

MATHEMATISCHES INSTITUT

Sommersemester 2010

H. Donder, A. Fackler, P. Garcia

Analysis II Tutorium

Blatt 13

Aufgabe 13.1. Seien $X \subset \mathbb{R}^n$ eine offene Menge und $f: X \longrightarrow \mathbb{R}$ eine differenzierbare Funktion auf X. Weiterhin, seien $a, b \in X$ mit $[a, b] \subset X$.

Mit Hilfe des Mittelwertsatzes für Funktionen von einer Variable, zeigen Sie, dass es ein $\xi \in [a, b]$ existiert, mit $f(b) - f(a) = \langle \nabla f(\xi), (b - a) \rangle$, wo $\langle x, t \rangle$ das inneres Produkt von $x, t \in \mathbb{R}^n$ bezeichnet.

DefinitionA:

Seien $\sigma \colon \mathbb{R}^+ \cup \{0\} \longrightarrow \mathbb{R}^3$ eine zweimal stetig differenzierbare Kurve und $m \colon \mathbb{R}^+ \cup \{0\} \longrightarrow \mathbb{R}$ eine stetig differenzierbare Funktion. Nehmen wir an, zur Zeit $t \in \mathbb{R}^+ \cup \{0\}$ ein Massenpunkt p hat Masse m(t) und Position $\sigma(t)$. Die Geschwindigkeit V, die Beschleunigung B, die Schnelligkeit S und der Impuls P von p zur Zeit t werden als $V(t) := \sigma'(t)$, B(t) := V'(t), S(t) = ||V(t)|| und P(t) := m(t)V(t) definiert. Ausserdem, die wirkende Kraft F auf p zur Zeit t wird durch die Formel F(t) := P'(t) gegeben.

DefinitionB: Sei p ein Massenpunkt mit konstanter Masse $m_p \in \mathbb{R}^+$, der zur Zeit t auf dem position $\sigma(t) \in \mathbb{R}^3$, $\sigma(t) \neq (0, 0, 0)$ sich befindet. Ausserdem, sei c ein anderer Massenpunkt mit konstanter Masse m_c , der auf der Position (0, 0, 0) immer liegt. Die von c und p erzeugte (newtonsche) Gravitationskraft auf p wird durch die Formel $F(t) = -G \frac{m_c m_p}{\|\sigma(t)\|^2} \cdot \frac{\sigma(t)}{\|\sigma(t)\|}$ gegeben, wo $G \in \mathbb{R}^+$ eine Konstante ist.

Aufgabe 13.2. (Impulserhaltungssatz). Seien $\sigma: \mathbb{R}^+ \cup \{0\} \longrightarrow \mathbb{R}^3$, $m: \mathbb{R}^+ \cup \{0\} \longrightarrow \mathbb{R}$, wie in DefinitionA. Sei p ein Massenpunkt mit Trajektorie σ und Masse m. Nehmen wir an, dass die wirkende Kraft F auf p konstant Null ist. Zeigen Sie, dass der Impuls von p zu den (beliebigen) Zeiten $t_1, t_2 \in \mathbb{R}^+$ gleich ist.

Aufgabe 13.3. Seien $Z, a, b \in \mathbb{R}^+$ mit $a \geqslant b$. Nehmen wir an, dass die Position $\sigma \colon \mathbb{R}^+ \cup \{0\} \longrightarrow \mathbb{R}^3$ eines Massenpunktes p durch die Formel $\sigma(t) := (a \cdot \cos(\frac{Z \cdot t}{a}), b \cdot \sin(\frac{Z \cdot t}{a}))$ gegeben ist.

- (a). Zeigen Sie, dass σ zweimal differenzierbar ist.
- (b). Setzen wir voraus, dass a = b.
- b1. Zeigen Sie, dass p sich auf der Kreis K mit Mittelpunkt (0,0) und Radius a bewegt.
- b2. Zeigen Sie, dass die Geschwindigkeit V(t) von p senkrecht auf die Position $\sigma(t)$ von p steht.
- b3. Zeigen Sie, dass die Schnelligkeit von p konstant ist.

Aufgabe 13.4. Sei allen Voraussetzungen von Aufgabe 13.3. Weiterhin, nehmen wir an, dass p eine konstante Masse $m_p \in \mathbb{R}^+$ hat.

- (a). Zeigen Sie, dass die Beschleunigung B(t) von p in die Gegenrichtung von $\sigma(t)$ zeigt.
- (b). Finden Sie die Zeiten t wop sich am schnellsten bewegt.
- (c). Nehmen wir an, dass a=b. Zeigen Sie, dass auf p eine Kraft F mit konstanter Grosse wirkt.
- (d). Nehmen wir an, dass a=b und dass auf dem punkt $(0,0) \in \mathbb{R}^2$ ein Massenpunkt c mit konstanter Masse $m_c \in \mathbb{R}^+$ liegt, so dass die auf p wirkende Kraft die Gravitationskraft zwischen c und p ist. Zeigen Sie, dass das quadrat der Schnelligkeit mit der sich p bewegt, umgekehrt proportional zum Radius des Kreises K ist.