇ψ|2 dx−

(∫
RN
|ψ|q dx

)2/q

. (6.2)

Here, and everywhere in this section, we only consider real-valued functions ψ. More-

over, we assume throughout that 2 < q < ∞ if N = 1, 2 and 2 < q < 2N/(N − 2) if

N ≥ 3.

Under these assumption we shall see shortly that EN,q is finite. Let

G =

{
ψ ∈ H1(RN) : E [ψ] = EN,q ,

∫
RN
ψ2 dx = 1

}
.

We shall also see shortly that G 6= ∅. The main result of this section is the following

theorem, which addresses the stability of the minimization problem (6.1). It quantifies

that, if the energy E [ψ] for a certain normalized ψ is close to the minimal energy EN,q,

then ψ is close to a minimizer.

Theorem 6.1. Let 2 < q <∞ if N = 1, 2 and 2 < q < 2N/(N − 2) if N ≥ 3. Then

there is a constant cq,d > 0 such that∫
RN
|∇ψ|2 dx−

(∫
RN
|ψ|q dx

)2/q

≥ EN,q + cq,d inf
ϕ∈G
‖ψ − ϕ‖2

H1

for all ψ ∈ H1(RN) with
∫
RN ψ

2 dx = 1.

Remark 6.2. The constant cq,d will be provided by a compactness argument and hence

its value cannot be computed or even estimated numerically, unlike EN,q.

Theorem 6.1 is from [CaFrLi]. It uses a technique that was introduced by Bianchi

and Egnell [BiEg] to prove stability for the homogeneous Sobolev inequality (2.3).

As stated Theorem 6.1 does not really use Kwong’s theorem (Theorem 5.1). In

Lemma 6.4 we use Kwong’s theorem to identify the set G. This, however, is not used

further in the proof of Theorem 6.1. The second point where Kwong’s theorem seems

to enter is Lemma 6.6, where we show the non-degeneracy of the linearization around a

minimizer. Since we are only concerned with minimizers, not with general solutions of

the corresponding Euler–Lagrange equation, there is an independent non-degeneracy

proof, however, which we briefly sketch in Remark 6.7.
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6.2. Some preliminaries. We begin by showing that the infimum (6.1) is finite.

This variational problem may be put in a more familiar form by replacing ψ(x) with

λN/2ψ(λx) and optimizing over λ. This leads to

EN,q = −θ1/(1−θ)(1− θ)S−1/(1−θ)
N,q , θ =

N

2

(
1− 2

q

)
. (6.3)

Thus, the determination of EN,q comes down to the determination of the best constant

SN,q in the Sobolev interpolation inequality (2.2), which we have shown to be strictly

positive in Corollary 2.4. This shows that EN,q is finite.

Next, we prove existence of a minimizer and show that any minimizing sequence

approaches the set of minimizers in the H1 norm.

Lemma 6.3. The infimum (6.1) is attained. Moreover, if (ψn) ⊂ H1(RN) is a mini-

mizing sequence for EN,q, then

lim
n→∞

inf
ϕ∈G
‖ψn − ϕ‖H1 = 0 .

This can be deduced either directly from Theorem 3.5 via scaling or by repeating

(and slightly modifying) the proof of that theorem.

We next use Theorem 5.1 to identify the set G of minimizers.

Lemma 6.4. There is a radial, strictly decreasing function Q such that

G =
{
σQ(· − a) : a ∈ RN , σ = ±1

}
.

The function Q satisfies
∫
Q2 dx = 1 and

−∆Q− ‖Q‖2−q
q Qq−1 = EQ , (6.4)

where E = EN,q.

The key step in the proof of Theorem 6.1 is the following ‘local version’ of Theorem

6.1, which establishes the desired inequality under the additional assumption that the

distance from the set of optimizers is small. The precise statement reads as follows.

Lemma 6.5. There are constants ε > 0 and cq,d > 0 such that∫
RN
|∇ψ|2 dx−

(∫
RN
|ψ|q dx

)2/q

≥ EN,q + cq,d inf
ϕ∈G
‖ψ − ϕ‖2

H1

for all ψ ∈ H1(RN) with
∫
RN ψ

2 dx = 1 and infϕ∈G ‖ψ − ϕ‖H1 ≤ ε.

Assuming Lemma 6.5 for the moment we complete the

Proof of Theorem 6.1. As a preliminary remark, let us show that if (ψn) ⊂ H1(RN) is

a sequence with
∫
RN ψ

2
n dx = 1 and∫

RN
|∇ψn|2 dx−

(∫
RN
|ψn|q dx

)2/q

≤ EN,q + (1− ρ) inf
ϕ∈G
‖ψn − ϕ‖2

H1 (6.5)

for some ρ > 0, then the sequence (infϕ∈G ‖ψn − ϕ‖H1) is bounded.
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Indeed, it suffices to show that both (‖∇ψn‖) and (‖∇ϕ‖)ϕ∈G are bounded. It

follows easily from (2.2) that M = supϕ∈G ‖∇ϕ‖ <∞. (Instead of (2.2) one can also

use a virial type argument to compute that ‖∇ϕ‖2 = N(q−2)/(2N+2q−Nq)|EN,q| for

any ϕ ∈ G.) Thus, we can bound infϕ∈G ‖ψn−ϕ‖2
H1 ≤ (1+σ)‖∇ψn‖2+(1+σ−1)M2+4

for any σ > 0. Therefore from (6.5) with the choice σ = ρ/(2(1− ρ)),

ρ

2

∫
RN
|∇ψn|2 dx−

(∫
RN
|ψn|q dx

)2/q

≤ EN,q + (1− ρ)
(
ρ−1(2− ρ)M2 + 4

)
.

Again by (2.2) this implies that (‖∇ψn‖) is bounded, which proves the preliminary

remark.

Let us now turn to the proof of Theorem 6.1. We argue by contradiction and assume

there is a sequence (ψn) ⊂ H1(RN) with
∫
RN ψ

2
n dx = 1 and∫

RN
|∇ψn|2 dx−

(∫
RN
|ψn|q dx

)2/q

≤ EN,q + δn inf
ϕ∈G
‖ψn − ϕ‖2

H1 (6.6)

where δn → 0. Thus, (6.5) holds with any fixed ρ > 0 for all sufficiently large

n. The preliminary remark then implies that (infϕ∈G ‖ψn − ϕ‖H1) is bounded. By

(6.6) this means that (ψn) is a minimizing sequence and then, by Lemma 6.3, that

infϕ∈G ‖ψn − ϕ‖H1 → 0. Thus, for all sufficiently large n, infϕ∈G ‖ψn − ϕ‖H1 ≤ ε with

ε > 0 from Lemma 6.5. But the inequality from Lemma 6.5 contradicts (6.6) with

δn → 0. This completes the proof. �

Thus, we have reduced the proof of Theorem 6.1 to the proof of Lemma 6.5, which

we will prove in the remaining two subsections.

6.3. Non-degeneracy of the linearization. The main ingredient in our proof of

Lemma 6.5 is the following theorem which can be deduced from Kwong’s results for

N ≥ 2 (and well-known results for N = 1); see, however, also Remark 6.7 for an

alternative argument.

Theorem 6.6. Let 2 < q <∞ if N = 1, 2 and 2 < q < 2N/(N − 2) if N ≥ 3. Let Q

and E be the function and the number from Theorem 5.1 and consider the self-adjoint

operator

H = −∆− (q − 1)‖Q‖2−q
q Qq−2 − E + (q − 2)‖Q‖2−2q

q |Qq−1〉〈Qq−1|

in L2(RN). Then H ≥ 0 and

kerH = span{Q, ∂1Q, . . . , ∂NQ} .

Proof of Theorem 5.6. First, note that H is the Hessian of the minimization problem

for EN,q, in the sense that

d2

dε2

∣∣∣∣
ε=0

(∥∥∥∥∇ Q+ εϕ

‖Q+ εϕ‖

∥∥∥∥2

−
∥∥∥∥ Q+ εϕ

‖Q+ εϕ‖

∥∥∥∥2

q

)
= (ϕ,Hϕ)
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for every ϕ ∈ H1(RN). This is shown by the same arguments as in the proof of Lemma

6.5 below. Thus, since Q is a minimizer, H ≥ 0, proving the first claim.

The inclusion span{Q, ∂1Q, . . . , ∂dQ} ⊂ kerH is easy. Indeed, equation (6.4) implies

that Q ∈ kerH and, differentiating (6.4), we also infer that ∂jQ ∈ kerH for any

j = 1, . . . , N . (Note that ∂jQ ∈ H1(RN) by standard regularity and decay results for

Q.)

Let us prove the opposite inclusion. We argue similarly as in Subsection 5.6. Since

Q is a radial function, the operator H commutes with rotation and, therefore, can

be analysed separated in each angular momentum channel. (In dimension d = 1,

this means separately on even and odd functions.) On functions orthogonal to radial

functions the rank one operator |Qq−1〉〈Qq−1| vanishes and therefore on this subspace

the operator H coincides with the operator −∆ − (q − 1)‖Q‖2−q
q Qq−2 − E, which is

just a rescaling of the operator in Theorem 1.2. That theorem therefore implies that

the kernel of H on the subspace of functions orthogonal to radial functions is given

by the span of the ∂jQ’s.

Thus, it remains to prove that the operator H when restricted to angular momentum

l = 0 (that is, to radial functions) has only a one-dimensional kernel spanned by Q.

To prove this, let η be a radial function in kerH with (Q, η) = 0. Then

Lη = αQq−1 , (6.7)

where α = −(q − 2)‖Q‖2−2q
q (Qq−1, η) and

L = −∆− (q − 1)‖Q‖2−q
q Qq−2 − E .

Because of the Euler–Lagrange equation (6.4) satisfied by Q we have

L(η − βQ) = 0

for β = −(q− 2)−1‖Q‖q−2
q α, that is, η− βQ ∈ kerL. Now the non-degeneracy part of

Theorem 1.2 (and an explicit computation in N = 1) implies that η − βQ ≡ 0. Since

(Q, η) = 0 this implies η ≡ 0, as claimed. �

Remark 6.7. In the previous proof we used Kwong’s work to show that for any positive

solution Q of (6.4) the linearization L, when restricted to radial functions, does not

have a zero eigenvalue. (L is defined in the previous proof.) Here we briefly present

an independent proof of this fact for minimizing functions Q, which is the situation

at hand. The argument is due to [ChGuNaTs].

We argue by contradiction and assume that there is a radial function ψ ∈ kerL. The

key observation is that ψ, when considered as a function on (0,∞) of the radius, has

a unique zero r0. Indeed, since Q is a minimizer for EN,q we have, as in the previous

proof, H ≥ 0. SinceH differs from L only by a rank one operator, we infer that L has at

most one negative eigenvalue. On the other hand, since (Q,LQ) = −(q − 2)‖Q‖2
q < 0

by the equation for Q, the operator L, when restricted to radial functions, has at

least one negative eigenvalue. Thus, 0 is the second eigenvalue of the radial operator
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−∂2
r−(N−1)r−1∂r−(q−1)‖Q‖2−q

q Qq−2 in L2((0,∞), rN−1dr). Sturm–Liouville theory

then implies that ψ has a unique zero.

Let us now show that ∫
RN
Qq−1ψ dx = 0 =

∫
RN
Qψ dx . (6.8)

The first equation comes from

0 =

∫
Rd

(
∇Q · ∇ψ − q − 1

‖Q‖q−2
q

Qq−1ψ + EQψ

)
dx = − q − 2

‖Q‖q−2
q

∫
Rd
Qq−1ψ dx ,

where we used the equations for ψ and for Q. To prove the second equation we first

note that Qλ(x) = Q(λx) satisfies

−∆Qλ −
λ2

‖Q‖q−2
q

Qq−1
λ = λ2EQλ .

Differentiating with respect to λ at λ = 1 we obtain

LQ̇1 = 2EQ+
2

‖Q‖q−2
q

Qq−1 ,

where Q̇1 = x · ∇Q = r∂rQ. Regularity and decay theory for Q imply that Q̇1 ∈
H1(RN). Thus,

0 =

∫
Rd

(
∇Q̇1 · ∇ψ −

q − 1

‖Q‖q−2
q

Qq−2Q̇1ψ + EQ̇1ψ

)
dx = 2

∫
Rd

(
EQψ +

1

‖Q‖q−2
q

Qq−1ψ

)
dx ,

where we used the equations for ψ and for Q̇1. Since E 6= 0, this gives the second

equality in (6.8).

It now follows from (6.8) that∫
RN
ψQ

(
Qq−2 −Q(r0)q−2

)
dx = 0 .

On the other hand, sinceQ is positive and non-increasing, the function ψQ (Qq−2 −Q(r0)q−2)

has a constant sign and is not identically zero. This is the desired contradiction.

The proof strategy in the previous remark is quite robust and has been generalized,

for instance, to fractional powers of the Laplacian [FraLe, FraLeSy].

6.4. Proof of Lemma 6.5. With Theorem 6.6 at hand we can finally give the

Proof of Lemma 6.5. Let ψ ∈ H1(RN) with
∫
ψ2 dx = 1. After a translation and a

change of sign, if necessary, we may assume that

inf
ϕ∈G
‖ψ − ϕ‖H1 = ‖ψ −Q‖H1 .

This implies that

(ψ −Q, ∂jQ)H1 = 0 for all j = 1, . . . , d . (6.9)
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Let us introduce j = ψ −Q and note that, since
∫
ψ2 dx = 1 =

∫
Q2 dx,

2

∫
RN
Qj dx+

∫
RN
j2 dx = 0 . (6.10)

We now make use of the fact that∣∣∣∣|a+ b|q − aq − qaq−1b− q(q − 1)

2
aq−2b2

∣∣∣∣ ≤ C
(
aq−2−θ|b|2+θ + |b|q

)
for all a > 0, b ∈ R and some C (depending only on q > 2) and θ = min{q − 2, 1}.
Thus, by Hölder’s inequality,

‖ψ‖qq = ‖Q‖qq + q

∫
RN
Qq−1j dx+

q(q − 1)

2

∫
RN
Qq−2j2 dx+O(‖j‖2+θ

q + ‖j‖qq) (6.11)

with an implied constant depending only on q and d (through ‖Q‖q). Moreover, by

Hölder and Sobolev inequalities∣∣∣∣q ∫
RN
Qq−1j dx+

q(q − 1)

2

∫
RN
Qq−2j2 dx+O(‖j‖2+θ

q + ‖j‖qq)
∣∣∣∣

≤ const
(
‖j‖q + ‖j‖qq

)
≤ const

(
‖j‖H1 + ‖j‖qH1

)
with constants depending only on q and N . We conclude that there is an ε > 0

(depending only on q and N) such that∣∣‖ψ‖qq − ‖Q‖qq∣∣ ≤ 1

2
‖Q‖qq provided ‖j‖H1 ≤ ε .

For such j we can take the 2/q-th power of (6.11) and obtain

‖ψ‖2
q =‖Q‖2

q + 2‖Q‖2−q
q

∫
RN
Qq−1j dx

+ (q − 1)‖Q‖2−q
q

∫
RN
Qq−2j2 dx− (q − 2)‖Q‖2−2q

q

(∫
RN
Qq−1j dx

)2

+O(‖j‖2+θ
q )

with an implied constant depending only on q and N . Recalling equation (6.4) for Q

and condition (6.10) for j we obtain

‖∇ψ‖2 − ‖ψ‖2
q = E + 2

∫
RN
∇Q · ∇j dx− 2‖Q‖2−q

q

∫
RN
Qq−1j dx

+ ‖∇j‖2 − (q − 1)‖Q‖2−q
q

∫
RN
Qq−2j2 dx

+ (q − 2)‖Q‖2−2q
q

(∫
RN
Qq−1j dx

)2

+O(‖j‖2+θ
q )

= E + (j,Hj) +O(‖j‖2+θ
q ) . (6.12)

We now define

k = j − (Q, j)Q−
N∑
i=1

(∂iQ, j)

‖∂iQ‖2
∂iQ
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and note that, according to Theorem 5.1, k is L2-orthogonal to the kernel of H. Since

the essential spectrum of H starts at −E > 0 there is a constant g > 0 such that

(j,Hj) = (k,Hk) ≥ g‖k‖2
2 .

On the other hand, it is easy to see that there is a constant C > 0 such that

H ≥ −∆− C .

(Indeed, one can take C =
∥∥(q − 1)‖Q‖2−q

q Qq−2 + E
∥∥
∞ = (q− 1)‖Q‖2−q

q Q(0)q−2 +E.)

Thus, for every 0 < ρ < 1,

(j,Hj) = (k,Hk) ≥ g(1− ρ)‖k‖2
2 + ρ‖∇k‖2

2 − ρC‖k‖2
2

and, upon choosing ρ = g/(g + C + 1),

(j,Hj) = (k,Hk) ≥ g

g + C + 1
‖k‖2

H1 .

Recalling the orthogonality conditions (6.9) and (6.10) we compute

‖k‖2
H1 = ‖j‖2

H1 + |(Q, j)|2‖Q‖2
H1 +

N∑
i=1

|(∂iQ, j)|2

‖∂iQ‖4
‖∂iQ‖2

H1 − 2(Q, j)(j,Q)H1

= ‖j‖2
H1 + |(Q, j)|2‖Q‖2

H1 +
N∑
i=1

|(∂iQ, j)|2

‖∂iQ‖4
‖∂iQ‖2

H1 + ‖j‖2
2(j,Q)H1 .

Here we used the fact that the ∂iQ’s are H1 orthogonal among each other and to Q.

This simply follows from the fact that ∂iQ is a radial function times the spherical

harmonic xi/|x| of degree one. Thus,

(j,Hj) ≥ g

g + C + 1
‖j‖2

H1 +O(‖j‖3
H1) .

We insert this bound into (6.12) and obtain, after decreasing ε if necessary,

‖∇ψ‖2 − ‖ψ‖2
q ≥ E +

g

2(g + C + 1)
‖j‖2

H1 .

This completes the proof of Lemma 6.5. �

Appendix A. The one-dimensional case

It turns out that in dimension N = 1 the value of the optimal constant S1,q in (1.1)

can be computed explicitly.

Theorem A.1. Let N = 1 and 2 < q <∞. Then(∫
R
|u′|2 dx

)θ (∫
R
|u|2 dx

)1−θ

≥ S1,q

(∫
R
|u|q dx

)2/q

, θ =
1

2

(
1− 2

q

)
,

where

S1,q =
(q + 2)(q+2)/2q

2(q+2)/q(q − 2)(q−2)/2q

(√
π Γ( q

q−2
)

Γ( q
q−2

+ 1
2
)

)(q−2)/q
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with equality iff u(x) = cQ(b(x− a)) for some a ∈ R, b > 0 and c ∈ C, where

Q(x) = cosh−2/(q−2) x .

This theorem is due to Sz.-Nagy [Na], who has a short and clever proof. Our

arguments are closer to those of Keller [Ke].

Proof. We consider the minimization problem

S1,q := inf
06≡u∈H1(R)

(∫
R |u

′|2 dx
)θ (∫

R |u|
2 dx

)1−θ(∫
R |u|q dx

)2/q
.

According to Corollary 2.4 this defines a strictly positive number.

Step 1. The infimum S1,q is attained. This can be shown by a compactness argu-

ment, see Theorem 3.5.

Step 2. We claim that any minimizer is a complex multiple of a non-negative

function.

We recall that u ∈ H1(R) implies |u| ∈ H1(R) and ||u|′| ≤ |u′| a.e.; see, e.g., [LiLo,

Thm. 6.17]. This implies that there is a non-negative minimizer, but what we claim

is that any minimizer is non-negative up to multiplication with a constant.

If we write u = v + iw with v and w real functions, then(∫
R
|u′|2 dx

)θ (∫
R
|u|2 dx

)1−θ

=

(∫
R

(
(v′)2 + (w′)2

)
dx

)θ (∫
R

(
v2 + w2

)
dx

)1−θ

≥
(∫

R
(v′)2 dx

)θ (∫
R
v2 dx

)1−θ

+

(∫
R
(w′)2 dx

)θ (∫
R
w2 dx

)1−θ

by Hölder’s inequality in R2. We also have, by the triangle inequality(∫
R
|u|q dx

)2/q

= ‖v2+w2‖q/2 ≤ ‖v2‖q/2+‖w2‖q/2 =

(∫
R
|v|q dx

)2/q

+

(∫
R
|w|q dx

)2/q

This inequality is strict unless v ≡ 0 or w2 = λ2v2 for some λ ≥ 0. Therefore, if

U = V + iW is a minimizer for S1,q, then either one of V and W is identically equal

to zero or else both V and W are optimizers and |W | = λ|V | for some λ > 0. For

any real u ∈ H1(R) its positive and negative parts u± belong to H1(R) and satisfy

u′± = ±χ{±u>0}u
′ in the sense of distributions. (This can be proved similarly to [LiLo,

Thm. 6.17].) Thus, for real u, similarly as before,(∫
R
(u′)2 dx

)θ (∫
R
u2 dx

)1−θ

≥
(∫

R
|u′+|2 dx

)θ (∫
R
u2

+ dx

)1−θ

+

(∫
R
|u′−|2 dx

)θ (∫
R
u2
− dx

)1−θ



44 RUPERT L. FRANK

and (∫
R
|u|q dx

)2/q

≤
(∫

R
uq+ dx

)2/q

+

(∫
R
uq− dx

)2/q

.

Since the function x 7→ x2/q is strictly concave, the latter inequality is strict unless u

has a definite sign. Therefore, if U = V + iW is a minimizer for S1,q, then both V and

W have a definite sign. We conclude that any minimizer is a complex multiple of a

non-negative function.

Step 3. Any (non-negative, without loss of generality) minimizer u satisfies the

Euler–Lagrange equation

− u′′ − λuq−1 = −µu (A.1)

with Lagrange multipliers λ and µ. Let us show that λ and µ are both positive.

Indeed, by the optimality of u we have for every real ϕ ∈ H1(R),

0 =
d

dε
|ε=0 ln

(∫
R(u′ + εϕ′)2 dx

)θ (∫
R(u+ εϕ)2 dx

)1−θ(∫
R |u+ εϕ|q dx

)2/q
.

Working out the derivative, we obtain

0 = 2θ

∫
R ϕ
′u′ dx∫

R(u′)2 dx
+ 2(1− θ)

∫
R ϕu dx∫
R(u)2 dx

− 2

∫
R ϕu

q−1 dx∫
R |u|q dx

.

Since ϕ is an arbitrary H1 function, this means that u is a weak solution of

0 = θ
−u′′∫

R(u′)2 dx
+ (1− θ) u∫

R(u)2 dx
− uq−1∫

R |u|q dx
.

In particular, λ and µ are both positive, as claimed.

Hence, after a scaling and after multiplication by a positive constant, we may assume

that λ = µ = 1.

Step 4. Any H1 solution of (A.1) is, in fact, C2. To prove this simple regularity

result, we first note that |
∫
u′v′ dx| = |

∫
(uq−1 − u)v dx| ≤ const ‖v‖2, since u ∈

L2 ∩ L2(q−1) by Corollary 2.4. Since this bound holds for any v ∈ H1, we conclude

that u ∈ H2. We now recall that any H1 function in one dimension is continuous and

therefore any H2 function is C1. Thus, u ∈ C1. Moreover, because of the equation, u′′,

the weak derivative of u′, coincides in L2-sense with the continuous function u− uq−1,

and hence u ∈ C2, as claimed.

Step 5. This is the main part of the proof! We show that the only non-negative

and non-zero solution in H1(R) ∩ C2(R) of (A.1) with µ = ν = 1 is given by

u(x) =
(q

2

)1/(q−2)

cosh−2/(q−2)

(
q − 2

2
(x− a)

)
(A.2)

for some a ∈ R. Once this is proved, the value of the constant follows by a straight-

forward (but tedious) computation, using the fact that∫
R

cosh−α x dx =
√
π

Γ(α/2)

Γ((α + 1)/2)
.
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To prove (A.2), we multiply the equation by u′ and find the first integral

−1

2
(u′)2 − 1

q
uq = −1

2
u2 + C

for some constant C. Since u ∈ H1(R), we have lim|x|→∞ u(x) = 0 and we deduce

from the previous formula that lim|x|→∞(u′(x))2 exists and is given by −C. From this

we conclude that C = 0 and consequently

u′ = ±
√
u2 − 2

q
uq .

(When solving the quadratic equation for u′ a sign ambiguity arises. This ambiguity

will disappear later in the proof. It is important, however, that the sign can only

change at points where the square root vanishes, that is, at points where u = (q/2)q−2.

Here we used the regularity of u and also the fact that u is strictly positive, which

follows uniqueness of ODE initial value problems.)

We have derived an equation with separate variables for u which, in principle, can

be solved in terms of an anti-derivative of (u2 − 2
q
uq)−1/2. We proceed somewhat

differently and introduce, following, e.g., [Fab], the function v(u) =
√

1− 2
q
uq−2. The

equation becomes u′ = ±uv. On the other hand, we compute

dv

du
= −q − 2

q

uq−3

v
= −q − 2

2

1− v2

uv

and obtain
dv

dx
=
dv

du

du

dx
= ∓q − 2

2
(1− v2) .

Recalling that (1 − v2)−1 has anti-derivative arctanh we can integrate this equation

and find that

x− a = ∓ 2

q − 2
arctanh v ,

that is,

tanh

(
∓q − 2

2
(x− a)

)
= v =

√
1− 2

q
uq−2 .

(We emphasize that, in principle, a could depend on the ± sign. It does not, however,

by the regularity of u.) Since tanh is odd, we conclude that

1− cosh−2

(
q − 2

2
(x− a)

)
= tanh2

(
q − 2

2
(x− a)

)
= 1− 2

q
uq−2 ,

which is what we claimed in (A.2). �

Finally we discuss the linearization of (A.1) (with λ = µ = 1) around its solution

(A.2). We obtain the operator

L = − d2

dx2
− (q − 1)uq−2 + 1 = − d2

dx2
− q(q − 1)

2
cosh−2 βx+ 1 , β =

q − 2

2
.
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By the same argument as in arbitrary dimension we have u′ ∈ kerL. The fact that

this function already spans kerL simply follows from the fact that the eigenvalue

multiplicity of any one-dimensional Schrödinger operator (at least with potential in

L1(R)) is one. Indeed, under this assumption on the potential a simple iteration

argument shows that the equation −ψ′′ + V ψ = Eψ with E < 0 has two linearly

independent solutions ψ± behaving as e∓
√
−Exψ± → 1 as x → ∞. Thus, at most one

solution is in L2.

Finally, we mention that the operator L can be explicitly diagonalized. This can

be done using a single creation and annihilation operator (mathematically, a Darboux

transform) much in the same way as for the hydrogen atom. We leave this as an

amusing exercise to the reader.
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(Università Roma Tre), 2005.

[Fe] H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wis-

senschaften 153 Springer, New York, 1969.

[FeFl] H. Federer, W. H. Fleming, Normal and integral currents. Ann. Math. 72 (1960), 458–

520.

[FraLe] R. L. Frank, E. Lenzmann, Uniqueness of non-linear ground states for fractional Lapla-

cians in R. Acta Math. 210 (2013), no. 2, 261–318.

[FraLeSy] R. L. Frank, E. Lenzmann, L. Silvestre, Uniqueness of radial solutions for the fractional

Laplacian. Submitted, arXiv:1302.2652.
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