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.. Philosophy behind differentiation theorem

. .
’LMU mxmuans: | Generalise the Fundamental Theorem of Calculus for L' functions

MONCHEN

Recall the classical FTC: if (a, b) is an interval in R, f: (a,b) — R is continuous and, for
x € (a,b),

A = [ 1)
then for all x € (a, b), F is differentiable at x and
F’'(x) = f(x).
Now we might consider:

* How can we phrase this for open sets Q c R", n > 1?
e Whatif fe L'(a,b), feL'(Q)?
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Differentiation of general integrals
LMU 5‘:‘;3;«:33;- The derivative of an integral is the “limit of averages”

MONCHEN

Note that for f: (a, b) — R continuous and F defined as before, for x € (a, b) we have
X+0

4  H 1 —
F'(x) = lim o - f(y)dy = f(x).

* Now let Q2 be a general open subset in R” (or 2 = R").
It therefore makes sense to consider, for x € €, the quantity

1
—_ f(y)dy where B(x,r eR™:|x—y|<r}.
|B(X,r | Lx,r) ( 4 ( ) y v

Interested in limit of this quantity as r — 0.
e ltis easy to show that if f is continuous, then limit is f(x).

Theorem (Lebesgue’s Differentiation Theorem)

Let f € L'(Q2). Then for almost all x € 2, we have

. 1
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The Hardy-Littlewood Maximal Function
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e Focus on 2 = R" (otherwise just let f = 0 outside ).
» To prove the Theorem, we need to get estimates on integral averages of balls.
 Hence, for f € L'(R"), define the Maximal Function Mf of f as

(Mf)(x) :== If(y)Idy .

SUp ——
r>(l):) |B(X»r)| B(x.r)

Theorem (A “weak-type” inequality)

Let f € L'(R"). For any t > 0 we have

CD
5

ix e R": (Mf)(x) > t}] <

f 1#(y)ldy
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.| Proof of the estimate
LMU| | A covering lemma
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Lemma (Vitali)

Let E c R" be the union of a finite number of balls B(x;,r;), i = 1,2... k. Then there exists
a subset | c {1,...k} such that the balls B(x;, ;) with i € | are pairwise disjoint, and

Ec U B(x;,3r;).

iel

o Let A := {x € R" : (Mf)(x) > t}. Can show this is a Borel set.
By definition of Mf, for every x € A; there is a ball B(x, r) with

1 f .
_ [f(y)|dy >t = |B(x,ry)| <t f |f|
1B(x, i)l JBxre) Wdy [ (x.5) B(x.rx)

e Let K c A; be compact.
* Then {B(X, Iy)}xea, is a cover of K. So there exists a finite subcover.
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Proof of the estimate
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By the Covering Lemma, there is a disjoint finite subfamily {B(x;, r,~)}f‘:1 such that
k
K| JB(x.3n).
i=1
¢ Hence we have

|K|<3"Z|B x,,r,|<—Zf |dy<—f If(y)ldy .
B(xi.ri)

» Lebesgue Measure is “inner regular” i.e. for any Borel set E,
|E| = sup{|K| : K c E and K compact}.

* Hence get upper bound for A;.

Parth Soneji Lebesgue’s Differentiation Theorem via Maximal Functions



wwe | Proof of Lebesgue’s Differentiation Theorem
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e We want to show for almost all x € R",

lim supf [f(y) — f(x)Ildy = 0.
N0 B(x.r)

« Take a continuous function g € L'(€2). Then add and subtract g(y) — g(x) and use the
triangle inequality to get

st - ()l <50p |g—g(x)|+mf (- @) - (F(x) - g())]
N0 JB(x.r) N0 JB(x.r) N0 JB(x,r)

< sup " If(y) — g(y)I - If(x) — g(x)Idy

< M(If = gl)(x) + 1f(x) = g(x)|

e Now fix e > 0. Then

lim supf If = f(x)| > e= M(If-gl)(x) > § OR [f(x) —g(x)| > 5.
™o B(x,r)
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wwe | Proof of Lebesgue’s Differentiation Theorem
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2
|tx < 1£(x) = g(x)1 > £ < - f f(x) — g(x)|dx (Tshebyshev)
]Rn

2-3"
ltx - M(If - gl)(x) > 5] < . f If(x) — g(x)ldx (Theorem)
RI’I
So
{x : lim sup [f(y) — f(x)|dy > e} < Ef If — gl
(AN B(x.r) € Jrn

e This holds for all continuous g € L'(R"). But these are dense in L'(R"), so, for fixed e,
can make RHS arbitrarily small.

e So forall m e N, taking e = 1/m,

{x : lim sup [f(y) — f(x)ldy > 1/m}‘ =0
™N\,0 B(x.r)
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Proof of Lebesgue’s Differentiation Theorem
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e Call such sets Ep,. Then |[E| = 0 Vm.

* Now note
{x - lim sup If(y) - f(x)|dy > OH =||JEnl=0.
™o B(x.r) meN
e Hence
lim sup [f(y) = f(x)Ildy = 0.
™0 B(x.r)

for almost all x.
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Generalisations of this Theorem
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* Result (and proof) also holds if we replace Lebesgue measure with any locally finite

Borel (“Radon”) measure p on R".

 If u, v Radon measures on R”, we can consider the derivative of v with respect to u

as the function
dv —i v(B(x,r))

—(x) = lim ———=%5 .
d,u( ) ™o u(B(x,r))
Theorem (Besicovich Differentiation Theorem)

d
d—v(x) exists in [0, o] u and v almost everywhere. If we let
i

S = {xeR”:g—;(x):oo},

then p(S) = 0 and for all Borel sets E,

V(E) = fE :—;(x) du(x) +v(EN S).
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wee | Goncluding remarks
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* Maximal Functions have very useful applications in many branches of Mathematics
(e.g. PDE Theory, Calculus of Variations, Harmonic Analysis...)

» There are many more interesting things that can be said about them. e.qg. if f € L for
1 < p < oo, then Mf € LP too.

* Moreover, it is also often useful to be able to exploit pointwise properties of integrable
functions.

» Lebesgue’s Differentiation Theorem is a powerful result in this context.
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End of presentation
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