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7. Group Characters. Dirichlet L-series

7.1. Definition (Group characters). Let G be a group. A character of G is a group
homomorphism

χ : G −→ C
∗.

If G is a finite group (written multiplicatively), then every element x ∈ G has finite
order, say r = ord(x). It follows that

χ(x)r = χ(xr) = χ(e) = 1,

hence χ(x) is a root of unity for all x ∈ G.

Example. Let G be a cyclic group of order r and g ∈ G a generator of G, i.e.

G = {e = g0, g = g1, g2, g3, . . . , gr−1} =: 〈g〉, (gr = e).

If χ : G→ C∗ is a character, χ(g) is an r-th root of unity, hence there exits an integer
k, 0 ≤ k < r, with χ(g) = e2πik/r. Conversely, for any such k,

χk(g
s) := e2πiks/r

defines indeed a group character of G.

7.2. Theorem. Let G be a group.

a) The set of all group characters χ : G → C∗ is itself a group if one defines the

multiplication of two characters χ1, χ2 by

(χ1χ2)(x) := χ1(x)χ2(x) for all x ∈ G.

This group is called the character group of G and is denoted by Ĝ.

b) If G is a finite abelian group, then the character group Ĝ is isomorphic to G.

Proof. a) The easy verification is left to the reader.

b) Consider first the case when G = 〈g〉 is a cyclic group of order r. Let

Er := {e2πik/r : 0 ≤ k < r}

be the group of r-th roots of unity. Er is itself a cyclic group of order r and the map

Ĝ −→ Er, χ 7→ χ(g),

is easily seen to be an isomorphism. To prove the general case, we use the fact that
every finite abelian group G is isomorphic to a direct product of cyclic groups:

G ∼= C1 × . . .× Cm.
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From Ĝ ∼= Ĉ1 × . . .× Ĉm the assertion follows.

7.3. Theorem. Let G be a finite abelian group of order r.

a) Let χ ∈ Ĝ be a fixed character. Then

∑

x∈G

χ(x) =
{
r, if χ is the unit character χ ≡ 1,
0 else.

b) Let x ∈ G be a fixed element. Then

∑

χ∈ bG

χ(x) =
{
r, if x = e,
0 else.

Proof. a) The formula is trivial for the unit character. If χ is any group character
different from the unit character, there exists an x0 ∈ G with χ(x0) 6= 1. If x runs
through all group elements, also x0x runs through all group elements. Therefore

∑

x∈G

χ(x) =
∑

x∈G

χ(x0x) = χ(x0)
∑

x∈G

χ(x).

It follows

(1 − χ(x0))
∑

x∈G

χ(x) = 0 =⇒
∑

x∈G

χ(x) = 0, q.e.d.

b) The formula is trivial for the unit element e. If x is a group element different from

e, there exists a group character ψ ∈ Ĝ with ψ(x) 6= 1. Otherwise all group characters
would be constant on the subgroup H ⊂ G generated by x, hence could be regarded
as characters of the quotient group G/H , which contradicts theorem 7.2.b). If χ runs

through all elements of Ĝ, so does ψχ. Hence

∑

χ∈ bG

χ(x) =
∑

χ∈ bG

(ψχ)(x) = ψ(x)
∑

χ∈ bG

χ(x).

It follows

(1 − ψ(x))
∑

χ∈ bG

χ(x) = 0 =⇒
∑

χ∈ bG

χ(x) = 0, q.e.d.

7.4. Definition (Dirichlet characters). Let m be an integer ≥ 2. An arithmetical
function χ : N1 −→ C is called a Dirichlet character modulo m, if χ is induced by a
group character

χ̃ : (Z/m)∗ −→ C
∗,
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which means that

χ(n) =

{
χ̃(n), if gcd(n,m) = 1,

0, if gcd(n,m) > 1.

(Here n denotes the residue class of n modulo m).

The principal Dirichlet character modulo m is the Dirichlet character induced by the
unit character 1 : (Z/m)∗ → C. We denote this principal character by χ0m or briefly
by χ0, if the value of m is clear by the context. Hence we have

χ0m(n) =

{
1, if gcd(n,m) = 1,
0, if gcd(n,m) > 1.

It is clear that a Dirichlet character is completely multiplicative. It is easy to see that
an arithmetical function f : N1 → C is a Dirichlet character modulo m iff it has the
following properties:

i) f is completely multiplicative.

ii) f(n) = f(n′) whenever n ≡ n′ mod m.

iii) f(n) = 0 for all n with gcd(n,m) > 1.

7.5. Definition (Dirichlet L-series). Let χ : N1 → C be a Dirichlet character. The
L-series associated to χ is the Dirichlet series

L(s, χ) :=

∞∑

n=1

χ(n)

ns
.

This series converges absolutely for every s ∈ C with Re(s) > 1.

Examples. Let m = 4.

i) The principal Dirichlet character modulo 4 has χ0,4(n) = 1 for n odd and χ0,4(n) = 0
for n even. Therefore

L(s, χ0,4) =

∞∑

k=0

1

(2k + 1)s
= 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+ . . .

Since 2−sζ(s) =
∞∑

k=1

1

(2k)s
, we have

L(s, χ0,4) = (1 − 2−s)ζ(s),

which shows that L(s, χ0,4) can be analytically continued to the whole plane C as a
meromorphic function with a single pole at s = 1.
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ii) Since (Z/4)∗ = {1, 3} has two elements, there is exactly one non-principal Dirichlet
character χ1 modulo 4, namely

χ1(n) =

{
0 for n even,
(−1)(n−1)/2 for n odd.

Therefore

L(s, χ1) =

∞∑

k=0

(−1)k

(2k + 1)s
= 1 −

1

3s
+

1

5s
−

1

7s
+

1

9s
− + . . .

This Dirichlet series converges to a holomorphic function for Re(s) > 0. For s = 1 one
gets the well known Leibniz series, hence

L(1, χ1) =
π

4
.

7.6. Theorem. Let χ : N1 → C be a Dirichlet character modulo m. Then

a) For Re(s) > 1 one has a product representation

L(s, χ) =
∏

p∈P

1

1 − χ(p)p−s
.

b) If χ = χ0m is the principal character, then

L(s, χ0m) =
(∏

p|m

(1 − p−s)
)
ζ(s),

where the product is extended over all prime divisors of m. Hence L(s, χ0m) can be

analytically continued to the whole plane C as a meromorphic function with a single

pole at s = 1.

c) If χ is not the principal character, the L-series L(s, χ) =
∑∞

n=1 χ(n)/ns has abscissa

of convergence σc = 0, hence represents a holomorphic function in the halfplane H(0).

Proof. a) This follows directly from theorem 6.11 since χ is completely multiplicative.

b) From part a) and the definition of the principal character one gets

L(s, χ0m) =
∏

p∤m

1

1 − p−s
=

∏

p|m

(1 − p−s)
∏

p∈P

1

1 − p−s
.

Since the last product is the Euler product of the zeta function, the assertion follows.

c) By theorem 6.4 it suffices to show that the partial sums
∑N

n=1 χ(n) remain bounded
as N → ∞. This can be seen as follows: Write N = qm+r with integers q, r, 0 ≤ r < m.

By theorem 7.3.a) one has
qm∑
n=1

χ(n) = 0, hence

∣∣∣
N∑

n=1

χ(n)
∣∣∣ =

∣∣∣
qm+r∑

n=qm+1

χ(n)
∣∣∣ ≤

qm+r∑

n=qm+1

|χ(n)| ≤ ϕ(m), q.e.d.
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The next theorem is an analogon of theorem 4.7.

7.7. Theorem. Let m be an integer ≥ 2 and χ : N1 → C a Dirichlet character modulo

m. We define the following generalization of the prime zeta function:

P (s, χ) :=
∑

p∈P

χ(p)

ps
.

This series converges absolutely in the halfplane H(1) := {s ∈ C : Re(s) > 1} and one

has

P (s, χ) = logL(s, χ) + Fχ(s),

where Fχ(s) is a bounded function in H(1).

Proof. From the Euler product of the L-function we get for Re(s) > 1

logL(s, χ) =
∑

p∈P

log
1

1 − χ(p)p−s
=

∑

p∈P

∞∑

k=1

χ(p)k

kpks

=
∑

p∈P

χ(p)

ps
+

∞∑

k=2

1

k

∑

p∈P

χ(p)k

pks
.

The theorem follows with

Fχ(s) = −
∞∑

k=2

1

k

∑

p∈P

χ(p)k

pks
,

since for Re(s) > 1 we have

∣∣∣
∑

p∈P

χ(p)k

pks

∣∣∣ ≤
∞∑

n=2

1

nk
≤

1

k − 1
,

hence

|Fχ(s)| ≤

∞∑

k=2

1

k(k − 1)
= 1.
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