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19 October 2009

(1) Topological spaces; open and closed sets; Hausdorffness; continuity.
(2) Metric spaces, and their induced topology. This topology is always Hausdorff.
(3) Euclidean space Rn with its metric topology. By considering balls with rational radii cen-

tered at points with rational coordinates, one finds a countable collection of open sets such
that all open sets are suitable unions of these. This is abstracted into the notion of a count-
able basis for the topology.

(4) Topological manifolds are locally Euclidean spaces that are Hausdorff and have a count-
able basis for their topology.

(5) A differentiable manifold is a topological manifold together with an atlas whose transition
maps are differentiable. Such an atlas is called a differentiable or smooth atlas.

(6) A differentiable structure is an equivalence class of atlases, equivalently a maximal atlas.
(7) Every maximal Cr atlas with r ≥ 1 contains a C∞ atlas. Because of this fact (which

we do not prove), we will restrict ourselves to C∞ manifolds throughout. So the words
differentiable or smooth will usually mean C∞.

21 October 2009

(8) We define differentiability for maps between differentiable manifolds. A special case con-
cerns real-valued functions.

(9) Diffeomorphisms vs. homeomorphisms.
(10) If we retain from a smooth atlas for a manifold M only the knowledge of the images of

charts, together with the identifications that are to be performed according to the transition
maps, then we can reconstruct M up to diffeomorphism; see [1, Sections 3.1 and 3.2].

26 October 2009

(11) Dimensions of manifolds and smooth invariance of domain.
(12) Examples of differentiable manifolds and their dimensions: Euclidean spaces Rn, spheres

Sn, tori T n, GL(n,R),. . . An open subset of a manifold is a manifold (of the same dimen-
sion); products of manifolds are manifolds (and the dimensions add up).

(13) The tangent bundle TM of a differentiable manifoldM of dimension n is itself a manifold
of dimension 2n. It has a natural projection π : TM −→ M for which the preimage
TxM = π−1(x) of any point x ∈ M has a well-defined structure as an n-dimensional real
vector space. We call this the tangent space of M at x.

28 October 2009

(14) The projection π : TM −→M is a differentiable map.
(15) For any differentiable map f : M −→ N , we define the derivative Df : TM −→ TN .

This restricts to every tangent space TxM as a linear map Dxf to Tf(x)N . This is the
derivative of f at x ∈M .

1



(16) Differentiable vector bundles over manifolds; see [1] Section 3.3. Local vs. global trivial-
ity; isomorphisms of bundles. The tangent bundle as a vector bundle.

2 November 2009

(17) Every manifold M is paracompact, meaning that every open cover has an open locally
finite refinement. We prove the following more precise statement. Given an open covering
{Ui}i∈I of M , there is an atlas {(Vk, ϕk)} such that the covering by the Vk is a locally finite
refinement of the given covering, and such that ϕk(Vk) is an open ball B3 of radius 3 for
all k and the open sets Wk = ϕ−1

k (B1) cover M .

Proof. We prove first that there is a sequence Gi, i = 1, 2, . . . of open sets with compact
closures, such that the Gi cover M and satisfy

Gi ⊂ Gi+1

for all i. To this end let Ai, i = 1, 2, . . . be a countable basis of the topology consisting of
open sets with compact closures. (This exists because M is second countable, Hausdorff
and locally compact, see the homework assignement.) Set G1 = A1. Suppose inductively
that we have defined

Gk = A1 ∪ . . . ∪ Ajk .

Then let jk+1 be the smallest integer greater than jk with the property that

Gk ⊂ A1 ∪ . . . ∪ Ajk+1
,

and define

Gk+1 = A1 ∪ . . . ∪ Ajk+1
.

This defines the sequence Gk as desired.
Let {Ui}i∈I be an arbitrary open covering of M . For every x ∈ M we can find a

chart (Vx, ϕx) at x with Vx contained in one of the Ui and such that ϕx(Vx) = B3. Let
Wx = ϕ−1

x (B1). We can cover each set Gk \ Gk−1 by finitely many such Wxj such that at
the same time the corresponding Vxj are contained in the open set Gk+1 \Gk−2. Taking all
these Vxj as i ranges over the positive integers we obtain the desired atlas. �

(18) We construct smooth bump functions on Rn and transfer them to differentiable manifolds
via charts. This allows us to construct various kinds of differentiable functions with special
properties.

(19) Every open covering of a differentiable manifold admits a subordinate differentiable par-
tition of unity. This follows from paracompactness and the existence of smooth bump
functions.

(20) The space Γ(E) of smooth sections of a vector bundle π : E −→ B is a vector space over
R with the operations of addition and scalar multiplication defined point-wise. In the same
way, it is also a module over the ring of smooth functions on B. Using partitions of unity
we see that every (global) section is a sum of (local) sections whose supports are contained
in domains of charts.
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4 November 2009

(21) A curve in a differentiable manifold M is a map s from R or from some subinterval I of R
to M . If such a map is differentiable at t ∈ I , then its derivative Dts applied to the tangent
vector ∂

∂t
of R gives a vector in Ts(t)M denoted by ṡ(t) and called the velocity vector of s

at t (or at s(t)). Every tangent vector to M can be realized as a velocity vector of a suitable
curve.

(22) Three equivalent definitions of a tangent vector Xp ∈ TpM are:
i) the local representative X̃(α)

ϕα(p) ∈ Tϕα(p)ϕα(Uα) in a chart (Uα, ϕα) transforms under a

change of chart (Uα, ϕα)→ (Uβ, ϕβ) as X̃(β)
ϕβ(p) = Dϕα(p)ψ (X̃

(α)
ϕα(p)) with ψ = ϕβ ◦ ϕ−1

α ;
ii) as an equivalence class 〈s〉p of curves through p ∈ M with velocity vector Xp, where
s ∼ š if s(0) = p = š(0) and ds̃/dt(0) = d˜̌s/dt(0) for the local representatives (s̃ = ϕ ◦ s)
in one (and thus any) chart;
iii) as a derivative D〈s〉p : C∞(U,R) → R on smooth, real valued functions evaluated at
p ∈ U , in local coordinates: Xp(f)(p) = limh→0

1
h
(f̃(s̃(h))−f̃(s̃(0))) =(X̃ i

ϕ(p)
∂
∂xi

)f̃(xi)|ϕ(p),
where f̃ = f ◦ ϕ−1 and s(0) = p.

(23) The definitions ii) and iii) lead to a natural basis “ei = ∂
∂xi

” on the vector space TpM ,
which links the choice of basis vectors in TpM to the choice of local coordinates on M in
the open set U ⊂ M . The basis vector ei is chosen as the velocity vector of the (pull-back
of) the coordinate line {xj = const. ∀j 6= i}.

9 November 2009

(24) An integral curve s : (−ε, ε) → U of a vector field X ∈ Γ(TU) through x ∈ U ⊂ Rn is
a curve with s(0) = x and velocity vector ṡ(t) = Xs(t) ∀t ∈ (−ε, ε), ε > 0. The existence
and uniqueness of s(t) follows from the theory of ODEs (Picard-Lindelöf) for small ε.

(25) A local flow generated by a vector field X ∈ Γ(TU) is a map Φ : (−ε, ε) × W → U ,
(t, x) 7→ Φt(x) defined on an open set W ⊆ U ⊂ Rn. The local flow Φ exists and is
unique on its domain of definition. It defines a local 1-parameter group Φt+s = Φt ◦ Φs of
diffeomorphisms from W to its image.

(26) Patching together compatible local flows in open charts one constructs a local flow on M .
There is a 1-1 correspondence between (maximal) local flows Φ on M and vector fields
X ∈ Γ(TM) generating the flow. A global flow on M is a smooth map Φ : R ×M →
M , its generator is called a complete vector field. A vector field with compact support
is complete. On a compact manifold, every vector field is complete and generates a 1-
parameter group of diffeomorphisms.

11 November 2009

(27) A Lie algebra over R is a real vector space V with a bilinear map [. , .] : V × V →
V , called the Lie bracket, satisfying [X, Y ] = −[Y,X] and [X, [Y, Z]] + [Y, [Z,X]] +
[Z, [X, Y ]] = 0 (Jacobi identity). The space of sections Γ(TM) is a Lie algebra with the
Lie bracket defined by

[X, Y ](f) = X(Y (f))− Y (X(f)) ,

for f ∈ C∞(M,R).
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(28) The Lie derivatives by X ∈ Γ(TM) of a function f ∈ C∞(M,R) and of a vector field
Y ∈ Γ(TM) are defined as

LX(f) :=
d

dt
(Φ∗tf)|t=0 , LX(Y ) :=

d

dt
(Φ−t∗Y )|t=0 .

Here Φt is the flow generated by X , Φ∗tf = f ◦ Φt is the pull-back of f and Φ−t∗Y =
DΦ−t(Y ) is the push-forward of Y . The Lie derivatives satisfy LX(f) = X(f) ∈
C∞(M,R) and LX(Y ) = [X, Y ] ∈ Γ(TM).

(29) The flows ΦX
t and ΦY

s generated by two vector fields X and Y commute, i.e. ΦX
t ◦ ΦY

s =
ΦY
s ◦ ΦX

t for all s and t, if and only if [X, Y ] = 0.

16 November 2009

(30) A differential form of degree k on a smooth manifold M is a map

ω : X (M)× . . .×X (M) −→ C∞(M)

of C∞(M)-modules, in other words, it is function-linear in all k arguments. In addition, it
is required to satisfy the following condition:

(1) ω(Xσ(1), . . . , Xσ(k)) = sign(σ)ω(X1, . . . , Xk)

for all permutations σ ∈ Σk.
(31) We have the following:

Lemma 1. If ω is a differential form, then the value of the function ω(X1, . . . , Xk) at a
point p ∈ M depends on the vector fields Xi only through their values Xi(p) at the point
p.

This means that ω has a value ω(p) at p, which is a k-multilinear map

ω(p) : TpM × . . .× TpM −→ R

defined on (X1(p), . . . , Xk(p)) by extending the Xi(p) to global vector fields, evaluating
ω on these vector fields, and then evaluating the resulting function at p. (This multilinear
map of course inherits property (1).)

(32) We build a universal model for multilinear maps, first for vector spaces (like TpM ), and
then for vector bundles (like TM ). This will allow us to interpret differential forms as
sections of suitable vector bundles, so that ω(p) will be simply the value of the section ω
at p. The universal model for bilinear maps on V × W is given by the tensor product
V ×W −→ V ⊗W . (See [1] Section 7.1.).

18 November 2009

(33) Iterating the construction of the tensor product we obtain tensor products of k vector spaces
which have the universal property for k-linear maps. The tensor algebra and of a vector
space V is the direct sum of the tensor products T k(V ) of k copies of V , for k = 0, 1, 2, . . .
endowed with the natural mutiplication given by the tensor product. Here T 0(V ) is just
the ground field, and T 1(V ) is V itself. The tensor algebra is a graded associative algebra.
(See [1, Section 7.1].)
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(34) For anti-symmetric bilinear maps on V × V there is a universal object V × V −→ Λ2V
obtained as a quotient of V ⊗ V .

23 November 2009

(35) The exterior algebra of a vector space over a field of characteristic 6= 2. (See [1, Sec-
tion 7.2].)

(36) Induced maps on the tensor algebra and on the exterior algebra. The following lemma will
be important:

Lemma 2. If V is a vector space of dimension n and f : V −→ V is a linear map, then
the induced map Λn(f) : Λn(V ) −→ Λn(V ) is multiplication by the determinant det(f).

See [1, Lemma 7.2.15].

25 November 2009

(37) A vector bundle can be reconstructed, up to bundle isomorphism, from the data given by
the transition maps between local trivializations.

(38) Multilinear algebra constructions applied to vector bundles. See [1, Section 7.4].

30 November 2009

(39) Differential forms as sections of exterior powers of the cotangent bundle. The wedge
product of forms.

(40) Exterior derivatives.

2 December 2009

(41) Existence and uniqueness of the exterior derivative.
(42) Pullback of differential forms. The pullback commutes with the exterior derivative.
(43) The Lie derivative of differential forms.

7 December 2009

(44) Contraction of differential forms. Cartan’s formula

(2) LX = d ◦ iX + iX ◦ d .
(45) Orientability and orientations of vector bundles.

9 December 2009

(46) Orientability of a vector bundle E or rank k is equivalent to the orientability of E∗, and
also to that of the rank 1 bundle ΛkE.

(47) For rank 1 bundles orientability is equivalent to triviality, and to the existence of a no-where
zero section.

(48) Orientability and orientations on manifolds via the co-/tangent bundle and its maximal
exterior power. Orientability is equivalent to the existence of a volume form.
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(49) The integral of n-forms with compact support on oriented n-manifolds. (See [1] Sec-
tion 8.2.)

14 December 2009

(50) The integral is well-defined.
(51) Motivation for Stokes’ Theorem.
(52) Manifolds with boundary; their boundaries and their interiors. Every manifold (in the

usual sense) is also a “manifold with boundary”, but the boundary happens to be empty.

16 December 2009

(53) Orientations of manifolds with boundary and the induced orientation on the boundary.
(54) Stokes’s Theorem for oriented manifolds with boundary:∫

M

dω =

∫
∂M

ω .

(See [1] Section 8.2.)

21 December 2009

(55) Closed and exact k-forms; the de Rham complex and its cohomology, called the de Rham
cohomology Hk

dR(M) of a differentiable manifold M .
(56) Any differentiable map f : M −→ N induces a map on de Rham cohomology

f ∗ : Hk
dR(N) −→ Hk

dR(M)

defined by pulling back closed forms. (Recall that on forms the pullback commutes with
exterior differentiation.)

(57) The Poincaré lemma: If it0 : M −→ M × R is the inclusion of M as M × {t0} and
π : M ×R −→M is the projection, then i∗t0 and π∗ are inverses of each other on cohomol-
ogy. Thus M and M × R have isomorphic de Rham cohomology.

(58) As consequences of the Poincaré lemma we have in particular a complete calculation of the
de Rham cohomology of Rn by induction on n, the statement that on any manifold every
closed form is locally exact, and the invariance of de Rham cohomology under smooth
homotopies.

23 December 2009

(59) The forms with compact support form a subcomplex of the de Rham complex. Its coho-
mology is called the (de Rham) cohomology with compact support and denoted Hk

c (M).
For compact manifolds this is of course the same as the ordinary de Rham cohomology
defined above.

(60) For any oriented n-dimensional manifold M without boundary, the integral gives a well-
defined surjective linear map:∫

M

: Hn
c (M) −→ R

[ω] 7−→
∫
M

ω .
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(61) By induction on n we find the cohomology of Rn with compact supports, and, at the same
time, the de Rham cohomology of Sn.

(62) For any connected, compact, oriented n-dimensional manifold M without boundary, we
have Hn

dR(M) = R.

11 January 2010

(63) We now begin the discussion of connections and curvature on vector bundles.
Let E → M be a differentiable vector bundle of rank k over a smooth manifold M of

dimension n.

Definition 3. A connection on E is an R-linear map

(3) ∇ : Γ(E) −→ Ω1(E)

satisfying the Leibniz rule

(4) ∇(fs) = df ⊗ s+ f∇(s)

for all f ∈ C∞(M) and s ∈ Γ(E).

Here Ω1(E) = Γ(T ∗M ⊗ E) is the space of 1-forms on M with values in E. One can
evaluate the 1-form on a vector field X to obtain

(5) ∇X(s) := 〈∇(s), X〉 ∈ Γ(E) .

(64) We prove the following fundamental properties of connections:
• A connection ∇ does not increase the support of sections, i. e. if s ∈ Γ(E) vanishes

on some open set U ⊂M , then so does∇(s).
• The value of∇(s) at a point p ∈ B depends only on the restriction of s to an orbitrarily

small open neighbourhood of p. (In other words, ∇ is a differential operator, and
∇(s)(p) depends only on the germ of s at p.)
• If ∇1 and ∇2 are connections, then so is t∇1 + (1− t)∇2 for all t ∈ [0, 1].
• If ∇1 and ∇2 are connections, then∇1 −∇2 ∈ Ω1(End(E)) = Γ(T ∗B ⊗ E∗ ⊗ E).

(65) Using these properties and a partition of unity subordinate to a covering of M by open sets
over which the restriction of E is trivial, we prove:

Theorem 4. Every vector bundle E admits connections. The space of all connections on
E is an affine space for the space Ω1(End(E)) of 1-forms on M with values in End(E).

(66) Next we extend the differential operator given by a connection ∇ to bundle-valued forms
of higher degree.

Proposition 5. For every connection∇ on E →M there is a unique R-linear map

∇̄ : Ωl(E) −→ Ωl+1(E)

which satisfies

(6) ∇̄(ω ⊗ s) = dω ⊗ s+ (−1)lω ∧∇(s)

for all ω ∈ Ωl(M) and s ∈ Γ(E). Moreover, this operator satisfies

(7) ∇̄(f(ω ⊗ s)) = (df ∧ ω)⊗ s+ f∇̄(ω ⊗ s)
for all smooth functions f on M .
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13 January 2010

(67) Consider the operator ∇̄ ◦ ∇ : Ω0(E) −→ Ω2(E) associated with a connection ∇ on E.
It turns out that this is linear over C∞(M), and is therefore given by an element F∇ ∈
Ω2(End(E)). This is called the curvature of∇.

(68) A (local) frame for E is a set of smooth sections s1, . . . , sk defined over some open set
U ⊂M , whose values are linearly independent at every point p ∈ U .

Thus a set of k local smooth sections s1, . . . , sk is a frame if and only if s1(p), . . . , sk(p)
is a basis of Ep = π−1(p) for every p ∈ U . Therefore a frame defined over U defines a
trivialization of E|U , and, conversely, every such trivialization

ψ : π−1(U) −→ U × Rk

defines a local frame by setting si(p) = ψ−1(p, ei), where e1, . . . , ek is the standard basis
of Rk.

(69) Fix a local frame s1, . . . , sk for the restriction of E to a trivialising open set in M . This
choice determines a connection ∇0 defined by the requirement ∇0(si) = 0 for all i. Every
other connection ∇ differs from ∇0 by the addition of a 1-form with values in End(E).
However, the given trivialization of E induces a trivialization of End(E), and so a 1-form
with values in End(E) is nothing but a k × k matrix of ordinary 1-forms. Thus ∇ can be
expressed by the matrix ω = (ωij) of 1-forms given by

∇(si) =
k∑
j=1

ωij ⊗ sj .

(70) From the definition of the curvature we calculate

F∇(si) =
k∑
j=1

Ωij ⊗ sj

with

Ωij = dωij −
k∑
l=1

ωil ∧ ωlj .

We can write this briefly as Ω = dω − ω ∧ ω, where the wedge product on the right-hand-
side includes matrix multiplication, and is therefore not necessarily trivial unless k = 1.

(71) Similarly we compute dΩ = ω ∧ Ω− Ω ∧ ω. This is the Bianchi identity.

18 January 2010

(72) A choice of a (local) frame is called a choice of gauge in physics terminology. The connec-
tion and curvature matrices represent ∇ and F∇ with respect to this choice. Connections
are referred to as gauge fields.

Suppose we have another frame s′1, . . . , s
′
k on the same domain of definition as the orig-

inal frame. Let ω′ and Ω′ denote the connection and curvature matrices of ∇ with respect
to this new frame. If

s′i =
k∑
i=1

gijsj ,
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we find the following relations: ω′ = dg g−1 + gωg−1 and Ω′ = gΩg−1, where g = (gij).
The change of basis g is called a gauge transformation, and these formulae show how
connection and curvature matrices behave under gauge transformations. The curvature
matrix Ω is more invariant than the connection matrix ω.

(73) Recall that with respect to a frame s1, . . . , sk of E a connection∇ is expressed by a matrix
(ωij) of one-forms. If we choose a chart for the base manifold M with local coordinates
x1, . . . , xn, then in the domain of this chart every one-form can be expressed uniquely as a
linear combination of the dxi. In particular, there are smooth functions ωαij on the domain
of the chart such that

(8) ωij =
n∑

α=1

ωαijdxα .

Denoting the vector fields ∂
∂xα

by ∂α, we find the following:

∇∂αsi = 〈∂α,∇si〉 =
k∑
j=1

〈∂α, ωij〉sj =
k∑
j=1

ωαijsj .

More generally, if

s =
k∑
i=1

fisi ,

then

∇∂αs =
k∑
j=1

(
∂fj
∂xα

+
k∑
i=1

fiω
α
ij)sj .

WritingAα for the matrix (ωαij) of functions we see that the covariant derivative∇∂α , which
we abbreviate to∇α, has the form∇α = ∂α + Aα.

(74) We can now give a first geometric interpretation of the curvature, or at least of its vanishing.
A connection∇ is called flat if F∇ = 0.

Proposition 6. [∇α,∇β]si =
∑k

j=1 Ωij(∂α, ∂β)sj

Corollary 7. The connection∇ is flat if and only if [∇α,∇β] = 0 for every local coordinate
system x1, . . . , xn on the base manifold M .

Thus the curvature quantifies the failure of the commutativity of covariant derivatives.
(75) If E → M is a vector bundle with a connection ∇, we say that a section s ∈ Γ(E) is

parallel with respect to∇ if∇s = 0. In the special case that∇ is the connection given by
some trivialization, a section is parallel if and only if it is constant in the given trivialization.
Thus parallel sections should be thought of as the analogs of constant sections for nontrivial
bundles.

(76) We will want to prove the following:

Proposition 8. Let π : E → M be a smooth vector bundle with a connection ∇, and
c : [0, 1] → M a smooth curve in the base. Then for every v ∈ π−1(c(0)) there is a
unique smooth curve c̃ : [0, 1] → E with π ◦ c̃ = c, c̃(0) = v and ∇ċs = 0, where s
sends c(t) to c̃(t). Moreover, the map v 7→ c̃(1) defines a linear map of vector spaces
π−1(c(0))→ π−1(c(1)).

9



20 January 2010

(77) In Proposition 8 the condition ∇ċs = 0 makes sense although s is not a section over all
of M because the covariant derivative is only considered in the direction of c, where s is
defined.

The Proposition follows from the existence and uniqueness of the solutions of systems of
linear ordinary differential equations with given initial conditions, together with the linear
dependence of the solutions on the initial values.

Definition 9. The linear map

Pt : Ec(0) −→ Ec(t)

v 7−→ c̃(t)

is called the parallel transport along c. It is an isomorphism of vector spaces.

(78) As a consequence of Proposition 8 we have:

Corollary 10. Over a curve every vector bundle with connection admits a framing by
parallel sections. Over a one-dimensional base every vector bundle with connection admits
local trivializations by parallel frames.

Here the existence of a parallel frame is over the interval parametrizing the curve. Even
if the endpoint of the curve agrees with the starting point, the same may not be true for the
initial and ending frames. This is why the second statement is only local.

(79) This corollary fails for base spaces which are not one-dimensional, and this leads to geo-
metric interpretations of the curvature. It will turn out that the corollary encodes the fact
that on a one-manifold there is no curvature (as every two-form vanishes identically).

(80) We now prove:

Theorem 11. A vector bundle E → M with connection ∇ admits local frames consisting
of parallel sections if and only if∇ is flat, i. e. F∇ = 0.

(81) One of the consequences of this theorem is:

Corollary 12. A vector bundle E → M admits a flat connection if and only if it has a
system of local trivializations for which all transition maps are constant.

27 January 2010

(82) Metrics on vector bundles are smoothly varying fiberwise positive-definite scalar products.
Using a partition of unity we prove that every vector bundle admits a metric.

(83) A connection∇ on a vector bundle E →M is compatible with a metric 〈 , 〉 if and only if

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉
for all pairs of sections s1, s2 ∈ Γ(E). Sometimes a connection compatible with some
metric is called a metric connection.

Lemma 13. A connection ∇ is compatible with a metric 〈 , 〉 if and only if its connection
matrix ω with respect to any local frame that is orthonormal with respect to 〈 , 〉 is skew-
symmetric, i. e. ωij = −ωji for all i and j. In this case the curvature matrix Ω with respect
to a local orthonormal frame is also skew-symmetric: Ωij = −Ωji.
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Finally, metric connections always exist. The following is proved by combining the
above lemma with the proof of Theorem 4.

Proposition 14. Every vector bundle E with a metric 〈 , 〉 admits compatible connections.
The space of all compatible connections is an affine space for the space Ω1(SkewEnd(E))
of 1-forms with values in the endomorphisms of E which are skew-symmetric with respect
to 〈 , 〉.

Here an endomorphism A is skew-symmetric with respect to 〈 , 〉 if

〈A(v), w〉 = −〈v,A(w)〉
for all v and w.

(84) As an example we consider vector bundles of small rank equipped with metric connections.
If the rank is = 1, then the skew-symmetry of the connection matrix shows that every
metric connection is flat. As every bundle admits a metric and a compatible connection,
we conclude that all rank one bundles admit flat connections. In some sense, rank = 2 is
the first interesting case. Here the curvature is determined by the closed 2-form Ω12 with
respect to an orthonormal frame. In the oriented case, this closed form is the same for all
oriented orthonormal frames. This leads to the definition of the Euler class, a characteristic
class of oriented rank 2 bundles in the de Rham cohomology of the base manifold.

1 February 2010

(85) On a smooth manifold M we now consider connections ∇ on the tangent bundle TM →
M . In this case the variablesX and s in∇Xs are on equal footing, as they are both sections
of the tangent bundle. This leads to possible symmetries which make no sense in the more
general setting of arbitrary vector bundles.

(86) The torsion of a connection∇ on TM is defined by

T (X, Y ) = ∇XY −∇YX − [X, Y ]

for all X, Y ∈ X (M).

Lemma 15. The torsion defines a skew-symmetric map

T : X (M)×X (M) −→ X (M)

that is bilinear over C∞(M).

A connection∇ is called symmetric if it is torsion-free, i. e. if T vanishes identically1.
(87) To explain why torsion-freeness is indeed a symmetry condition, we consider the expres-

sion of the connection in a local coordinate system (x1, . . . , xn) on M . We write ∂i for the
coordinate vector fields ∂

∂xi
, and use the local frame ∂1, . . . , ∂n. Then

∇∂i =
n∑
j=1

ωij ⊗ ∂j ,

and using (8) we obtain

∇∂i∂j =
n∑
k=1

ωijk∂k ,

1Note that requiring the naive symmetry∇XY = ∇Y X for all X and Y leads to a contradiction.
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which is usually written as

∇∂i∂j =
n∑
k=1

Γkij∂k

in classical notation. Therefore, we define the Christoffel symbols of the connection ∇
with respect to the coordinate system (y1, . . . , yn) to be Γkij = ωijk.

Returning to the definition of torsion, we see that

T (∂i, ∂j) =
n∑
k=1

(ωijk − ω
j
ik)∂k =

n∑
k=1

(Γkij − Γkji)∂k .

As the torsion is linear over the smooth functions, we obtain the following:

Lemma 16. An connection∇ on the tangent bundle is torsion-free if and only if Γkij = Γkji
for any local coordinate system.

Thus symmetry of the connection really refers to a symmetry of the Christoffel symbols
expressing this connection in local coordinates.

(88) If E → M is a vector bundle with a connection ∇, then the dual bundle E∗ → M carries
a well-defined dual connection∇∗ characterized by the identity

d〈s, α〉 = 〈∇s, α〉+ 〈s,∇∗α〉

for all s ∈ Γ(E) and α ∈ Γ(E∗). (The brackets here denote the natural pairing between a
bundle and its dual bundle, not a metric.)

In the case of a connection on the tangent bundle, the dual connection∇∗ on T ∗M gives
us the following characterization of torsion-freeness:

Proposition 17. An connection∇ on TM is torsion-free if and only if the exterior deriva-
tive on one-forms is given by the composition

Ω1(M) = Γ(T ∗M)
∇∗
−→ Γ(T ∗M ⊗ T ∗M)

∧−→ Γ(Λ2T ∗M) = Ω2(M) .

(89) Consider a Riemannian manifold M , that is a smooth manifold with a metric on its tan-
gent bundle. In this case it turns out that there is a unique symmetric connection that is at
the same time compatible with the given metric:

Proposition 18 (Fundamental Lemma of Riemannian Geometry). The tangent bundle of a
Riemannian manifold admits a unique torsion-free connection compatible with the metric.

Proof. Given vector fields X , Y and Z, we can use the two requirements, compatibility
with the metric 〈 , 〉 and torsion-freeness, to conclude that the only possible value for
〈∇XY, Z〉 is

(9) 〈∇XY, Z〉 =
1

2
(〈[X, Y ], Z〉+ 〈[Z,X], Y 〉+ 〈[Z, Y ], X〉+

LX〈Y, Z〉+ LY 〈X,Z〉 − LZ〈X, Y 〉) .

This proves uniqueness. To see existence, we use (9) as a definition. As 〈 , 〉 is non-
degenerate, requiring that the equation hold for all Z uniquely defines ∇XY . We then
check that this∇ is indeed a connection, is metric-compatible, and torsion-free. �
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(90) The curvature of a Riemannian manifold (M, 〈 , 〉) is, by definition, the curvature of its
Levi-Civita connection ∇ given by the Fundamental Lemma of Riemannian Geometry.
We write R for the curvature F∇ of ∇, and consider this either as

R : X (M)×X (M)×X (M) −→ X (M)

(X, Y, Z) 7−→ R(X, Y )Z ,

or as

R : X (M)×X (M)×X (M)×X (M) −→ C∞(M)

(X, Y, Z, T ) 7−→ 〈R(X, Y )Z, T 〉 .

The notation R(X, Y )Z means that the curvature 2-form is evaluated on X and Y , and the
resulting endomorphism of TM is applied to Z. Both of these incarnations of R are called
the Riemann curvature tensor of (M, 〈 , 〉); it is a tensor because it is function-linear in
all arguments.

(91) The Riemann curvature tensor of a Riemannian manifold (M, 〈 , 〉) is skew-symmetric in
X and Y , and has the following additional symmetries:

Lemma 19. For all X, Y, Z,W ∈ X (M) we have:
(a) R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0,
(b) 〈R(X, Y )Z,W 〉 = −〈R(X, Y )W,Z〉,
(c) 〈R(X, Y )Z,W 〉 = 〈R(Z,W )X, Y 〉.

(92) Let X and Y be two linearly independent tangent vectors in TpM . Then the expression

(10) K(X, Y ) =
〈R(X, Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2

only depends in the two-dimensional subspace σ = span{X, Y } ⊂ TpM , and not on the
basis X and Y . This is called the sectional curvature of σ.

In the case when M is 2-dimensional, so that σ = TpM , the sectional curvature is the
same as the Gaussian curvature.

(93) By definition, the sectional curvature is determined by the Riemann tensor. However, the
converse is also true:

Theorem 20. If two Riemannian metrics on M have the same sectional curvatures for all
tangent 2-planes, then their curvature tensors R agree.

The proof is just linear algebra, using Lemma 19 and multiple polarisation, arguing only
with the trilinear map

R : TpM × TpM × TpM −→ TpM

at a point.
(94) The proof the Theorem can easily be adapted to prove the following characterization of

spaces with constant sectional curvature:
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Proposition 21. A Riemannian manifold (M, 〈 , 〉) has sectional curvature equal to a fixed
real number K0 ∈ R for all two-planes σ ⊂ TM if and only if the following identity holds
for all X , Y , Z and T ∈ X (M):

〈R(X, Y )Z, T 〉 = −K0(〈X,Z〉〈Y, T 〉 − 〈Y, Z〉〈X,T 〉) .

The proof is again just linear algebra at a single point. Therefore, one could in theory
replace the constant K0 by a function on M , and require just that the sectional curvature is
constant at every point, meaning that it coincides on any two tangent planes tangent at the
same point. For connected manifolds of dimension ≥ 3 it turns out that constancy at all
points implies constancy throughout M (Schur’s theorem, which we do not prove); this is
of course not true in dimension 2.
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