
O. Forster: Analytic Number Theory

11. The Chebyshev Functions Theta and Psi

11.1. Definition (Prime number function). For real x > 0 we denote by π(x) the
number of all primes p ≤ x. This can be also written as

π(x) =
∑

p6x

1.

π(x) is a step function with jumps of height 1 at all primes. Of course π(x) = 0 for all
x < 2. Some other values are

x 10 100 1000 104 105 106 107

π(x) 4 25 168 1229 9592 78498 664579

The prime number theorem, which we will prove in chapter 13, describes the asymptotic
behavior of π(x) for x→ ∞, namely

π(x) ∼ x

log x
,

meaning that the quotient π(x)/ x
log x

converges to 1 for x → ∞. For the proof of the
prime number theorem, some other functions, introduced by Chebyshev, are useful.

11.2. Definition (Chebyshev theta function). This function is defined for real x > 0
by

ϑ(x) =
∑

p6x

log p.

(Of course this has nothing to do with the theta series and theta functions considered
in the previous chapter.)

We will see that the prime number theorem is equivalent to the fact that the asymptotic
behavior of the Chebyshev theta function is ϑ(x) ∼ x for x→ ∞.

A first rough estimate is given by the following proposition.

11.3. Proposition. For all x > 0 one has

ϑ(x) < x log 4,

in particular ϑ(x) = O(x) for x→ ∞.

Proof. Of course it suffices to prove the assertion for x = n ∈ N1. The assertion is
equivalent to

F (n) :=
∏

p6n

p < 4n.
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We will prove this by induction on n. It is obviously true for n ≤ 3.

For the induction step let N ≥ 4 and assume that the assertion is true for all integers
n < N .

First case: N even. Obviously F (N) = F (N−1). For F (N−1) we can use the induction
hypothesis and obtain F (N) = F (N − 1) < 4N−1 < 4N .

Second case: N odd. We write N as N = 2n + 1. Consider the binomial coefficient

(

2n + 1

n

)

=
(2n+ 1) · 2n · (2n− 1) · . . . · (n + 2)

1 · 2 · 3 · . . . · n .

Clearly, for every prime p with n+ 2 ≤ p ≤ 2n+ 1 one has

p
∣

∣

∣

(

2n+ 1

n

)

,

hence

∏

n+1<p62(n+1)

p ≤
(

2n+ 1

n

)

.

Now
(

2n+1
n

)

=
(

2n+1
n+1

)

are the two central terms in the binomial expansion of (1+1)2n+1,
therefore

(

2n + 1

n

)

< 1
2
(1 + 1)2n+1 = 4n.

By induction hypothesis
∏

p6n+1

p < 4n+1, hence

F (2n+ 1) =
∏

p62n+1

p < 4n+1

(

2n+ 1

n

)

< 4n+14n = 42n+1, q.e.d.

11.4. Lemma (Abel summation II). Let n0 be an integer, (an)n>n0
a sequence of

complex numbers and A : [n0,∞[ → C the function defined by

A(x) :=
∑

n06n6x

an.

Further let f : [n0,∞[ → C be a continuously differentiable function. Then for all real

x ≥ n0 the following formula holds

∑

n06k6x

akf(k) = A(x)f(x) −
∫ x

n0

A(t)f ′(t)dt.

Proof. We consider first the case when x = n is an integer and prove the formula by
induction on n. For n = n0 both sides are equal to an0

f(n0).
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Induction step n → n + 1. Denoting by L(x) the left hand side and by R(x) the right
hand side of the asserted formula we have

L(n + 1) − L(n) = an+1f(n+ 1)

and

R(n+ 1) − R(n) = A(n+ 1)f(n+ 1) − A(n)f(n) −
∫ n+1

n

A(n)f ′(t)dt

= A(n+ 1)f(n+ 1) − A(n)f(n) −A(n)(f(n + 1) − f(n))

= A(n+ 1)f(n+ 1) − A(n)f(n+ 1)

= an+1f(n+ 1) = L(n + 1) − L(n).

This proves the induction step.

In the general case when x is not necessarily an integer, set n := ⌊x⌋. Then

L(x) − L(n) = 0

and

R(x) −R(n) = A(x)f(x) −A(n)f(n) −
∫ x

n

A(n)f ′(t)dt

= A(n)f(x) −A(n)f(n) − A(n)(f(x) − f(n)) = 0, q.e.d.

11.5. Theorem. The following relations hold between the prime number function and

the Chebyshev theta function:

a) π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt =

ϑ(x)

log x
+O

( x

log2 x

)

,

b) ϑ(x) = π(x) log x−
∫ x

2

π(t)

t
dt = π(x) log x+O

( x

log x

)

.

Proof. a) Let (an)n>2 be the sequence defined by

an :=

{

1, if n is prime,
0 otherwise,

bn := an log n, and f(x) = 1/ log x. Then

π(x) =
∑

26n6x

an =
∑

26n6x

bnf(n).

Since
∑

n6x

bn = ϑ(x) and f ′(x) = −1/(x log2 x), Abel summation (lemma 11.4) yields

π(x) = ϑ(x)f(x) −
∫ x

2

ϑ(t)f ′(t)dt =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt.
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To estimate the integral, we use the result of theorem 11.3 that |ϑ(t)/t| ≤ log 4. Hence
it remains to show that

∫ x

2

dt

log2 t
= O

( x

log2 x

)

.

This can be seen as follows (we may assume x > 4):

∫ x

2

dt

log2 t
=

∫

√
x

2

dt

log2 t
+

∫ x

√
x

dt

log2 t

≤
√
x

(log 2)2
+

x

(log
√
x)2

= O(
√
x) +

4x

log2 x
= O

( x

log2 x

)

.

b) With an as defined in a) we have ϑ(x) =
∑

26n6x

an log(n). Abel summation yields

ϑ(x) = π(x) log(x) −
∫ x

2

π(t)

t
dt.

From ϑ(x) = O(x) and a) it follows that π(x) = O(x/ logx), hence

∫ x

2

π(t)

t
dt = O

(

∫ x

2

dt

log t

)

.

The last integral is estimated by the same trick as used in a)

∫ x

2

dt

log t
=

∫

√
x

2

dt

log t
+

∫ x

√
x

dt

log t

≤
√
x

log 2
+

x

log
√
x

= O
( x

log x

)

.

11.6. Corollary. The asymptotic relation

π(x) ∼ x

log x
for x→ ∞ (prime number theorem)

is equivalent to the asymptotic relation

ϑ(x) ∼ x for x→ ∞.

11.7. Definition (Mangoldt function). The arithmetical function Λ : N1 → Z is
defined by

Λ(n) :=

{

log p, if n = pk is a prime power (k ≥ 1),
0 otherwise.
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11.8. Theorem. The Dirichlet series associated to the Mangoldt arithmetical function

satisfies for all s ∈ C with Re(s) > 1

∞
∑

n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)
.

Proof. By theorem 4.7 one has for Re(s) > 1

log ζ(s) =
∞

∑

k=1

1

k

∑

p∈P

1

pks
.

This can be written as

log ζ(s) =

∞
∑

n=1

an

ns

with

an :=

{

1/k, if n = pk is a prime power (k ≥ 1)
0 otherwise

Since

d

ds

1

ns
=

d

ds
e−s log n = − log n e−s log n = − log n

ns

and an log n = Λ(n), we get

ζ ′(s)

ζ(s)
=

d

ds
log ζ(s) = −

∞
∑

n=1

an log n

ns
= −

∞
∑

n=1

Λ(n)

ns
, q.e.d.

11.9. Definition (Chebyshev psi function). This function is defined by

ψ(x) =
∑

n6x

Λ(n).

11.10. Theorem. The Chebyshev psi function and the Chebyshev theta function are

related in the following way.

a) ψ(x) =
∑

k>1

ϑ(x1/k) = ϑ(x) + ϑ(x1/2) + ϑ(x1/3) + . . . = ϑ(x) +O(x1/2 log x),

b) ϑ(x) =
∑

k>1

µ(k)ψ(x1/k) = ψ(x) − ψ(x1/2) − ψ(x1/3) − ψ(x1/5) + ψ(x1/6) − + . . . .

Proof. a) By the definition of the Mangoldt function one has

ψ(x) =
∑

k>1

∑

pk6n

log p =
∑

k>1

∑

p6x1/k

log p =
∑

k>1

ϑ(x1/k).
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Since ϑ(t) = 0 for t < 2, we have ϑ(x1/k) = 0 for k > log x/ log 2, hence

∑

k>2

ϑ(x1/k) ≤
⌊ log x

log 2

⌋

ϑ(x1/2) = O(x1/2 log x).

b) This is just another form of the Möbius inversion theorem
∑

k>1

µ(k)ψ(x1/k) =
∑

k>1

µ(k)
∑

ℓ>1

ϑ(x1/kℓ)

=
∑

n>1

∑

k|n
µ(k)ϑ(x1/n) =

∑

n>1

δ1,n ϑ(x1/n) = ϑ(x).

11.11. Corollary. The asymptotic relation

π(x) ∼ x

log x
for x→ ∞ (prime number theorem)

is equivalent to the asymptotic relation

ψ(x) ∼ x for x→ ∞.

Proof. Since by the preceding theorem ϑ(x) ∼ x is equivalent to ψ(x) ∼ x, this follows
from corollary 11.6.

Remark. We will indeed use this equivalence when we prove the prime number theorem
in chapter 13.

11.12. Lemma. The prime decomposition of n! is

n! =
∏

p

pαp , where αp =
∑

k>1

⌊ n

pk

⌋

.

Proof. . . .

11.13. Theorem (Bertrand’s postulate). For every positive integer n there is at least

one prime p with n < p ≤ 2n.

Proof. . . .

11.14. Theorem.
∑

p6x

log p

p
= log x+O(1).

Proof. . . .

11.15. Theorem. There exists a real constant B such that
∑

p6x

1

p
= log log x+B +O

( 1

log x

)

.

Proof. . . .

11.6


