O. Forster: Analytic Number Theory

7. Group Characters. Dirichlet L-series

7.1. Definition (Group characters). Let G be a group. A character of G is a group
homomorphism

x:G— C".

If G is a finite group (written multiplicatively), then every element z € G has finite
order, say r = ord(z). It follows that

hence () is a root of unity for all z € G.
Example. Let G be a cyclic group of order  and g € G a generator of G, i.e.
G={e=9¢"9=9"0"9" ...} =(9), (4 =¢).

If x : G — C* is a character, x(g) is an r-th root of unity, hence there exits an integer
k, 0 <k < r, with x(g) = e2™*/". Conversely, for any such k,
Xk(gs) e eQm‘ks/r

defines indeed a group character of G.

7.2. Theorem. Let G be a group.

a) The set of all group characters x : G — C* is itself a group if one defines the
multiplication of two characters x1, x2 by

(xix2)(x) := x1(x)x2(x) forall z € G.

This group is called the character group of G and is denoted by G.
b) If G is a finite abelian group, then the character group G is isomorphic to G.

Proof. a) The easy verification is left to the reader.

b) Consider first the case when G = (g) is a cyclic group of order r. Let
b, = {62”““/7" 0<k<r}

be the group of r-th roots of unity. E, is itself a cyclic group of order r and the map
G— E,, x—x(9),

is easily seen to be an isomorphism. To prove the general case, we use the fact that
every finite abelian group G is isomorphic to a direct product of cyclic groups:

G=0 x...xCy.
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From G = 61 X ... X ém the assertion follows.

7.3. Theorem. Let G be a finite abelian group of order r.
a) Let x € G be a fixed character. Then

r, if y is the unit character y =1,
> x(@) = { X X

else.
rzeG 0

b) Let x € G be a fized element. Then

S ={§ g

xeG

Proof. a) The formula is trivial for the unit character. If x is any group character
different from the unit character, there exists an zy € G with x(x¢) # 1. If 2 runs
through all group elements, also xgx runs through all group elements. Therefore

D x(@) = xl(@oz) = x(x0) Y x().

zeG zeG zeG
It follows
1=x(@)) x(@)=0 = ) x(@)=0, qed
zeG zeG

b) The formula is trivial for the unit element e. If x is a group element different from
e, there exists a group character ¢ € G with ¥(x) # 1. Otherwise all group characters
would be constant on the subgroup H C G generated by x, hence could be regarded
as characters of the quotient group G/H, which contradicts theorem 7.2.b). If y runs
through all elements of (A}’, so does Y y. Hence

Yo x(@) =) (@x)(x) = (@) Y x(a).

XE@ XE@ XG@
It follows
1=v@)) x@) =0 = > x(z)=0, qed
XEé xeé’

7.4. Definition (Dirichlet characters). Let m be an integer > 2. An arithmetical
function x : N; — C is called a Dirichlet character modulo m, if x is induced by a
group character

X:(Z/m)" — C~,
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which means that

_ [ x(@), if ged(n,m) =1,
x(n) = { 0, ifged(n,m)> 1.

(Here 7 denotes the residue class of n modulo m).

The principal Dirichlet character modulo m is the Dirichlet character induced by the
unit character 1 : (Z/m)* — C. We denote this principal character by xo, or briefly
by xo, if the value of m is clear by the context. Hence we have

_J 1, ifged(n,m) =1,
Xom(n) = {O, if ged(n,m) > 1.

It is clear that a Dirichlet character is completely multiplicative. It is easy to see that
an arithmetical function f : N; — C is a Dirichlet character modulo m iff it has the
following properties:

i)  f is completely multiplicative.
ii)  f(n) = f(n') whenever n = n’ mod m.

iii)  f(n) =0 for all n with ged(n,m) > 1.

7.5. Definition (Dirichlet L-series). Let x : Ny — C be a Dirichlet character. The
L-series associated to x is the Dirichlet series

L(s,x) := %

This series converges absolutely for every s € C with Re(s) > 1.

Examples. Let m = 4.

i) The principal Dirichlet character modulo 4 has xo4(n) = 1 for n odd and x4(n) =0
for n even. Therefore

o0

1 1 1 1 1
L =Y =1+ttt
(5, X04) 2 ok + 1y tr bt n et

> 1
Since 27°((s) = kz::l ok

L(Sv X0,4) = (1 - 275)§(8)’

we have

which shows that L(s, xo4) can be analytically continued to the whole plane C as a
meromorphic function with a single pole at s = 1.
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ii) Since (Z/4)* = {1, 3} has two elements, there is exactly one non-principal Dirichlet
character y; modulo 4, namely

0 for n even,

xi(n) = { (—=1)»=1/2 " for n odd.

Therefore

— (=1)*
L =y =l s b
(37X1> — (2/{7 4 1)3 3s + 5s 7s + 9s +

This Dirichlet series converges to a holomorphic function for Re(s) > 0. For s = 1 one
gets the well known Leibniz series, hence
T

L(17X1) = Z

7.6. Theorem. Let x : Ny — C be a Dirichlet character modulo m. Then

a) For Re(s) > 1 one has a product representation

Hon =g

peP

b) If x = Xom 1S the principal character, then

L(s, xom) = (IT(1 = 7)) €(s),

plm

where the product is extended over all prime divisors of m. Hence L(s,xom) can be
analytically continued to the whole plane C as a meromorphic function with a single
pole at s = 1.

c) If x is not the principal character, the L-series L(s,x) = Y .-, x(n)/n® has abscissa
of convergence o. = 0, hence represents a holomorphic function in the halfplane H(0).

Proof. a) This follows directly from theorem 6.11 since x is completely multiplicative.

b) From part a) and the definition of the principal character one gets

L(s,xom) = ][ 5 _1p_8 =[[a-»11I5 _lp_s-

pim plm peP

Since the last product is the Euler product of the zeta function, the assertion follows.

¢) By theorem 6.4 it suffices to show that the partial sums 3>~ x(n) remain bounded
as N — oo. This can be seen as follows: Write N = gm+r with integers ¢,r,0 < r < m.

qm
By theorem 7.3.a) one has > x(n) = 0, hence
n=1

’iX(n)’: imZJrr X(”)’ < iir Ix(n)] < ¢(m), q.ed.
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The next theorem is an analogon of theorem 4.7.

7.7. Theorem. Letm be an integer > 2 and x : Ny — C a Dirichlet character modulo
m. We define the following generalization of the prime zeta function:

X

peP

This series converges absolutely in the halfplane H(1) := {s € C: Re(s) > 1} and one
has

P(s,x) = log L(s, x) + F\(s),

where F\(s) is a bounded function in H(1).

Proof. From the Euler product of the L-function we get for Re(s) > 1

log L(s, x) E log ——— ! E EOO x(p)*
_ ks
peP L =x(p)p~* peP k=1 kp
X(0) | =1 xp)"
S IE LD i SE 8
pElP’ k=2 pEP

The theorem follows with

hence
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