

MATHEMATISCHES INSTITUT

Sommersemester 2010

H. Donder, A. Fackler, P. Garcia

Analysis III Tutorium

Blatt 7

Aufgabe 7.1. Zeigen Sie, dass $\int_0^\infty x^n e^{-x} dx = n!$.

Aufgabe 7.2. Sei A die σ -Algebra der messbaren Teilmengen von \mathbb{R}^n . Ein Mass μ auf A ist eine Funktion $\mu: A \longrightarrow \mathbb{R} \cup \{\infty\}$ mit der Eigenschaften:

- i. $\mu(\emptyset) = 0$.
- ii. $\mu(E) \geqslant 0$ für jede $E \in A$.
- iii. $\mu(\bigcup_{n\in\mathbb{N}}E_n)=\sum_{n\in\mathbb{N}}\mu(E_n)$, wo $(E_n)_{n\in\mathbb{N}}$ eine abzählbare Folge von paarweise disjunkte Mengen in A ist.

Sei $f: \mathbb{R}^n \longrightarrow \overline{\mathbb{R}}$ eine nicht negative integrierbare Funktion. Sei $\mu: A \longrightarrow \mathbb{R}$ die Funktion $\mu(E) := \int_E f dx$. Zeigen Sie, dass μ ein Mass auf A ist.

Aufgabe 7.3. Für $n \in \mathbb{N} \setminus \{0\}$, seien $f_n := \frac{1}{n} \cdot 1_{[n,\infty)}$ und $g_n := \frac{1}{n} \cdot 1_{[0,n]}$. Zeigen Sie, dass

- 1. Die Folge $(f_n)_{n\geqslant 1}$ konvergiert (sogar gleichmässig) nach 0 aber $0=\int \lim_{n\longrightarrow\infty} f_n \neq \lim_{n\longrightarrow\infty} \int f_n dx = \infty$. Ist das ein Widerspruch zum Levis Theorem?.
- 2. Die Folge $(g_n)_{n\geqslant 1}$ konvergiert (sogar gleichmässig) nach 0 aber $0=\int \lim_{n\longrightarrow\infty}g_n\neq \lim_{n\longrightarrow\infty}\int g_ndx=1$. Ist das ein Widerspruch zum Levis Theorem?.

Aufgabe 7.4. Zeigen Sie, dass $\int_0^\infty e^{-t^2} dt = \frac{1}{2} \sqrt{\pi}$.