

LMU München • Dominic, Lars, Sebastian

Sobolev-Einbettungen

Skalierung

Satz

Für
$$u \in C_0^\infty(\mathbb{R})$$
 gilt $\|u\|_\infty \le \|u'\|_1$

Beweis:
$$u(x) = u(-\infty) + \int_{-\infty}^{x} u'(y) dy$$

Ansatz Finde $p \in [1, \infty]$ mit $\|u\|_p \le c \|\nabla u\|_1$ für $u \in C_0^\infty(\mathbb{R}^n)$.

Skalierung
$$u_R(x) := u(Rx)$$
 ergibt $(\nabla u_R)(x) = R(\nabla u)(Rx)$ und

$$\|u\|_{p} = R^{\frac{n}{p}} \|u_{R}\|_{p} \stackrel{!}{\leq} c R^{\frac{n}{p}} \|\nabla u_{R}\|_{1} = R^{\frac{n}{p}+1-n} \|\nabla u\|_{1}.$$

Daraus folgt
$$\frac{n}{p} + 1 - n = 0$$
, d.h. $p = \frac{n}{n-1}$.

Skalierung

Satz

Für
$$u \in C_0^\infty(\mathbb{R})$$
 gilt $\|u\|_\infty \leq \|u'\|_1$

Beweis:
$$u(x) = u(-\infty) + \int_{-\infty}^{x} u'(y) dy$$

Ansatz Finde $p \in [1, \infty]$ mit $\|u\|_p \le c \|\nabla u\|_1$ für $u \in C_0^\infty(\mathbb{R}^n)$.

Skalierung
$$u_R(x) := u(Rx)$$
 ergibt $(\nabla u_R)(x) = R(\nabla u)(Rx)$ und

$$||u||_{p} = R^{\frac{n}{p}} ||u_{R}||_{p} \stackrel{!}{\leq} c R^{\frac{n}{p}} ||\nabla u_{R}||_{1} = R^{\frac{n}{p}+1-n} ||\nabla u||_{1}.$$

Daraus folgt $\frac{n}{p} + 1 - n = 0$, d.h. $p = \frac{n}{n-1}$.

Einbettungssatz

Sobolev Einbettungen

Für $u \in C_0^\infty(\mathbb{R}^n)$ mit $k \geq 1$ gilt

$$\begin{split} \|u\|_p & \leq c \, \|\nabla^k u\|_q & \quad \text{falls } k - \frac{n}{q} \geq -\frac{n}{p} & \quad (p < \infty), \\ \|u\|_{C^{0,\alpha}} & \leq c \, \|\nabla^k u\|_q & \quad \text{falls } k - \frac{n}{q} \geq \alpha & \quad (\alpha > 0). \end{split}$$

- $W^{k,q}(\mathbb{R}^n) \hookrightarrow L^p(\mathbb{R}^n)$ mittels Dichtheit.
- Beschränkte Gebiete: man kann zu kleinerem p wechseln.
- $|x|^{\alpha} \in C^{0,\alpha}$ hat Index α .
- L^p hat Index $-\frac{n}{p}$, $W^{k,q}$ hat Index $k-\frac{n}{q}$