
O. Forster: Analytic Number Theory

5. The Euler-Maclaurin Summation Formula

5.1. We define a periodic function

saw : R −→ R

with period 1 by

saw(x) := x − ⌊x⌋ − 1
2

This is a kind of sawtooth function, see figure.
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With this function, we can state a first form of the Euler-Maclaurin summation formula.
This formula shows how a sum can be approximated by an integral and gives an exact
error term.

5.2. Theorem (Euler-Maclaurin I). Let x0 be a real number and f : [x0,∞[ → C a

continuously differentiable function. Then we have for all integers n ≥ m ≥ x0

n∑

k=m

f(k) = 1
2
(f(m) + f(n)) +

∫ n

m

f(x)dx +

∫ n

m

saw(x)f ′(x)dx.

Proof. We have

n∑

k=m

f(k) − 1
2
(f(m) + f(n)) =

n−1∑

k=m

1
2
(f(k) + f(k + 1)).

On the other hand we get by partial integration

∫ k+1

k

saw(x)f ′(x)dx =

∫ k+1

k

(x − k − 1
2
)f ′(x)dx

= (x − k − 1
2
)f(x)

∣∣∣
k+1

k
−

∫ k+1

k

f(x)dx

= 1
2
(f(k + 1) + f(k)) −

∫ k+1

k

f(x)dx.

Summing up from k = m to n − 1 yields the assertion of the theorem.
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5. Euler-Maclaurin summation

Using this theorem, we can construct an analytic continuation of the zeta function.

5.3. Theorem. The Riemann zeta function can be analytically continued to a mero-

morphic function in the halfplane H(0) = {s ∈ C : Re(s) > 0} with a single pole of

order 1 at s = 1. The continued function can be represented in H(0) as

ζ(s) =
1

2
+

1

s − 1
− s

∫ ∞

1

saw(x)

xs+1
dx.

Proof. Applying theorem 5.2 to the function f(x) = 1/xs we get

N∑

n=1

1

ns
= 1

2

(
1 +

1

N s

)
+

∫ N

1

dx

xs
− s

∫ N

1

saw(x)

xs+1
dx.

For Re(s) > 1 we have lim
N→∞

1/N s = 0 and

lim
N→∞

∫ N

1

dx

xs
= lim

N→∞

1

1 − s

( 1

N s−1
− 1

)
=

1

s − 1
.

Therefore we can pass to the limit N → ∞ in the formula above and get for Re(s) > 1

ζ(s) =
1

2
+

1

s − 1
− s

∫ ∞

1

saw(x)

xs+1
dx. (∗)

We will now show that the integral

F (s) :=

∫ ∞

1

saw(x)

xs+1
dx

exists for all s ∈ C with σ := Re(s) > 0 and represents a holomorphic function in the
halfplane H(0). This will then complete the proof of the theorem, since the right hand
side of the formula (∗) defines a meromorphic continuation of the zeta function to H(0)
with a single pole at s = 1.

The existence of the integral follows from the estimate

∣∣∣
saw(x)

xs+1

∣∣∣ ≤
1

2
·

1

xσ+1
,

since
∫ ∞

1
(1/xσ+1) dx < ∞ for σ > 0. To prove the holomorphy of F it suffices by the

theorem of Morera to show that for all compact rectangles R ⊂ H(0)

∫

∂R

F (s)ds = 0.

This can be seen as follows: Since ∂R ⊂ H(0) is compact, there exist a σ0 > 0 such
that Re(s) ≥ σ0 for all s ∈ ∂R. Therefore we have on ∂R × [1,∞[ the majorization

∣∣∣
saw(x)

xs+1

∣∣∣ ≤
1

2
·

1

xσ0+1
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and we can apply the theorem of Fubini

∫

∂R

F (s) ds =

∫

∂R

∫ ∞

1

saw(x)

xs+1
dx ds

=

∫ ∞

1

saw(x)
(∫

∂R

1

xs+1
ds

︸ ︷︷ ︸
=0

)
dx = 0, q.e.d.

There exists also a proof of the holomorphy of F without recourse to Lebesgue inte-
gration theory: We write

F (s) =

∫ ∞

1

saw(x)

xs+1
dx =

∞∑

n=1

∫ n+1

n

saw(x)

xs+1
dx =

∞∑

n=1

fn(s)

with

fn(s) =

∫ n+1

n

saw(x)

xs+1
dx =

∫ n+1

n

x − n − 1
2

xs+1
dx.

The function fn is holomorphic in C (it is easily checked directly that g(z) =
∫ b

a
tz dt

is holomorphic in the whole z-plane) and satisfies an estimate

|fn(s)| ≤
1

2nσ0+1
for all s ∈ H(σ0)

Since
∑∞

n=1 1/nσ0+1 < ∞ for all σ0 > 0, the series F =
∑∞

n=1 fn converges uniformly
on every compact subset of H(0). By a theorem of Weierstraß, the limit function F is
holomorphic in H(0).

5.4. Definition. The Euler-Mascheroni constant is defined as the limit

C := lim
N→∞

( N∑

n=1

1

n
− log N

)
.

The existence of this limit can be proved using the Euler-Maclaurin summation formula
(5.2). This is left to the reader as an exercise.

5.5. Theorem. There exist uniquely determined functions

βk : R −→ R, k ∈ N1,

with the following properties:

i) All functions βk are periodic with period 1, i.e. βk(x + n) = βk(x) for all n ∈ Z,
and the functions βk with k ≥ 2 are continuous.

ii) β1 = saw.
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5. Euler-Maclaurin summation

iii) βk is differentiable in ]0, 1[ and

β ′
k(x) = βk−1(x) for all 0 < x < 1 and k ≥ 2.

iv)

∫ 1

0

βk(x)dx = 0 for all k ≥ 1

Proof. By condition iii), the function βk is uniquely determined in the intervall ]0, 1[
by βk−1 up to an additive constant. This constant is uniquely determined by condition
iv). Thus by ii)-iv), all βk are uniquely determined in ]0, 1[, and by periodicity even
in R r Z. It remains to be shown that the definition of βk, k ≥ 2 can be extended
continuously across the integer points. This is equivalent with

lim
εց0

βk(ε) = lim
εց0

βk(1 − ε).

For k ≥ 2 one has

βk(1 − ε) − βk(ε) =

∫ 1−ε

ε

β ′
k−1(x)dx,

hence by iv)

lim
εց0

(βk(1 − ε) − βk(ε)) =

∫ 1

0

β ′
k−1(x)dx = 0, q.e.d.

Example. Let us calculate β2. The condition

β ′
2(x) = β1(x) = x − 1

2
for 0 < x < 1

leads to β2(x) = 1
2
x2 − 1

2
x + c with an integration constant c. Since

∫ 1

0

(1
2
x2 − 1

2
x)dx = 1

6
− 1

4
= − 1

12
,

we have c = 1
12

, i.e.

β2(x) = 1
2
x2 − 1

2
x + 1

12
= 1

2
x(x − 1) + 1

12
for 0 ≤ x ≤ 1.

-
6
1/12

−2 −1 0 1 2 3

Graph of β2
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5.6. Theorem. The functions βn have the following Fourier expansions

β2k(x) = (−1)k−12
∞∑

n=1

cos(2πnx)

(2πn)2k
, k ≥ 1, (1)

β2k+1(x) = (−1)k−12
∞∑

n=1

sin(2πnx)

(2πn)2k+1
, k ≥ 1, (2)

which converge uniformly on R.

Formula (2) is also valid for k = 0 and x ∈ R r Z.

Proof. a) We first calculate the Fourier series
∑

n∈Z
cne

inx of β2. The coefficients cn are
given by the integral

cn =

∫ 1

0

β2(x)e−2πinx dx.

By theorem 5.5.iv) we have c0 = 0. Let now n 6= 0. Using partial integration we get

∫ 1

0

xe−2πinxdx = −
1

2πin
xe−2πinx

∣∣∣
1

0
+

1

2πin

∫ 1

0

e−2πinxdx =
i

2πn

and

∫ 1

0

x2e−2πinxdx = −
1

2πin
x2e−2πinx

∣∣∣
1

0
+

2

2πin

∫ 1

0

xe−2πinxdx =
i

2πn
+

2

(2πn)2
,

hence

cn =

∫ 1

0

(1
2
x2 − 1

2
x + 1

12
) e−2πinxdx =

1

(2πn)2
.

Thus we have the Fourier series

β2(x) =
∑

n∈Zr0

e2πin

(2πn)2
=

∞∑

n=1

e2πinx + e−2πinx

(2πn)2
= 2

∞∑

n=1

cos(2πnx)

(2πn)2
.

By the general theory of Fourier series, the convergence is with respect to the L2-norm
‖f‖L2 = (

∫ 1

0
|f(x)|2dx)1/2, but since

∑∞
n=1 1/n2 < ∞ and β2 is continuous, we have

even uniform convergence.

b) Since the right hand sides of the formulae of the theorem satisfy the same recursion
and normalization relations (5.5.iii-iv) as the functions βk, it follows that the given
Fourier expansions are valid for all βk, k ≥ 2. To prove the formula for

β1(x) = saw(x) = −2

∞∑

n=1

sin(2πnx)

2πn
, x ∈ R r Z,
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5. Euler-Maclaurin summation

it suffices to show that the series
∑∞

n=1
sin(2πnx)

2πn
converges uniformly on every interval

[δ, 1 − δ], 0 < δ < 1
2
, since then termwise differentiation of the Fourier series of β2 is

allowed. To simplify the notation we will prove the equivalent statement

∞∑

n=1

sin nx

n
converges uniformly on [δ, 2π − δ], (0 < δ < π).

Define

Sm(x) :=

m∑

n=1

sin nx = Im
( m∑

n=1

einx
)
.

For δ ≤ x ≤ 2π − δ we have

|Sm(x)| ≤

∣∣∣∣
m∑

n=1

einx

∣∣∣∣ =
∣∣∣
eimx − 1

eix − 1

∣∣∣ ≤
2

|eix/2 − e−ix/2|
=

1

sin x
2

≤
1

sin δ
2

.

It follows for m ≥ k > 0

∣∣∣∣
m∑

n=k

sin nx

n

∣∣∣∣ =

∣∣∣∣
m∑

n=k

Sn(x) − Sn−1(x)

n

∣∣∣∣

≤

∣∣∣∣
m∑

n=k

Sn(x)
( 1

n
−

1

n + 1

)
+

Sm(x)

m + 1
−

Sk−1(x)

k

∣∣∣∣

≤
1

sin δ
2

(1

k
−

1

m + 1
+

1

m + 1
+

1

k

)
≤

2

k sin δ
2

,

hence also
∣∣∣∣

∞∑

n=k

sin nx

n

∣∣∣∣ ≤
2

k sin δ
2

for all x ∈ [δ, 2π − δ],

which proves the asserted uniform convergence and thereby completes the proof of the
theorem.

5.7. Definition. It follows immediately from (5.5.iii-iv) that βn, restricted to the open
interval ]0, 1[, is a polynomial of degree n with rational coefficients. The n-th Bernoulli

polynomial Bn(X) ∈ Q[X] is defined by

Bn(x)

n!
= βn(x) for 0 < x < 1, n ≥ 1

and B0(X) = 1. The Bernoulli numbers1 Bk are defined by

Bn := Bn(0), n ≥ 0.

1Strictly speaking, it is not correct to use the same symbol Bk for the Bernoulli polynomials and

the Bernoulli numbers. However this notation is the usual one. To avoid confusion, we will always

indicate the variable when we are dealing with Bernoulli polynomials.
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We know already the first Bernoulli polynomials

B1(X) = X − 1
2

and B2(X) = X(X − 1) + 1
6
,

hence B0 = 1, B1 = −1
2
, B2 = 1

6
.

An easy consequence of theorem 5.6 is

5.8. Theorem. For the Bernoulli numbers the following relations hold:

i) B2k+1 = 0 for all k ≥ 1.

ii) B2k = (−1)k−1 2(2k)!

(2π)2k

∞∑

n=1

1

n2k
, hence

ζ(2k) =
(2π)2k

2(2k)!
|B2k| for all k ≥ 1.

iii) sign(B2k) = (−1)k−1 for all k ≥ 1.

Remarks. a) Formula ii) of the theorem says in particular

ζ(2) =

∞∑

n=1

1

n2
=

π2

6
,

which was already used in the previous chapter.

b) Since lim
σ→∞

ζ(σ) = 1, formula ii) shows the asymptotic growth of the Bernoulli

numbers B2k

|B2k| ∼
2(2k)!

(2π)2k
for k → ∞.

5.9. Theorem (Generating function for the Bernoulli polynomials). For fixed x ∈ R,

the function
text

et − 1
is a complex analytic function of t with a removable singularity at

t = 0. The Taylor expansion at t = 0 of this function has the form

text

et − 1
=

∞∑

n=0

Bn(x)

n!
tn.

In particular, for x = 0 one has

t

et − 1
=

∞∑

n=0

Bn

n!
tn.

Proof. Define Bn(x) by the above Taylor expansions. We will show that

5.7



5. Euler-Maclaurin summation

(a) B0(x) = 1, B1(x) = x − 1
2
,

(b) B′
n(x) = nBn−1(x), (n ≥ 1),

(c)
∫ 1

0
Bn(x)dx = 0, (n ≥ 1).

Then theorem 5.5 implies
Bn(x)

n!
= βn(x) for 0 < x < 1 and all n ≥ 1.

Proof of (a)

text

et − 1
=

t(1 + xt + O(t2))

t + 1
2
t2 + O(t3)

=
1 + xt + O(t2)

1 + 1
2
t + O(t2)

= (1 + xt)(1 − 1
2
t) + O(t2) = 1 + (x − 1

2
)t + O(t2),

which shows B0(x) = 1 and B1(x) = x − 1
2
.

Proof of (b) We calculate
∂

∂x

text

et − 1
in two ways

∂

∂x

text

et − 1
=

∞∑

n=0

B′
n(x)

n!
tn

and

∂

∂x

text

et − 1
=

t2ext

et − 1
=

∞∑

n=0

Bn(x)

n!
tn+1 =

∞∑

n=1

Bn−1(x)

(n − 1)!
tn

Comparing coefficients we get B′
n(x) = nBn−1(x).

Proof of (c)

∫ 1

0

text

et − 1
dx =

ext

et − 1

∣∣∣∣
x=1

x=0

=
et

et − 1
−

1

et − 1
= 1.

On the other hand

∫ 1

0

text

et − 1
dx =

∞∑

n=1

( 1∫
0

Bn(x)dx
) tn

n!
.

Comparing coefficients, we get
∫ 1

0
Bn(x)dx = 0 for all n ≥ 1, q.e.d.

5.10. Recursion formula. Theorem 5.9 can be used to derive a recursion formula for

the Bernoulli numbers. Since (et − 1)/t =
∞∑

n=1

tn−1/n!, we have

( ∞∑

k=0

Bk

k!
tk

)( ∞∑

ℓ=0

1

(ℓ + 1)!
tℓ

)
= 1.
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The Cauchy product
∑∞

n=0 cnt
n of the two series has coefficients

cn =
n∑

k=1

Bk

k!(n − k + 1)!
=

1

(n + 1)!

n∑

k=0

(
n + 1

k

)
Bk.

Hence comparing coefficients we get B0 = 1 and

n∑

k=0

(
n + 1

k

)
Bk = 0 for all n ≥ 1.

With this formula one can recursively calculate all Bn. The first non zero coefficients
are

k 0 1 2 4 6 8 10 12 14 16

Bk 1 −1
2

1
6

− 1
30

1
42

− 1
30

5
66

− 691
2730

7
6

−3617
510

5.11. Theorem (Euler-Maclaurin II). Let x0 be a real number and f : [x0,∞[ → C a

2r-times continuously differentiable function. Then we have for all integers n ≥ m ≥ x0

and all r ≥ 1

n∑

k=m

f(k) = 1
2
(f(m) + f(n)) +

∫ n

m

f(x)dx

+

r∑

k=1

B2k

(2k)!

(
f (2k−1)(n) − f (2k−1)(m)

)
−

∫ n

m

B̃2r(x)

(2r)!
f (2r)(x)dx

Here B̃2r(x) is the periodic function defined by B̃2r(x) := B2r(x − ⌊x⌋) = (2r)!β2r(x).

Proof. We start with theorem 5.2

n∑

k=m

f(k) = 1
2
(f(m) + f(n)) +

∫ n

m

f(x)dx +

∫ n

m

saw(x)f ′(x)dx.

and evaluate the last integral by partial integration.

Since β ′
2(x) = saw(x) for k < x < k + 1 and β2 is continuous and periodic, we get

∫ n

m

saw(x)f ′(x)dx =

n−1∑

k=m

∫ k+1

k

saw(x)f ′(x)dx

=

n−1∑

k=m

β2(x)f ′(x)
∣∣∣
k+1

k
−

n−1∑

k=m

∫ k+1

k

β2(x)f ′′(x)dx

=

n−1∑

k=m

(β2(k+1)f ′(k+1) − β2(k)f ′(k)) −

∫ n

m

β2(x)f ′′(x)dx

=
B2

2!
(f ′(n) − f ′(m)) −

∫ n

m

β2(x)f ′′(x)dx.
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This proves the case r = 1 of the theorem. The general case is proved by induction.

Induction step r → r + 1.

−

∫ n

m

β2r(x)f (2r)(x)dx = −β2r+1(x)f (2r)(x)
∣∣∣
n

m
+

∫ n

m

β2r+1(x)f (2r+1)(x)dx

=

∫ n

m

β2r+1(x)f (2r+1)(x)dx [since β2r+1(k) =
B2r+1

(2r + 1)!
= 0]

= β2r+2(x)f (2r+1)(x)
∣∣∣
n

m
−

∫ n

m

β2r+2(x)f (2r+2)(x)dx

=
B2r+2

(2r + 2)!
(f (2r+1)(n) − f (2r+1)(m)) −

∫ n

m

β2r+2(x)f (2r+2)(x)dx.

This proves the assertion for r + 1.

Remark. If f is infinitely often differentiable and we pass to the limit r → ∞, the
“error term”

∫ n

m

B̃2r(x)

(2r)!
f (2r)(x)dx

will in general not converge to 0. In case f is real and f (2r) does not change sign in the
interval [m, n], one has the following estimate

∣∣∣
∫ n

m

B̃2r(x)

(2r)!
f (2r)(x)dx

∣∣∣ ≤
|B2r|

(2r)!

∣∣∣
∫ n

m

f (2r)(x)dx
∣∣∣ =

|B2r|

(2r)!
|f (2r−1)(n) − f (2r−1)(m)|,

which means that the error of the approximation
n∑

k=m

f(k) ≈ 1
2
(f(m) + f(n)) +

∫ n

m

f(x)dx +

r∑

k=1

B2k

(2k)!

(
f (2k−1)(n) − f (2k−1)(m)

)

is by absolute value not larger than the last term of the sum. Hence by increasing r one
gets better approximations as long as the absolute values of the added terms decrease.

5.12. Theorem. The Riemann zeta function can be analytically continued to a mero-

morphic function in the whole plane C with a single pole of order 1 at s = 1. For

Re(s) > 1 − 2r, the continued function can be represented as

ζ(s) =
1

2
+

1

s − 1
+

r∑

k=1

B2k

(2k)!
s(s + 1) · . . . · (s + 2k − 2)

− s(s + 1) · . . . · (s + 2r − 1)

∫ ∞

1

B̃2r(x)

(2r)!
·

1

xs+2r
dx.

Proof. This is proved by applying theorem 5.11 to the sum
∑n

k=1 1/ks and passing to the
limit n → ∞. That the last integral defines a holomorphic function for Re(s) > 1− 2r,

follows from the fact that the function B̃2r(x) is bounded and
∣∣∣

1

xs+2r

∣∣∣ ≤
1

x1+δ
for all s ∈ C with Re(s) ≥ 1 − 2r + δ.
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