

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. H.-D. Donder Parmenides García Cornejo, Andreas Fackler Sommersemester 2010 9. Juli 2010

Topologie und Differentialrechnung mehrerer Variablen Tutorium 12

Aufgabe 12.1. Sei $A \subseteq \mathbb{R}^n$. Zeigen Sie: A ist genau dann kompakt, wenn jede stetige Funktion $f: A \to \mathbb{R}$ beschränkt ist.

Aufgabe 12.2. Eine Funktion $f:X\to Y$ heißt offen, wenn für alle offenen Mengen $U\subseteq X$ auch die Bildmenge

$$f[U] := \{ f(x) \mid x \in U \}$$

offen ist. Entscheiden Sie, welche der folgenden Funktionen offen sind:

- (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = \max\{x, 0\}$
- **(b)** $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$
- $(\mathbf{c}) \ f : \mathbb{R}^2 \to \mathbb{R}^2, f(x,y) = (e^x \cos y, e^x \sin y)$

Aufgabe 12.3. Beweisen oder widerlegen Sie: Wenn $f, g : \mathbb{R} \to \mathbb{R}$ offene Abbildungen sind, dann ist auch f + g offen.

Aufgabe 12.4. l^1 sei die Menge aller Folgen $(x_n)_{n\in\mathbb{N}}$, so dass die Reihe $\sum_{n=0}^{\infty}|x_n|$ konvergiert. Für $(x_n)_{n\in\mathbb{N}}\in l^1$ sei:

$$||(x_n)_{n\in\mathbb{N}}||_1 = \sum_{n=0}^{\infty} |x_n|$$
$$||(x_n)_{n\in\mathbb{N}}||_{\infty} = \sup_{n\in\mathbb{N}} |x_n|$$

Zeigen Sie, dass l^1 sowohl mit $||\cdot||_1$ als auch mit $||\cdot||_{\infty}$ ein normierter Vektorraum ist. Zeigen Sie außerdem, dass die beiden Normen nicht äquivalent sind, das heißt, es gibt keine Konstanten $c_0, c_1 > 0$, so dass für alle $(x_n)_{n \in \mathbb{N}}$ gilt:

$$c_0 \| (x_n)_{n \in \mathbb{N}} \|_{\infty} \le \| (x_n)_{n \in \mathbb{N}} \|_1 \le c_1 \| (x_n)_{n \in \mathbb{N}} \|_{\infty}$$