

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Sommersemester 2012 20. Juli 2012

Prof. Dr. H.-D. Donder Andreas Fackler

Modelle der Mengenlehre Übungsblatt 11: Lösung

Aufgabe 1:	Geben Sie an,	welche der	folgenden	Relationen	$R\subseteq$	On^2	(stark)	fundiert
sind:								

R(x,y) gdw:	nicht fundiert	fundiert (nicht stark)	stark fundiert
$x \in y$		Q	X
$y \in x$	×		
$y = 0 \neq x \text{ oder } y \neq 0 \neq x \land x \in y$		X	
$x \neq x$			X

Aufgabe 2: Welche der folgenden Formeln sind Σ_0 ?

	Σ_0	nicht Σ_0
x ist transitiv.	X	
$x \in y$	X	
α ist regulär.		X
AC		X
r ist eine fundierte Relation		Xí

Aufgabe 3: Wie lautet das Kondensationslemma?

- \square Sei $L_{\kappa} \models \mathrm{ZF}^-$ und $L_{\kappa} \prec X$.
- \Box Dann existiert ein α mit $X = L_{\alpha}$.
- lacktriangle Sei $L_{\kappa} \models \mathrm{ZF}^-$ und $X \prec L_{\kappa}$.
- \Box Dann ist $X \in L$.
- \square Sei $L_{\kappa} \models \mathrm{ZF}^-$ und $X \subseteq L_{\kappa}$.
- lacktriangle Dann existiert genau ein α mit $X \cong L_{\alpha}$.

Aufgabe 4: Welche Aussagen sind in ZF wahr/falsch/unentscheidbar?

	wahr	falsch	unentscheidbar
$cf(\alpha + \beta) = cf(\alpha) + cf(\beta)$		X	
$cf(\alpha + \beta) = cf(\beta)$	X		
Es gibt eine Wohlordnung auf $\mathcal{P}(\mathcal{P}(\omega))^{\text{HOD}}$.	X		
$HOD^L = V$			X
Falls $V = L$, so ist $\forall \alpha \in \text{On } V_{\alpha} = L_{\alpha}$.		X	
Es gibt ein surjektives $F: \mathrm{On} \to \mathcal{P}(\omega)$.			X
Es gibt ein surjektives $F: \mathrm{On} \to L$.	X		

Aufgabe 5:	Welche	Aussager	sind in ZFC	wahr/falsch/une	entscheid	bar?	
(2/1) I	wahr		ınentscheidba	ar			
$(2^{\omega_1} = \omega_1)^L$ $(2^{\omega_1} = \omega_2)^L$		X					
		ū					
$\omega_1 \cdot \omega_2 = \omega_2$ $\omega_\omega^\omega > \omega_\omega$	X						
$\operatorname{cf}(2^{\omega_5}) = \omega_5$		X					
Aufgabe 6:	Geben	Sie an. we	elche der folg	enden Mengen E	lemente	von Def(ω) sind:
G		$(\omega) \notin D$,
ω	X	, ,	_				
$\mathcal{P}(\omega)$			X i				
$\{1, 2, 4\}$	X		_ _				
${3n \mid n \in \omega}$			X				
Bedingungsme	enge $\langle \mathbb{P}, p, q \in \mathbb{P}$	\leq , 1 \rangle ?	ein $r \leq p, q$ n	haften hat jede d $r \in D$.	lichte Tei	lmenge <i>I</i>	$O \subseteq \mathbb{P}$ einer
				es Modell von Z A ein Name für			
<i>(</i>) 11	111 1			stimmt		_	
$\emptyset \Vdash A \text{ ist un}$ Es gibt ein p		A ist end	illich	X	<u>_</u>	_	
$\{5,10\} \Vdash 5 \in$		71 150 CIR	incir.	X			
$\{5,10\} \Vdash 12$	$\notin A$				2	í	
$\{5,10\} \Vdash 8 \notin$	$\not\in A$			X			
$\emptyset \Vdash A \notin L$				X		1	

 $\emptyset \Vdash A$ enhält eine ungerade Zahl.

 $\emptyset \Vdash (A \cup \{1,2,3\}) \notin L$

 $\emptyset \Vdash (A \cap \{1,2,3\}) \notin L$

Es gibt ein p mit $p \Vdash A$ enthält keine gerade Zahl.

X

X

X