

Sobolev-Räume und schwache Ableitung

Manuela Schwarz

LMU München

München am 14.12.2012

Definition: Schwache Ableitung

Sei $u \in L^1_{loc}(\Omega)$ und α ein Multiindex. Existiert eine Funktion $v \in L^1_{loc}(\Omega)$, so dass

$$\int_{\Omega} \varphi v dx = (-1)^{|\alpha|} \int_{\Omega} u D^{\alpha} \varphi dx.$$

Für alle $\varphi \in C_c^{\infty}(\Omega)$, so heisst v die schwache Ableitung und man schreibt: $v = D^{\alpha}u$.

Definition Sobolev-Raum

Für $p \ge 1$ und k eine nicht negative ganze Zahl, wird der Sobolev-Raum definiert mit:

$$W^{k,p}(\Omega) = \{ u \in L^P(\Omega) : D^\alpha u \in L^P(\Omega), |\alpha| \le k \}$$

Sei $\varphi^k \in \mathbb{R}^{n^k}$ der Vektor von allen Ableitungen D^{α} mit $|\alpha| = k$. Der Raum $W^{k,p}(\Omega)$ ist mit einer Norm ausgerichtet:

$$||u||_{k,p;\Omega} \left\{ \begin{array}{ll} \left(\int (|\nabla^k u|^p + ... + |u|^p) dx\right)^{\frac{1}{p}} & \text{falls p} < \infty \\ \max\{||\nabla^k u||_{\infty}, ..., ||u||_{\infty}\} & \text{falls p} = \infty \end{array} \right.$$

Diese Norm ist gleichwertig zu $\sum_{|\alpha| \leq k} ||D^{\alpha}u||_{p;\Omega}$

Beispiel: Die Betragsfunktion

|x| besitzt auf ganz \mathbb{R} keine klassische Ableitung. Auf $\mathbb{R}\setminus\{0\}$ ist die Funktion

$$|x|' = \begin{cases} -1 & : x < 0 \\ +1 & : x > 0 \end{cases}$$

die klassische Ableitung von |x|.

|x|' ist nicht mehr schwach differenzierbar, aber man kann sie im Sinne von Distributionen ableiten.

Definition eizelner Sobolev Räume

- Der Raum $W^{0,p}(\Omega) = L^p(\Omega)$
- Der Raum $W_0^{k,p}(\Omega)$ ist der Abschluss des Raumes $W_c^{1,p}(\Omega)$ bezüglich der Norm des Raumes $W^{k,p}(\Omega)$, wo $W_c^{1,p}(\Omega)$ die Menge von allen Funktionen $u \in W^{1,p}(\Omega)$ mit kompakter Unterstützung in Ω ist
- Der Raum $W_{loc}^{k,p}(\Omega)$ ist die Familie von allen Funktionen u, so dass $u \perp \Omega' \in W^{k,p}(\Omega'$ für jedes $\Omega' \subset\subset \Omega$.

Zugehörigkeit zum Banachraum

Zeige: $W^{k,p}(\Omega)$ und $W_0^{1,p}(\Omega)$ sind Banachräume

Falls $u \in W_0^{k,p}(\Omega)$, dann ist die Nullerweiterung von u in $W^{k,p}(\mathbb{R}^n)$. Somit ist $W_0^{k,p}(\Omega)$ ein geschlossener Unterraum von $W^{k,p}(\mathbb{R}^n)$.

Bemerkung:

Man nennt solche Funktionen $u \in W^{k,p}(\Omega)$ stetig und beschränkt, falls es eine Funktion \overline{u} gibt, so dass $\overline{u} = u$ f. \ddot{u} . und diese ebenfalls ein stetig beschränktes Verhalten aufweist.

Definition mollifier:

Sei φ eine glatte Funktion auf \mathbb{R}^n und $n \geq 1$, dann gilt:

$$\Phi_{\varepsilon}(u)(x) = \int_{\mathbb{R}^n} \varphi_{\varepsilon}(x-y)u(y)dy$$

$$\mathrm{f}\ddot{\mathrm{u}}\mathrm{r}\ \varphi_{\varepsilon}=\varepsilon^{-n}\varphi(\tfrac{\mathsf{x}}{\varepsilon})$$

Lemma:

Angenommen $u \in W^{1,p}(\Omega)$ und $1 \le p < \infty$, dann ist der Glättungskern u_{ε} , erfüllt durch:

$$\lim_{\varepsilon \to 0} ||u_{\varepsilon} - u||_{1,p;\Omega'} = 0$$

Beweis:

Da Ω' ein beschränktes Gebiet ist, existiert dort ein $\varepsilon_0 > 0$, so dass

$$\varepsilon_0 < dist(\Omega', \delta\Omega)$$

Für ein $\varepsilon < \varepsilon_0$, $x \in \Omega'$ und $1 \le i \le n$ gilt:

$$\frac{\delta u_{\varepsilon}}{\delta x_{i}}(x) = \varepsilon^{-n} \int_{\Omega} \frac{\delta \varphi}{\delta x_{i}} \left(\frac{x-y}{\varepsilon}\right) u(y) dy$$

$$= -\varepsilon^{-n} \int_{\Omega} \frac{\delta \varphi}{\delta y_{i}} \left(\frac{x-y}{\varepsilon}\right) u(y) dy$$

$$= \varepsilon^{-n} \int_{\Omega} \varphi \left(\frac{x-y}{\varepsilon}\right) \frac{\delta u}{\delta y_{i}} dy$$

$$= \left(\frac{\delta u}{\delta x_{i}}\right)_{\varepsilon}(x)$$

q.e.d

Somit ist bewiesen, dass

$$\frac{\delta u_{\varepsilon}}{\delta x_{i}}(x) = (\frac{\delta u}{\delta x_{i}})_{\varepsilon}(x)$$

da,
$$||\frac{\delta u_{\varepsilon}}{\delta x_{i}} - \frac{\delta u}{\delta x_{i}}||_{L}^{p} = ||(\frac{\delta u}{\delta x_{i}})_{\varepsilon} - \frac{\delta u}{\delta x_{i}}||_{L}^{p} \longrightarrow 0$$

Folgerung:

Falls $1 \leq p < \infty$, dann ist $C_c^{\infty}(\Omega)$ dicht in $W_0^{1,p}(\Omega)$.

Bemerkung:

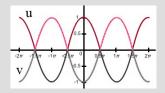
Falls Ω zusammenhängend ist, $u \in W^{1,p}(\Omega), p \geq 1$ und $\nabla u = 0$ auf Ω f.ü., dann ist u zusammenhängend auf Ω

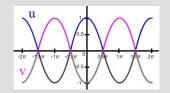
Definition absoluter Stetigkeit:

Eine reellwertige Funktion f heisst absolut stetig, falls für jede Zahl $\varepsilon>0$ eine Zahl $\delta>0$ existiert und

$$\sum_{k} |y_k - x_k| < \delta \longrightarrow \sum_{k} |f(y_k) - f(x_k)| < \varepsilon$$

$W^{1,1}$ in 1 - Dim





$$\max \{u, v\} \in W^{1,p}(\mathbb{R})$$

$$\min \{u, v\} \in W^{1,p}(\mathbb{R})$$

$$\max \{u,0\} \in W^{1,p}(\mathbb{R})$$

$$\min \{u,0\} \in W^{1,p}(\mathbb{R})$$

$$|u| \in W^{1,p}$$

$$\nabla \max\{u,v\} = \begin{cases} \nabla u & : u > v \\ \nabla v & : v > u \end{cases}$$

$W^{1,p}$ in n-Dim

Gilt auch in \mathbb{R}^n

Für $\Omega \subset \mathbb{R}^n$, $u, v \in W^{1,p}(\Omega)$ und $p \geq 1$ gilt:

 $\max \{u, v\} \in W^{1,p}(\Omega)$

 $\min \{u, v\} \in W^{1,p}(\Omega)$

$$|u| \in W^{1,p}(\Omega)$$