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CHAPTER 1

Introduction

In this thesis we are working on the mathematical background of the behaviour
of electrorheological fluids. Those fluids have a special property: When disposed to
an electro-magnetic field their viscosity undergoes a significant change. For example,
there exist modern electrorheological fluids which respond to the application of an
electric field within 1ms, their viscosity changing by a factor of 1000.

The first observations of electrorheological fluids were reported by Winslow in
1949 [Win49]. While first realizations of electrorheological fluids were quite unstable
and had a highly abrasive structure preventing many possibility of application, this
drawback has been overcome. Nowadays there exists electrorheological fluids with
have the quality and potential for a wide field of applications. These include for
example actuators, clutches, shock absorbers, and rehabilition equipment.

The aim of this thesis is to provide insight into the mathematics concerning elec-
trorheological fluids. This includes theoretical results about existence and regularity
of solutions as well as numerical stabilizations and their applications to discretization
methods. Of course, every investigation of existence and regularity needs a ground-
work on the suitable spaces, which are in our case not the classical Sobolev spaces
but rather the generalized Orlicz—Sobolev spaces.

There exist several possibilities for modeling the physics of electrorheological fluids.
In this thesis we will use a model originally proposed by Rajagopal, Ruzicka [RR96]
and further developed by M. Ruzicka in [R1z00]. This model is derived from the
general balance laws for mass, linear momentum, angular momentum, energy, the
second law of thermodynamics in the form of the Clausius-Duhem inequality and
Maxwell’s equations in their Minkowskian form. Furthermore the interaction of the
electro-magnetic field with the fluid is based on the “dipole current-loop” model (see
Grot [Gro76]| and Pao [Pao78]). The full model for an incompressible electrorheo-
logical fluid reads

div(E+P) =0,
curl E = 0,

pooyu — divS + pp(u - V)u+ V7 = pf + [VE|P,
divua =0,

where E is the electric field, P the polarization, py the constant density, u the velocity,
S the extra stress, m the pressure, and f the mechanical force with

S = oan((1+ |D|2>p%1 ~1)E®E + (a3 + ass|E[*)(1 + |D|2)%D
—2

+a5(1+ |D>)> (DE® E +E ® DE).

3



4 1. INTRODUCTION

The o;; are material constants and the exponent p depends on the strength of the
electric field |E|? and satisfies

1 < poo < p(|E?) < pg < 0.

Fortunately the equations for the electro-magnetic field decouple from the equations
for u, 7, and py. So we can consider the electric field E and the polarization P as given
functions and restrict our study on the equations for u, 7, and py. We will further
restrict ourselves to the case of constant density neglecting py. From a mathematical
point of view it is of interest to study the simplified system

dpu —div (S(Du)) + (u- V)u+ Vr =1,

1.1
(1.1) divu =0,

with
S(Du) = (1 + [Duf?>)*z Du

or an extra stress S with similar properties. This model is the center of the thesis and
all of our investigation are directly connected to it.

From a mathematical point of view one of the first questions arising is the right
setting of the used spaces. Let I denote the domain of time and €2 the domain of
space, then the natural energy of the model is given by

//\Du|p<x’t) dx dt,
70

where Du = 1(Vu + (Vu)?) denotes the symmetric gradient. This energy cannot
be expressed in terms of classical Lebesgue and Sobolev spaces and requires the use
of generalized Orlicz—Lebesgue and generalized Orlicz-Sobolev spaces. Therefore we
give an overview on these spaces in chapter 2. Unfortunately many of the standard
results for classical Lebesgue L? and Sobolev W4 spaces cannot be transfered to the
generalized Orlicz-Lebesgue LP¢) and Orlicz-Sobolev spaces W*»(). Some fundamen-
tal results do not hold in the generalized case and many questions remain open. To
give an example, the translation operator is not continuous in the generalized Orlicz
spaces. This is a hard drawback, since most of the standard results about Lebesgue
and Sobolev spaces are proved with the help of translations. So we will show that the
convolution operator in not continuous on the spaces L) unless we are in a trivial
setting still covered by the classical Lebesgue spaces L?. Nevertheless we will prove
that convolution, although based on translations, is still a very useful tool. Indeed
we will see that the mollification with an approximation of one is bounded in L) as
long as p satisfies a rather weak continuity assumption, namely

C

“U < g

for all 0 < R < 1, where w is the module of continuity of p. We will prove this by
providing an even more fundamental result. We will show that the Hardy—Littlewood
maximal function operator is bounded on LP() under the same continuity assumption
on p. Since the maximal function is one of the most important tools in harmonic
analysis, this result is a milestone for the theory of generalized Orlicz—Lebesgue and
Orlicz—Sobolev spaces. Further results based on the maximal function such as full
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characterization of Sobolev type embeddings W'P() — L") and investigations on
singular operators are in preparation.

Then in chapter 3 we will discuss in detail the assumptions that we place on the
extra stress S and the exponent p. Rather than restricting ourselves to the case

S(Du) = (1 + [Du?)"= Du,

we will assume that S is induced by a space and time dependent potential ¢, which
satisfies some convexity and growth conditions in term on p. Further we will introduce
two stabilizations of the extra stress S, namely the A- and the X approximation S*
and S*. Roughly spoken, these stabilizations change the extra stress S(Du) such that
it behaves for large |Du| almost linearly, i.e.

> (5i5(A)=5;(B))(Ay=By) = C(A, ) [A ~BP,
K S(A) - S(B)| < C(4,X) |A - B],

where S is either the A- or the A-approximation. Both stabilization behave very
similar, but we prefer the A—approximation a little bit, since it only changes the S for
large |Dul. Later in chapter 4 and chapter 6, we will use the A-approximation for
questions of regularity and numerical stabilization.

One of the problems when solving system (1.1) numerically, is the constraint
divu = 0, which enforces the use of divergence free test functions or a coupling
of the finite element spaces of the velocity and the pressure (BB-condition). One
way to overcome this problem is the use of the pressure stabilization, which replaces
divu = 0 by

divu = eAr

for some € > 0. In chapter 4 we examine this type of stabilization. Especially we will
consider the case of two space dimensions. We will show that there exists a solution
u with Holder continuous gradients, which is unique in the class of weak solutions.
Based on this regularity we show that the error induced by the pressure stabilization
is of optimal order &.
In chapter 5 we will examine system (1.1) in the case of three space dimen-
7

sions. Under the condition ps, > ¢ we will show that there exists a strong solu-

tion at least for small times. This improves a result of Malek, Necas, Rokyta, and

Ruzicka [MINRR96], who prove short time existence for p constant with p > %

Furthermore we will improve the regularity result for such short time solutions from

(D)2 |loe,s )
to

|(Du) 12(p0o=1) 4(poc=1) < C' (Lorentz space).

4
2| 1peee-n)
C(I,L Poo 2=pco )

The proof of this is based on an anisotropic interpolation result for parabolic systems,
which is proven in the appendix in chapter 8. We will see that this regularity ensures
uniqueness, within this class of regularity, exactly up to the bound p,, > g

Based on the result of chapter 5 we will examine in chapter 6 the fully implicit
and the semi implicit Euler time discretization. First results (with p constant) in
this direction by A. Prohl and M. Ruzicka [PRO1] have indicated that the implicit
Euler time discretization without stabilization has only a guaranteed stability up to
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Poo > 1.677. Strong solutions of the time discretized problem, which are needed for a
later space discretization, are ensured only for p,, > 1.8. Since this condition on p, is
too restrictive for real fluids, we show how to extend this range up to p,, > 1.588, even
for p non—constant. This improvement is achieved by means of the A—approximation.
We will further improve the error estimates in several aspects and show that the
results also hold true for the semi implicit Euler discretization.

As in every step of the time discretization the problems regarded are stationary,
it is important to investigate the stationary p—Stokes system, i.e.

—div (S(Du)) + Vr =1,
divu = 0.

It is also of general interest to study this system for a better understanding of the
interaction of the nonlinear main part (depending on the symmetric gradient only)
with the pressure. Therefore we investigate this system in chapter 7. We will de-
rive Meyer—type estimates for weak solutions. That is, a weak solution with energy
estimate

’Dulp(-) <C
also satisfies
IDul(1s)p) < C

for some § > 0.

So far for now, let’s go into detail...



CHAPTER 2

Generalized Lebesgue and Sobolev Spaces

When studying the motion of a fluid where the extra stress is induced by a space
dependent p-potential (for a definition see chapter 3) one of the main problems is the
natural setting of function spaces. The information gathered by the natural energy
norm cannot be exactly described within the context of Lebesgue or Sobolev spaces.
To be more explicit, let u be a weak solution of the stationary system

—div(S(Du)) =f

on a smooth domain with zero boundary values, where S is induced by a space de-
pendent p—potential. Then the energy norm of this system is naturally given by

/S(Du) -Dudz.
Q
As we will see later, this can be estimated from below by

/ |DulP® dz,

Q

where p :  — [1,00) is a measurable function corresponding to the potential. But
this information about Du cannot be fully qualified by a usual Lebesgue space. On
this account we have to make use of generalized Lebesgue and Sobolev spaces. The
aim of this chapter is to introduce these spaces, present the known theory, and to
derive more fundamental results.

1. The Generalized Lebesgue Spaces L”()(()

We start with the definition of the generalized Lebesgue spaces, which have been
studied by Hudzik [Hud80], Musielak [Mus83], Kovacik, Rakosnik [KR91], Ruzicka
[Ruz00], and others. Further details and proofs of the statements in this section can
be found in their publications.

Let © C R? be an open, bounded domain and let p : Q — [1,00) be measurable.
For I C ) we define

Po,1 ‘= €SSSUP,¢; p(z),
Doo.1 := essinf,er p(z).

Further we set py := poo and pe 1= peo,o. For simplicity we restrict ourselves to the
case py < Q.

The notation p,, for the smallest value and py for the biggest value is due to
historical reasons and was introduced by Ruzicka. It reflects that in the case of
electrorheological fluids the exponent p assumes its maximal value for a vanishing
electrical field and its minimal value for an infinitely strong electrical field. Thus the
indices represent the strength of the electrical field.

7



8 2. GENERALIZED LEBESGUE AND SOBOLEV SPACES

For p as above define ¢, (7, z) := 2P® for all ¥ € Q and all z > 0. Note that ¢, is
of “class ®” in the sense of Musielak [Mus83], i.e.

(a) pp(z, 2) is for every x € € a nondecreasing, continuous function of z > 0, such
that ¢,(z,0) =0, p,(z,2) > 0 for z > 0, and p,(z, z) — oo for z — oo.
(b) The function ¢,(-, z) is measurable for all z > 0.

Let X denote the space of all functions f : {2 — R, which are measurable. For f € X
we define the modular | f|,.) by

2.1) s = [ el 5@ de = [1£@)P do.
Q Q
Then the set

L (Q) :={f e X : [Afly) — 0 for X = 07},

resp.
Lg"(Q) == {f € X : [flp() < o0}

defines the generalized Orlicz space, resp. the generalized Orlicz class. Further let
Ewp = {f e X : ’)\f‘p(.) < oo for all A > O}.

Since py < oo we know that ¢, satisfies the Ay—condition, i.e. there exists an integrable
function h : 2 — R and a constant K > 0, such that for a.a. x € €2 and all z > 0
there holds

pp(,22) < K pp(, 2) + ().

Indeed ¢, (z, 22) < 2P, (x, z). This implies that L#»(Q) = L§”(Q) = E,,, (see [Mus83]
theorem 8.13). So we do not have to distinguish between generalized Orlicz space and
generalized Orlicz class. Therefore we introduce the notation LP()(Q) := L#»(Q).
Note that the generalized Orlicz spaces are also called Musielak—Orlicz spaces. The
functional defined by

[ fllpey == inf {A >0 [f/A[p) <1}

is a norm on LP0)(€), the Luxemburg norm.

It is quite common to use the notation || f||,) and LF@) () instead of || f||,) and
LP0)(Q). Nevertheless we will use this slightly differing notation in order to exclude
the ambiguous case, where || f||,») denotes the norm of the classical Lebesgue space
L1(Q) with ¢ = p(x) for a fixed z € Q.

If p is constant, then || f||,.) coincides with the classical Lebesgue norm. Further
if 1 <r < oo, then

(2'2) Hf”:p(-) = Hlf’er(.)'

For ps > 1 we define the dual exponent p’ of p by 1 = ﬁ + ﬁ for all x € Q.

Then the function p’ : Q — (1,00) is measurable and satisfies 1 < (p')s = (po)’ <
(Poo)’ = (p)o < 00. Furthermore there holds the following generalization of the Holder
inequality:

(2.3) ({9 < (L4 55 = o) I e llalleo-
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More precisely, there holds (L) (Q)) = LF'0)(Q), so LPO)(Q) is reflexive if py, > 1.
This enables us to introduce another norm, namely

(2.4) Fllpey == sup |[(f, 9)]-

This norm is equivalent to ||-||,¢) if poo > 1.

Closely connected to this Holder inequality there is the following version of Young’s
inequality: Let p: Q — (1,00) be measurable with 1 < p,,. Further let f € LP0) (),
g € LF0)(Q), then for all 0 < § < 1 there holds

0 (Po

gP !
(2.5) [(fr9)] < . £ Ly + o) 9

This is just a consequence of Young’s inequality applied pointwise to |f(z)g(x)| and

the fact that p — ‘% is monotonously decreasing with respect to p > 1.
For f € LP0)(Q) we have the following connection between the modular and the
norm:

(2.6) Ifllpy <1 & fho =1 & [fle < [ flso-

This shows that norm—convergence, i.e. || f, — f]|p() — 0, implies modular—convergence,
ie. |fn = flp¢y = 0. Moreover, the reverse holds true, so

(2.7) [fo=floy =0 & lfa = fllpy = 0.
Like classical Lebesgue spaces the spaces LP)(Q) are complete.
Let ¢ : © — [1,00) be measurable with ¢ < p a.e., then LPO(Q) — Li0(Q)
continuously and
£ty < 1+ 190) 10
For N € N let fy be defined by

f(z), if [ f(z)] < N,
oo [ 1@ )
sgn(f(z))N, else.
Then fy — f in LPO)(Q). This proves that L>(€2) is dense in LP()(€2). Even more is
true: C5°(Q) is a dense subset of L) ().

If poo > 1, then ¢, is uniformly convex in the sense of Musielak (see [Mus83]
definition 11.3 and remark 11.4), i.e. there exists a function § mapping the interval
(0,1) into itself and a null set A € €2, such that all z € Q\ A, 2 > 0,0 < a < 1, and
0 < b < a there holds

z,2) + pp(x, bz)

23) oyl 1422) < (1 - a(a)) 2L .

If p is constant then we can choose (see [Mus83] remark 11.4)
§(a) =1—2"P"(14+a)P(1 +a")".
If p is non—constant, then define
d(a) := essinf,cq (1 — 27P@H(] 4 q)P@)(] 4 P~y

a\P(z)
=1 — esssup,¢q ((1%) ﬁ)

=1- (%)poo 1+C2LP<>O > 0.
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The uniform convexity of ¢, and the Ay—condition imply (see [Mus83] theorem 11.6)
that LPO)(€) is uniformly convex.

But ¢, has more nice properties: Let M(€2) denote the class of all functions of
“class ®” (see above) of the form

p(z,2) = Z i(2)xa, (7),

where g, denotes the characteristic function of the pairwise disjoint sets €2y,...,2,
with Q = QU ---UQ, and ¢4, ..., ¢, satisfy: ¢;(z) is a nondecreasing, continuous
function of z > 0, such that ¢;(0) = 0, ¢;(2) > 0 for z > 0, and ¢;(z) — oo for
z — 0.

A function ¢ belongs to M; if and only if there exists a sequence ¢, € M,
such that for all z > 0 and a.e. € € there holds p(x,2) / ¢(x,2) as k — oo.
We will see that ¢, € Mj: Since p € L>(2) there exist two sequences g, and 7
of simple functions, i.e. finite linear combinations of indicator functions, such that
qx /" P, Tk \\ D, and a.e. there holds |y — qx| < % By definition of ¢, and r;, we have
Pgps Pr, € M. Define

(@, 2) = Min{ipy, (2, 2), @y (2, 2)} = mim {20, 27000}

Since M is stable with respect to the minimum of pairs, there holds ¢, € M.
Furthermore for all z > 0 and a.e. x € Q there holds ¢, x(z,2) /" ¢,(x,2) as k — oo.
Hence ¢, € M,.
We need one more property of ¢,: A function ¢ of “class ®” is an N—function if
for a.e. x € ) there holds
p(z, z)

lim (z,2) =0, lim =00
z—0t  Z z=oo 2

It is easy to see that if p > 1, then ¢, is an N-function.

Overall we have shown that if p,, > 1, then ¢, is both an N-function and from
M. For such functions there exists an interesting interpolation theorem: From the-
orem 14.16 of [Mus83] we immediately deduce

LEMMA 2.1. Let p,q,r,s : Q@ — (1,00) be measurable with p < q a.e. Let
1 < Poo, Goos Toos Seos ANA Do, qo,To, So < 00. Let T be a linear operator defined on
LPO(Q)N LAO(Q) with values in L™ () + L*)(Q), which is continuous as a mapping
from LPO)(Q) to L"(Q) and from LI(Q) to L*O)(Q), i.e.
1T fllpey < Aoll fll),
1T fllaey < Axllfllse)-
For 0 <0 <1 define t,u:Q — [1,00) by%:%f—i—g and%zl;e+§. Then T is

T

also continuous as a mapping from L) (Q) to L*)(Q) and
1T fllacy < A5~ AT fllug-
Another interpolation result concerning generalized Lebesgue spaces can be found
in [KR91].
Unfortunately the spaces LP()(€2) with non—constant p have also some undesirable
properties. Let for example p be continuous but non—constant. Then there exists a
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function f € LP()(Q), such that f is not p(-)-mean continuous, i.e. there exists no
constant A > 0, such that

Il < AllFlloe)

for all h small enough, where 75, is the translation operator defined by (7,f)(x) =
f(x — h). Even worse, there exist a function f € LP*) and a sequence h,, — 0, such
that 7, f ¢ LPY)(Q). Since the translation operator plays a fundamental role in the
context of Lebesgue and Sobolev spaces, its failure in the context of LPO)(Q) is a
strong drawback.

Nevertheless we will see later in this chapter that it is possible to build up tools
powerful enough to allow the construction of a quite strong theory with numerous
results similar to the ones for standard Lebesgue and Sobolev spaces.

2. The Generalized Sobolev Spaces W*?()((})
Let k € Ny, then the space W*?()(Q) is defined by
WEPOQ) = {f: Q= RI|f,..., f® e LPU(Q)},

where the derivatives (f*) is the k-th derivative) are taken in the sense of distribu-
tions. These spaces are called generalized Orlicz—Sobolev spaces. They have been
studied by Hudzik [Hud80], Kovacik, Rakosnik [KR91], Ruzicka [R1z00], and Ed-
munds, Rékosnik [ER00], [ER92]. Under special requirements on p some results for
the classical Sobolev spaces have been transferred to the generalized Orlicz—Sobolev
spaces.

For example it has been shown in [KR91] that for uniformly continuous p the
Sobolev embeddings hold with an e—defect:

LEMMA 2.2. Let Q C R? be an open bounded domain and let k < d. Further let
p:Q — [1,00) be uniformly continuous with p < d/k on 2, then for every e with
0<e<k/(d—k) the embedding

WhEPO(Q) — LIO==(Q)
is continuous, where q : ) — [1,00) is given by
1 1 k
g p d
M. Ruzicka has proved (see [R1z00]) another interesting version of the Sobolev
embedding theorem:
LEMMA 2.3. Let p: Q — [1,00) be measurable with py < d and let the level sets
Q, :={x € Q : p(x) <q} have Lipschitz boundary. Moreover, let
po
/c(a)‘qu < 00,
Poo

where c(q) is the continuity constant of the embedding

Wh(Qy) — LT ()
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and qi* = % — é. Then there exists A > 0, such that
|f (@)™ / %
— o dr < [1+ F(2)P@) 4+ |V f(2)|P@) da) vo
Q/m@ﬂf(xm [ (Qu ()2 + |V £ () P2 da) |

holds for all f € WO)(Q), where -1~ = L= —

p*(z)  p@)

Q=

Later on in [ERO00], it has been shown that if {2 has Lipschitz boundary and p
is uniformly Lipschitz, then the Sobolev embeddings hold true as long as 1 < p <d
on 2:

LEMMA 2.4. Let Q C R? be an open bounded set with Lipschitz boundary. Let
p: Q — [1,00) be uniformly Lipschitz continuous with py < d. Then there exists
A >0, such that

1y < Allfllime)
holds for all f € W'P0)(Q), where p* : Q — [1,00) is defined by Ii = - é-

p

If p satisfies a special cone—growth condition, which ensures that for every x € )
there exists a suitable cone C,, with corner in z, such that p|c, > p(z), then the density
of smooth functions in W*?()(Q) has been shown in [ER92]. Herein the authors used
a special mollifying operator, which smoothes the function in the direction of the
cones. Please note that if for example p is C1(©2) and has no stationary point, then
p satisfies the cone-growth condition and C*°(f2) is therefore dense in W*P()(Q).
Later in this chapter we will show that the cone—growth condition can be replaced
by a rather weak uniform continuity condition on p (weaker than uniform Holder
continuity) allowing the presence of stationary points for p, such that C'*°(Q) is still
dense in Wkr() ().

3. Discontinuity of Convolution

It is well known that for 1 < r < oo there holds

1 lle < [ f1lrlllln

as long as f € L" and ¢ € L'. Unfortunately this is not true if we replace L™ by LP(),
Even more, the inequality stays wrong if we insert an arbitrary large, multiplicative
constant on the right-hand side. This is the point of the following lemma

LEMMA 2.5. Let Q C R? be open and bounded. Further let p,q : Q@ — (1,00) be
measurable with 1 < Poo, @oo and po, qo < 00, such that there exist open balls B, B, C €}
with po.B, < Goo,B,- Then there exists no constant A > 0, such that

1+ @llaey < Allf ool
holds for all f € LP)(Q) and all p € CF(RY).
PROOF. Due to the assumptions on p,q and B,, B,, there exist a function f €
LPO)(Q) and a translation h € RY, such that 7, f & L1®)(Q), where
flx—h) ifx—heqQ,
0 else.

(Tnf) () = {
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Since € is bounded, we have LP")(Q) — L'(Q), so f and 7, f are also bounded in
LY(©). Now let ¢ € C5°(R?) be a Friedrich’s mollifier and define for ¢ > 0

pe(T) 1= 5_d90<$s;h)’

then f* . — 7,f in L'(Q) as ¢ — 0F. Assume now that there exists a constant
A > 0 with the desired properties, then

1 * @ellacy < Allfllpe llpelle < A lloe)-

Since 1 < go < q(7) < qo < 00, the space L@ (Q) is reflexive, so f * ¢. has a
subsequence which converges weakly in L2)(Q) to a function g € L1®(Q). But the
weak limit is unique, i.e. the L'() limit and the weak LP()(Q) limit have to agree,
so g = 7,f. But this is a contradiction to 73, f ¢ LI (). O

Let us explain the consequences of this lemma a bit more. Let for example p :
2 — [1,00) be smooth and bounded, but not locally constant, then we can apply the
lemma with ¢ = p to conclude that the convolution is not continuous as a function
from LPO)(Q) x L*(Q) to LPO)(Q). Even more, there is no continuity with an e-defect
as is often found within the context of LP()(€2) spaces, i.e. there is no continuity as a
function from LPO)(Q) x L'(Q) to LPO)~¢(Q) for all £ > 0 small enough. To see this,
apply lemma 2.5 to ¢ = p — ¢ with € > 0 small enough. Again we retrieve failure of
continuity.

All this is a hard drawback and convolution seems not to be useful on LP()(Q)
spaces at all. But this is not true. Later in this chapter we will see that under some
uniform continuity condition on p (weaker than uniform Holder continuity), we still get
the convergence of the convolution with a mollifying sequence in the following sense.
Let ¢ be a suitable mollifier (see theorem 2.11 for details). Define p.(z) := e %p(z/¢)
as usual, then f * p. — f in LPO)(Q) as ¢ — 0T. Let us now state the continuity
condition on p which will be needed later. Hereby we use the following notation: For
a measurable set A C R? let |A| denote the Lebesgue measure of A.

4. A Condition on the Exponent

LEMMA 2.6. Let Q C R? be open and let p : Q — [1,00) be uniformly continuous
(and thus bounded). Then the following conditions are equivalent:
(i) There exists a constant Cy, such that for all x,y € Q, |z — y| < %, there holds
Co
— < -9
p(z) p@ﬂ__mm_m
(ii) There exists a constant Cy, such that for all open balls I C R* with |QN 1| > 0,
there holds

|I|Poo,1*po,1 S Cl-

PROOF. Assume that (ii) holds. Let z,y € Q with |z —y| < 3, and let I C R¢
denote an open ball with z,y € I and diam/ < 2|z —y| < 1. Since 2 is open, we

have [QNI| >0, so
|I|poo,1_p0,l S OL
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Since |I| < diam(1)? < (2]x — y|)?, we have
((2\;15 . y‘)d)*\p(x)*p(y)\ < |I‘poo71—p0,] <
and
& — y|P@PW] < Caglk@-pw)|
< Cpgmr=,
We take the logarithm of this inequality to deduce

In (O 20-7)
—Infz — |

Ip(z) —p(y)| <

This proves that (ii) implies (i).
Assume now that (i) holds. Let I C R? be an open ball with [2N 7| > 0, then
1 < poc < Pooy < pog < po < 00. If diam(7) > 3, then

3 iam d\ Poo,1—Po,1 oo —
|I[Poer—PoT = (‘Bl(o)‘(dTU)) ) < (lBl<O)‘4id)p po’

therefore we can restrict ourselves to the case diam(J) < 3. Choose zg, 2+ € I N1,
such that 0 < 1(po.1—Poo,r) < P(20) —p(Tso). Since diam () < 5, we have |zo— | < 3,
so by assumption on p

Co

_ <
|p(SL’0) p(xoo)| = —1H|.T0 _ xoo‘7

S0
exp(Co) > |z — @oo| PPl > |40 — xoo‘%(poo,zfpo,z).

Since |I| > |1g — 700|?|B1(0)], we get

1\ Poo,I —Po,
exp(2C)) > |xg — oo |P ! 7POT > (( 1] )d) e

|B1(0)]
Hence
|1 [Poet7Pol < exp(2dCy)| By (0) [Poet~Pot
< exp(2dCp) max {1, | By (0)[P="7}.
This proves that (i) implies (ii). O

COROLLARY 2.7. Let Q C R be open and bounded. Further let p: € — [1,00) be
uniformly Holder continuous with index o > 0, 1i.e.

p(z) —p(y)| < H |z —y|*
for all |z — y| < 1. Then p satisfies the conditions of lemma 2.6.

PROOF. Let a > 0, then there exists a constant A > 0, such that
N A

[z —y|* £ ——

—Injz —y|

for all |z —y| < 1. This shows that uniform Holder continuity is stronger than the
continuity condition (i) of lemma 2.6. O
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5. Hardy—Littlewood Maximal Function

DEFINITION 2.8. Let Q C R? be open. For f € LY (Q) and r > 0 we define
M(r)(f) . Rd — RZO and M - Rd _ Rzo by

Mo = s [ Ul
)N

Br(z)N
M(f)(x) == sup M) (f)(z).

>0

The function M(f) is called the (Hardy—Littlewood) maximal function of f.

LEMMA 2.9. Let Q C R? be open and let p : Q — [1,00) satisfy the conditions of
lemma 2.6. Then there exists a constant C' = C(p), such that for all f € LPO)(Q) with
| fllp¢y <1 there holds

|M(r)(f)(x)|p(x) < C(p) (M(r)(\f(-)\p('))(x) + 1>, for all r > 0,

(2.9)
M@ < CE)(M(FOF) (@) +1).

Furthermore all terms involved are finite.

PRroOOF. The proof will be divided into two cases, namely r > % and 0 < r < %
Let us start with r > %, then

B, (z)NQ

7«1(9:)| / |f(y)PY) + 1 dy)p(cc)

(
( B, (2)NQ
(
(

W
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Now assume that 0 < r < %

| M (f)() Ip(m)

= [ rwla) -

By (z)NQ

p(x)
by Jensen / |f ’poo,BT(x) dy> Poo, By (x)

p(z)

/If i +1d>”°°BT<I>

__ p(x) p(x)
= |Br(1‘)| pw,BTu)( / |f(y)|p(y) dy + |BT<I>|)%O,BT(Z>

B, (z)NQ

p(x) p(x)

< ‘BT<Z.)’_POO Br(z)2poo /’f ‘P(y dy + 2|B ( ),) Poo,Br ()

B (z)N2
Since |f|p) <1 and 0 < r < 3, there holds
L 1RGP dy+ HB.@)] < Sl + bt < b b= 1

By (2)NQ
SO

| My (f) () [P
p(z)
< 1B, (x)| P28 / !f(y)\”(y)dyﬂL%IBr(x)I)

B (z)NQ

POO’BT(;C)—P(HC)

= |B,(z)| *eoBr@ Qs L |p(y)dy_|_ )

BT (z)NQ

Poo.Br(x) P0.Br(z) py (v)
S ’Br<x)| Poo,Br(x) po (|B ({L‘)l / |f(y)‘p Y dy + 1) .
' By (z)NQ

So lemma 2.6 implies

Mo (D@ < C0) (o [ 1Fwr dy+1)
By (2)NQ

= C(p) (M (1 O)1P) () + 1),
where C(p) does not depend on r. Combining the cases r > % and 0 < r < % we have
My () @) < C) (M (|F PO () + 1))

Taking the supremum over all r > 0 finishes the proof of (2.9). Furthermore for
f € LPO(Q) we have |f(-)[P") € L'(£2), so the theory of maximal functions on L!(£2)
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ensures that M (|f(-)|P))(z) is finite for a.e. € Q. Hence all the terms in (2.9) are

finite. 0

THEOREM 2.10. Let Q be open and bounded and let p : Q — [1,00) be measurable.

(i) If f € LPO(Q) with 1 < p(z) < po < 0o on K, then M(f) is finite almost
everywhere on R?,

(11) Let p satisfy the conditions of lemma 2.6 and 1 < po < p(x) < py < 00 on €.

Then there exists a constant C(Q,p) > 0, such that for all f € LP(Q) there
holds

(2.10) IM fllpy < CE ) fllp)-
Note that the norm ||-||,.) measures only the behaviour of M(f) on .

PROOF.

ad (i): Let f € LPO(Q), then f € L'(), since Q is bounded. Therefore the result
follows from the theory for constant p, i.e. p = 1.

ad (ii): Let g(z) := p(x)/poo, s0 1 < q(z) < p(x) < py < co. Since 2 is bounded,
there exists a constant A > 0 such that || f||,) < Allf|lpc) for all f € LPO().
Now let f € LPO(Q) with || f]l,) < 1/A be arbitrary, then || f||,w) < 1. We
will show that | M (f)|y) is bounded independently of the choice of f. Since ¢
satisfies the conditions of lemma 2.6 and || f{|4z) < 1, we can apply lemma 2.9
to get

Moty = 1M
< [[CE)(MAFOOD + D) e @
() Poo
< CEP= (1M UFOOD] gy + Illrw)
The theory of the maximal function with exponent p,, > 1 ensures
Poo
(M (f)lpey < Clp)P= (C(Poo)H|f(')q(')‘||moo(9) + ||1HL"°°(Q>>
_1 Poo
= Co= (Close) | 1335 + 1o
< C(Q,p).

So |M(f)|p), and thus ||M(f)|lp.), are bounded independently of f with
I fllpey < 1/A. Since M(-) and |[-||,) are homogeneous with respect to
positive scalars, i.e. M(Af) = [AM(f) and [|Af][pc) = [All| f]lpe), we see that

by = Ao [ (55| < AlFlboc(p).

Al fllpe)
This proves the desired result.

6. Convolution

We have already seen in section 3 that the convolution, although continuous as a
function from L(Q2) x L*(2) — L(Q) for all constants 1 < g < oo, is not continuous
if L9(9) is replaced by LP()(Q). As we have seen in lemma 2.5 the situation is even
worse. So the content of the following theorem is rather surprising.
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THEOREM 2.11. Let Q C R? be open and bounded. Further let p : Q — [1,00)
satisfy the conditions of lemma 2.6. Let ¢ : R? — R be an integrable function and set
we(x) = e ™p(x/e) for all e > 0. Suppose that the least decreasing radial majorant of
@ is integrable, i.e. let (x) = supj, .|| then [paib(x)dr = A < co. Then with
the same A

(i) supo| (f * p)(2)| < AM(f)(x) for all f € LPV(Q).
(i) If in addition [, ¢(x)dr =1, then lim._o+(f*p.)(x) = f(x) almost everywhere
in Q for all f € LPO(Q).
(iii) For all f € LPC)(Q) there holds f x p. — f in LPO(Q) as e — 0%,
(iv) For all f € LPY)(Q) there holds (independently of ¢ > 0)
1S * @ellpey < CA Q) IM(F)llp) < CLA Q) S llne)-

PROOF. Since  is bounded, we have LP0)(Q) — L'(Q). So (i) and (ii) follow
immediately from theorem 2 page 62 of [Ste70]. To prove (iii) let f € LPO)(Q).
Using (i) we estimate for x € Q

I(f * ) (@) = F(@)PD < C)((f * 0.)(@)] + | f()])"

< C(p) (AM(f)(x) + |f (@)])",

where the right-hand side is due to theorem 2.10 a L'(Q) function. Hence with (ii)
and the theorem of dominated convergence we get

i1 w0 = Sy = i 17+ 0)@) — S
Q

(2.11)

e—0t

:/ lim |(f * 0.)(2) — f(2)]"®) de = 0.

e—0t
Q

So we have convergence in the modular, which implies convergence in the norm. This
proves || f * ¢. — f|lp) — 0 as e — 0%. The remaining property (iv) is an immediate

consequence of (i), theorem 2.10, and the fact that |f| < |g| implies || f|/,¢) < |19/p¢)-
U



CHAPTER 3

The Potential and the Extra Stress

Earlier we have stated that the extra stress tensor S is induced by a potential.
Thus properties of the potential can be transferred to properties of the extra stress.
In this section we will give the exact requirements for the potentials we are looking
at. This is done either for the case where the potential does only depend on the
absolute value of the symmetric gradient, and for the case where the potential is
additionally time and space dependent. Afterwards we will give some examples of
potentials satisfying these requirements. We continue by deriving useful properties of
the extra stress and other partial derivatives of the potential. In this context we will
introduce the dual viscosity, which is connected to the error of the extra stress and
appears quite naturally in the dual problem of the error equation.

Since we are dealing with functions from 2 x R"*"™ to R, we will distinguish the
partial derivatives by 0; and J;,. The single index means a partial derivative with
respect to the i-th space coordinate. The double index represents a partial derivative
with respect to the (j, k)-component of the underlying space of n X n-matrices. By V
we denote the space gradient, while V,,.,, denotes the matrix consisting of the partial
derivatives with respect to the space of matrices. In a few cases we use d; instead of
0; to indicate a total derivative. Note that by B®™ we denote the symmetric part of
a matrix B € R"*", ie. B¥™" = %(B + BT). Further let Ry be the subspace of
R™*™ consisting of the symmetric matrices. Moreover we use C' as a constant which
is generic but does not depend on the ellipticity constants.

1. The Potential

Let us first consider the case where the extra stress only depends on the absolute
value of the symmetric gradient, so we have no further space dependency.

DEFINITION 3.1. Let 1 < p < 2 and let F : RZ% — R=% be a convex function,

which is C* on R=Y, such that F(0) = 0, F'(0) = 0, and the induced function ® :
R™" — R0 defined through ®(B) = F(|B¥™|), satisfies

(3.1) 3 (540 ®) (B) 31 Cin > (14 [B¥™[2) 57 |G 2,
(3.2) M |(92,,9)(B)] < (1 + BT

for all B, C € R™"™ with constants 1,72 > 0. Such a function F, resp. ®, is called a
p-potential and the corresponding constants vy, v2 are called the ellipticity constants
of F', resp. ®.

REMARK 3.2. Observe that for all B € R"*"\ {0}
By
(0x®)(B) = F'(|B™™) 55

|Bsym|7

Sym Sym psym sym sym
BJ % B

Ry B¥™B s
(030 ®) (B) = F/(|B™) (i - B ) o+ (o)) it P

19
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where (S%I?m = %(5ﬂ5km + 0jmp). Hence

> (9k0im®)(B)Bji By = F/'(|BY™[)[ BY™ [,

Jklm

So by (3.1) and (3.2) we conclude that for all B € R™™\ {0}
(3.3) N(L+ [BY)F < F/(IBY™) < (1 + [BY™P)7.

Since F" € C*(R=%), this estimate also holds for B = 0. From the formula above
for 0;,®(B), the continuity of F' at zero with F'(0) = 0, and the boundedness of
BT/ 1B in R™™\ {0}, we deduce

(0;1®)(0) = 0.

REMARK 3.3. Let B,C € R"™"™. Due to ®(B) = F(|B*™|), we have ®(B) =
O(BY™), thus the 0;,0m® are symmetric in j, k and I,m and (j,k),(l,m). This
implies that

(3.4) > (04 0m®)(B)CitCrm = > _ (0j400m @) (BY™)CHCI",

jklm Jkim
annq)(B) = VanCD(Bsym)v
(Van®)(B) = (V7,,,@)(B¥™).

nxn nxn
Thus it suffices to verify (3.1) (3.2) for all symmetric matrices. Since later we will
mostly deal with symmetric matrices, we will in some cases leave out the symmetriza-
tion of the matrices, i.e. we will use B instead of B¥™ and restrict the admitted
matrices to the symmetric ones.

DEFINITION 3.4. We define the dual viscosity o : R™*" x R™" — (R"™™)2 of q
potential ® for all B,C € R™™" by

1

03m(B, C) = / (O340m®)([C, B,) ds,

0
where [C,B]; := C + s(B — C).

The reason for introducing the dual viscosity is that it appears quite naturally
when examining the difference of the extra stress S := V., ®, which appears for
example in the error equation and its dual problem. The dual problem is explained in
chapter 4 section 5 in more detail. Let us only mention so far that the dual problem
is important for deriving optimal error estimates of the pressure stabilization. We
chose the name dual viscosity for o, since it is just the generalized viscosity of the
dual problem. For all B € R"*"

S(B) = ann¢(B) — F/(|Bsym‘) Bsym

|Bsym| Y
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so S only depends on the symmetric part of B. Let us now examine the difference of
the extra stresses. For all B, C € R™*"

Sik(B) = Sjk(C) = (9;x®)(B) — (9;xP)(C)

~ [ 4(0a0)C.BL)) ds

0

- Z /(8Jkalmq)>([c7 B]s)(Blm - Clm) dS

= Z jkim (B, C)(Bim — Cim),
Im

or shortly S(B) — S(C) = (B, C)(B — C). From (3.1) and (3.2) we conclude that
for all B,C,Q € R™*"

1

p=2 sym
> 0an(B.C)QQin = 71 [ (14 [CBI") ds |
Jkim 0
1
7(B.0) <1 [(1+][CBEP) s
0
As in [PRO1], we deduce from this the existence of constants c¢;, ¢y independent
of v1, 72, such that
Sy 1m sym ﬂ sSym
B7) Y Gum(B, C)QuQun > e (1 + [BY[2 4 [Com[2) 7 Qv
Jkim
(38) (B, C)| < crma(1 + [BY™[ 4 |C" )5,
where we have implicitly used 0 > p — 2 > —1 (see also [MNRR96]). With these

inequalities and S(B) — S(C) = (B, C)(B — C), it is easy to check that S fulfills the
following properties:

THEOREM 3.5. For all B,C € RZX" there holds

Sym
(3.9) S(0) =0,
> (S4(B)=S4(C))(By—Cyj) > cim(1+ B + IC[%)"z [B-CJ?,
ij
(3.10) 3 5,(B)By; > cin(1 + B [BP,
” > e (272 [BJP - 1).

p—2

IS(B) — S(C)| < es75(1 + [B + |C])*7" [B-C|,
IS(B)| < s 72(1+ |B]*)*Z [B.

The same inequalities hold true for all B, C € R™*" if |B| and |C| is replaced on the
right-hand side by |B™| and |C¥™| (compare lemma 3.3).

(3.11)
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The inequalities involving S(B)—S(C) follow from S(B)—S(C) = (B, C)(B-C)
and the estimates for o. Then choose C = 0 for the other inequalities. In the last
inequality of (3.10) we have used

(1+[BP)"= [B] > 2[B)= B =1 =2 |B] -1 > 27:[BJ — 1.
From remark 3.2, (3.10), and (3 11) there follows for B € R™*"
(312) (14 [BY™2) [BY] < F(IBY™)) < cpma(1 + [BY™ %) [BY™).
2. Time and Space Dependent Potentials

We will now define the properties of a time and space dependent potential.

DEFINITION 3.6. Let p: I x Q — (1,2] be a WH(I x Q) function and let there
erist Poo,Po € (1,2] such that 1 < ps < p(t,x) < po <2 forallt € I, x € Q. Let
F:IxQxR2 — R2% be such that for a.e. (t,x) € I x Q the function F(t,z,-) is
a p(t, x)—potential (see definition 3.1) and the ellipticity constants do not depend on
(t,x), i.e. the function ® : R™" — R2° defined through ®(t,z,B) = F(t,x,|B"™)
satisfies

(3.13) 3 (040 ®) (2, B)CjpCim = 71 (1 + [BY7[2) ™57 [Cov 2,
(3.14) (V2,,@)(z,B)| < 7(1 + |BY™? >"“” =

nxn
for all B, C € R™™ with constants 1,7, > 0. Further we assume that F' is contin-
uously differentiable with respect to t and x and that (0,F)(t,x,-) : R=% — R=2Y and
(0;F)(t,x,-) : R=® — R=2% are C*—functions on R=° and C*~functions on R>" for all
tel, x €. Moreover, assume that forj =1,...,d

Jkim

(0,F)(t,x,0) =
(O F)(t,z, R) > for all R > 0,
(9;F)(t,2,0) =
(3.15) (8;F)(t,z, R) > o for all R > 0,
(0¥ en®) (£, 2, B)| < 73(1 + |Bsym|2>p“ # In(1 + [BY™),
(V¥ 0n®) (1,2, B)| < 3(1+ [B¥™[2) 5 In(1 + [B™™).

with v3 > 0. Such a function F, resp. ®, is called a time and space dependent
p-potential and the corresponding constants v,,7v. and 3 are called the ellipticity
and growth constants of F', resp. ®. The function p is called the exponent of the
potential. In the absence of time we use the term space dependent p-potential.

First of all let us mention that all the estimates that we have derived for S and
® so far (see theorem 3.5) do also hold in the time and space dependent case: For
fixed t and x we have just the case of the previous section.

Although F' now also depends on the time and space, we will still write F”(¢, z, s)
to indicate the partial derivative with respect to s. We have the following useful
formula for 0,V ,,x, and VV,,: For all B € R"*"\ {0} there holds

(0,030) (2, B) = (O, F) (, |B™|)

‘Bsym‘ ’
sym

BJ

|Bsym‘ .

(3.16)
(0:05x®) (2, B) = (0:F)' (z, | B™™)
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k

If B = 0, then the regularity of ' and the boundedness of B imply

psym
J
S|

(0:9;x®)(z, 0)
(0,0 ®)(,0)

0,
0.

Note that due to ®(t,z,B) = &(t,z, B¥™) it suffices to verify (3.13), (3.14) and
(3.15) for symmetric matrices (see also remark 3.3). Further we remark that we will
sometimes omit the time and space dependency and write ®(B) instead of ®(¢, z, B).
But we will only do so when it is clear that we are in a time and space dependent
context.

3. Examples of Potentials

Certainly there arises the question of the existence of a p-potential and especially
of a space dependent p-potential. In fact there do exist such potentials. The two
standard examples are

s

Fi(t,x,s) :/(1 + a?)

0

p(t,z)—2

ada and Fy(t,x,s) :/(1 + a)P 24 da,
0

where p € WH(I x Q) and 1 < poo < p(t,x) < pg < 2 forallt € I, x € Q. For the
partial derivatives with respect to s we conclude

p(t,z)—2

1+ 5% : S,

(

(3.17) Fl(t,a,5) = (14597 ((p(t,2) = 1)s* + 1),
(
(

1+ s)Ptm=2g,
p(t,x) = 1) (14 8)P72

p(t,z)—2

OF) (t,x,s) = (1+5%)" 2 sln(l+s%)(0p)(t, ),
)

p(t,x)—2
(318) 2 81n(1 +82)(8Jp)(t7x)a

We will now verify that F; and F, are time and space dependent p-potentials. Let
O (t,z,B) := Fi(t, x, | B¥Y™|) and $o(t, z, B) := Fy(t, xz, | B¥Y™|) for all B € R"™". Due

to remark 3.3 we will restrict ourselves to symmetric matrices, i.e. let B,C € R T,
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then by remark 3.2 and (3.17)

Z (8jk81m<l>1) (t, x, B)C]kClm

= F1<|B|><'|%‘T "5'3‘?3'2) + (B2
(3.19) = (1+BP)”
+<1+|B|>“””'?B]?f( (1+[BP) + (p(t. ) — D|B* + 1)
= (1+[BP)™7|CP + <1+rB\ ) e (p(t, 7) — 2)

> (p(t,x) = 1)(1 + [BH)"™

Z (ajkalm(p2) (ta X, B)C]kclm

jklm

= F(B|) (1% - S25) + B (IB)'S,
(1+ |B)2=2|C)?
+ (p(t, ) — 2)(1 + B2 IS8
> (p(t,x) = 1)(1 + [B)P-2|CJ?

(n(
z(p(t,x)—l)(\/i)( o <1+|B|> e
(p(

(3.20)

and
(V3 ®1)(t, 7, B))]
< F{(|B|)“§+F”(|BI)
= (1+|BP)™ 5 (V& + 1(1 + |BP) + (p(t,z) — 1)[B]* + 1)
<(VETT+1)(1+[BR) 5,
(Vrkn®s)(t, 2, B)]
< Fj(|B)¥GH2 + FY(B))
(1+ B2 (V& 1+ (p(t,2) - 2)

p(t,)—2 w) 2

<(Vd2+14+1)(1+B]*) =z,

Bl
of + 1)
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where we have repeatedly used p < 2. By equations (3.16) and (3.18) we get

|(an><nq)1)(t, x, B)‘ 1+ |B’2)P(t ﬂ;)—z

( (1+|BP) [(Vp)(t, )|
2(1+[BP)™ 5 In(1+ [B) [(Vp)(t, 2)
(14 B B/ In(1 + B) |(9p) (1, 2)|
2(1+[BP)™5 (1 + [B) |(9ip) (t, @)
(VVn®2)(t,2,B)| < (14 |B|)P*92B| In(1-+[B)) (Vp)(t.2)
< V2(1+ B (1 + [B]) [(Vp)(t,2)]
|01V xn®s) (1,2, B)| < (14 |B|)P9 2B In(1+ [B) [9r)(t. )
<V2(1+ B (1 + [B]) [(@p)(,2)].

IA

|(atvn><nq)1)(t, Z, B)|

IN

IN

So if p € Wh*(I x ), then ®; and ®, are space and time dependent p-potentials.

4. The A-Approximation

In the study of an incompressible fluid with the extra stress given by a p-potential ®,
one has to overcome lots of difficulties which arise mostly due to the non—quadratic
growth. This becomes especially crucial for small values of p. To get past these
problems it is useful to approximate ® by a 2-potential (i.e. quadratic growth),
which differs only slightly from ®. Let us introduce two such potentials, namely
the A—approximation and the A—approximation.

Let A > 1. The A-approximation F4 : RZ% — R2% of the potential F is defined
by

(R for R < A,
FA(R) = {F(A)+(R—A)F’(A)+%(R_A)2F”(A) for R > A.

Then F4 is convex. As usual we define ®4(B) := F4(|B¥™|), SA(B) := (V,1x,®*)(B).
Note that for B € R"*" with |B%™| > A there holds (see remark 3.2)

(3.21) (921)(B) = (F'(A) + (B — A)F"(A)) g
This implies for [B¥™| > A
6symm Bs'ymBsTynm B ym qulm
(O340 ®)(B)) = F'(A) (gt — T ) + P (A) i s
sym 52, n’lm B;ymBs,,);m
+ (B = A)F"(A) (i — S )

Let k := \Bbym|’ then 0 < k < 1 and |kB| = A. Using remark 3.2 it follows that

sym pBsym gsym sym Bsym

i B
(0340 ®) (v B) = LF'(A) gtz — B0 )+ F(A) it e
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Thus for |BY™| > A

17 B i o
(05100 ®") (B) = (0100 ®) (kB) + (1 — #) F" (A) (gt g
sym " Sitm Bk Bim
+ (BY™) — A)F"(A) i — S )

= k(00 ®) (kB) + (1 — k) F"(A)5™

JkJdm®
Hence
(9%0un®)(B) for [B¥™| < A,
(322) (@kaszI)A)(B) = |B£’"‘| (ajkalm )(|B£Im|Bsym)
+(1- |B5Ym|)F//(A)§;%I?m for [B¥™| > A.
Let C € R™". From (3.1), (3.2), (3.3) and remark 3.3 we conclude that
> (950m®™*) (B)CjxClim
jkim . v <1+’Bsym‘ ) |Csym‘2 for |Bsym| SA,
1 (1+ A2)55 [Com 2 for [BY™| > A,

and

‘ n><n

B)| < 72 (1 + |Bsym| )z 7 for |IBY™| < A,
- (1+ A% for |IBY™| > A.

Since A > 1 and 1 < p < 2 there follows

2°%" ) 472 Com 2
(3.23) (0310 @) (B)Cj1.Cipm, > aym sym
2 : %<1+1By )2 oo,
(3.24) (Vin®h)(B)| < d .

Further we derive from the definition of ®* and (3.21) that

(0;+9)(B) for [B¥™| < A,
(3.25) (02" (B) = ¢ (931®) (g&=rB™™)
+(1 — rghy) F/(A)BY™  for [B¥™| > A

For the difference S4 — S = V,,5n®* — V. n® we deduce

0 for | B¥™| < A,
S(B) — Sjx(B) = { Sik(fpam B™™) — Sje(BY™)
+(1 — rghmy) F(A)BY™ for [B™| > A.

For |B®¥™| > A there follows from (3.3) and (3.11) that
SAB) —S(B)| < cp2(1 + A2+ [BY™)" 7 (1 —
+ B yy(1+ A%) "

)‘Bsym|

|Bsym|
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This implies for all B € R"*" and p > 0

fi sym | <
CRORETOIER S S,
2y 1 AP72BY™|  for |BY™| > A,

S 2 Co 72Ap—2—p|Bsym|1+p'

(3.26)

LEMMA 3.7. If the p—potential F, ® additionally satisfies

|8TF"(t, x, s)‘ < C(1+s)PED=21n(1 + 5),
|0 F"(t,,8)] < C(1+5)"D 2 In(1 + 5),
for almost allt € I, x € Q and all s > 0, then for all B € R4
|(atvnan)A)<t’ z, B)‘ < C (1 + |BSym|2)P(t ;)—1 In
(VVn®)(t,2,B)| < C (1 + B ) H

(3.27)

(1+ [B¥™),
n(1 + [B¥™)).

(3.28)

PROOF. Due to (3.21) there holds

(003 84)(B) = (,F(A) + (IBY™| — A)9,F"(A)) oy
= (& ﬂﬂ’)( )+ (B — A)0,F"(A) iy
(0,052 (B) = (0,F'(A) + (|BY™| — A)9,F"(A )‘Bsym|
= (0,0;9)(B) + (|B™] — A)0, F"(A) ke
This and (3.27) proves the lemma. ]

Let us remark, that both example potentials F;, ®; and F,, &5 from section 3
satisfy the additional requirement (3.28) as long as p € W°°(I x Q). This is indeed
a direct consequence of (3.18).

5. The A-Approximation

DEFINITION 3.8. Let A = (A, X)) € (0,1] x R®Y and Ny > 2 — p. Then the
X—approzimation is defined by F» : RZ% — R=0

/1+)\13A2 )% F'(s)ds.
0

Further we set ®}(B) := FA(|IB¥™|) and S*B) := V,,,,,®*(B) for all B € R™".
We calculate
(FY(R) = (1+MR*) % F/(R),

D@ (B) = (1 + A [BY™ ) %" F/(|BY™|) Sk

( B
(0310m @) (B) = (1 +A1\Bsym|”)*__2(3jkazm )(B)
(

— BsymBsym
A2 = p)(1+ A B

|Bsym|2 .

|Bsym|>\2 1F/(|Bsym|)
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Let C € R™™", then
> (059 *)(B)CiiCim

Jkim

= (L4 M[BY ) Z(ajkamxB)cjkczm
Jkim

+ (2 — p) (1 + A [BYTPe) R

‘Bsym_csym|2
|Bsym‘2

(IB>™])
Since 1 < p < 2, the last term is non-—negative, so due to (3.1) there holds
> (0501m ) (B)C s Cim
Tz (0 MBS (L (B O
- { (14 B o
" Lo
Furthermore, by (3.2) and (3.12) we have

|(V$L><TL )(B)‘ < ((1 + A\ |BSym|/\2)A1) -p
(14 [Bm[2)2
(330) N (1 4 )\llBsym|>\2)% 2—p )\1|Bsym‘)\2
@ ( (1+ |Bsym|2)% > 1+ A\ |Bsym |
< 2(1 + ¢2) e
For the difference S* — S = V5, ®* — V.., ® we deduce

(3.29)

SX(B) — S(B) = ((1+ M[BY™[*) % — 1) F([B™)) B

B
Note that 0 < (1+1¢)7 — 1 < |g|t for all ¢ < 1 and t > 0, so with (3.12):
[SA(B) — S(B)] < & M 529 BY™ (14 [BY™?) "7 [B™|

(3.31)
< cpyp Ay [BYRPTIF,

6. Approximated Potential

Let us summarize the common properties of S4 and S*. Let F be either F* or
F>* and define ® and S analogously. Then for all B, C € R™*" there holds
pr2 '71Ap_2 |Csym’2

3.32 kO ®) (B)Ci1.Cly >
( ) Z( JkUI )(B)CjkCrm > {C% (1+|Bbym] ) |bem|2

Jklm

)\ A2 |Csym|2
(3.33) (9101m®™)(B)Cj3Cliy > 3N
2. ’ 7 (1+ [Bm[2) %5 [Cvm ]2,

Y2,
(1 + 62) Y2-

N
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If we further introduce p > 0, then for all B € R2X" we deduce from (3.26) and (3.31).

sy
(3.36) ISA(B) — S(B)| < 2cyy, AP277|BY™ P,
(3.37) IS}B) — S(B)| < ey Ay [BY™ P2,
REMARK 3.9. It is quite remarkable that these estimates for the A—approzimation

and the A—approzimation merge into one another if we choose p = p — 2 + Ay and
A= = )\, In this case

2-p
7114;;—2 = 71/\1A2 and 72Ap_2_p|Bsym|1+p = 72)\1|Bsym|p_1+)‘2,

for all B € R™*", so (3.32)—(3.37) get unified. In addition, the conditions A > 1 and
p > 0 correspond exactly to Ay € (0,1] and Ay > 2 — p. From this point of view it
is sufficient to investigate just one of the approzimated potentials, namely FA or FX.
We will do so by restricting our study of the numerics to the A—approximation. With
a suitable choice of A, all the results will also hold for the A—approximation.

From (3.32)—(3.37) it follows in analogy to (3.7) and (3.8) that

C,Yl Ap—2’stm’2
3.38 ot (B, C)Q:xQum > ’ -
( ) ]k;n ]k:lm( )ijQl {071 (1 + |Bsym‘2 + |Csym‘2)T|stm|2’

(3.39) lo(B,C)| < C .
for all B, C,Q € R™". Thus we deduce (compare theorem 3.5):
THEOREM 3.10. For all B,C € R**" there holds

sym

(3.40) S4(0) =0,

C’}/l Ap72|B—C|2
S4(B)—S4(C))(By—Cij) > o p=2
%:( z]( ) 7,]( ))( J ]) _— {Of}/l (1 + |B|2 + |C|2>T|B—C|2,
(3.41) Con A2[BP,
> Si(B)By = 3 Oy (14 [BI)'F B2,
i Cy(272BlP - 1),

S4(B) — S*4(C)| < OB - C],

343 SA(B)| < O B,

7. Assumption on the Exponent p

In the following sections we want to derive more useful properties of space and
time dependent p-potentials using the properties of generalized Lebesgue and Sobolev
spaces. Among others we will make use of the Sobolev embeddings on W*2() ().
Since it is not yet known (see section 2 in chapter 2) which minimal requirements
on p are necessary in order to ensure the validity of the Sobolev embeddings, we
will restrict ourselves to the case where p is uniformly Lipschitz on the time space
cylinder I x €. In this case lemma 2.4 ensures that the Sobolev embeddings are valid.
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ASSUMPTION 3.11. For all the following sections we assume that the exponent p of
the space (and time) dependent potential ® is uniformly Lipschitz on the space domain
(time cylinder), i.e.

p € WhHe(Q), resp. p € WhHe(I x Q),
and 1 < py < po < 2.
8. Special Energies

Later in our examinations of the stationary and instationary p-Navier—Stokes prob-
lem we will encounter the following two important expressions

(3.43) Tolt,u) == <Z 3 (9a501®) (¢, 7, Du)d, Do, arDjku>,
r  jkaf
(3.44) Ta(t0) i= (3" (0504®) (¢, 7, DA, Do, &, Dy,
jkapB

where u denotes a sufficiently smooth velocity function over the space time cylinder.
The brackets (-, -) stand for integration over the space domain 2. These two expres-
sions will arise when we are going to test the equation of motions with —Au and d?u.
Since Zg and Jg are very similar, it is useful to introduce another functor G¢ by

(3.45) Go(t, W, V) = <Z(aaﬁajkq>)(t,x,nw)1>aﬁv, Djkv>,
Jkap
where w : Q@ — R? and v : Q — R? (or v : Q — R¥9) are sufficiently smooth

functions. In most cases we will simply write Zg(u), Jp(u), and Go(w,v) instead
Is(t,u), Jo(t,u), and Go(t,w,v). With this convention we have

(3.46) Zs(u) = Go(Du, Vu), Jo(u) = Go(Du, dyu).

Let ® be a space (and time) dependent p-potential, then due to the properties of ®
we estimate

Go(w,v) > 1 / (1 + |Dw]?)’Z|Dv[ da.
Q

The expression (1 4 [Dw|?)z appears quite often in all the chapters, so it is very
useful to introduce the shortcut

(3.47) Dw = (1 + |Dw/?)z.

This gives

(3.48) Go(W, V) > 7 / (Dw)"%|Dv|* dz.
Q

As a consequence

(3.49) To(u) > Cyy / (Du)?~2|VDu|? dz,

Q
(3.50) Ta(u) > Cy / (Du)P~2,Dul? dz.
Q
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Since in general |V?u| < 2|VDu| (see Appendix), |[VDu| can always be replaced by
|V?u| by increasing the multiplicative constant.

Closely connected to the quantities Zo(u) and Jp(u) is the function (Du)?, which
will be very important when examining the regularity of solutions. This is the content
of the following lemma:

LEMMA 3.12. Let ® and p be as in assumption 3.11. Then there exists a constant
C' > 0, such that for all (sufficiently smooth) u and almost all times t € I there holds

350 IV (Bw)E < O (Zolw + [ Vsl [(Du)(Du)ds),
Q

352 ula((Bw) < O (Tatw) + [l [(Dupr(Dw)ds).

PROOF. Observe that

V((Duw)t) = > 2(Du)"= (D) (VDjen)
(3.53) ik
+ (Du) In(Du)i(Vp).

Raising this to the power of two and integrating over €2 proves the first inequality. If
we replace V in the calculations above by 0;, we get the result for Jg(u). O

In the following we will derive more useful estimates for Go(w,Vv), Zs(u) and

jq;(ll)f

LEMMA 3.13. Let ® and p be as in assumption 3.11. Then for all (sufficiently
smooth) u and almost all times t € I there holds

(354) 71|V2u]p(.) S CI@(U.) + %lﬁu\p“,
(3.55) M|0Dulyy < C Te(u) + 71| Dulp,.

PROOF. Note that for all ¢ € [1,2], a > 0, b > 1 there holds
(3.56) a? < a®b?7? 4 bl

Indeed, there is nothing to prove if ¢ = 2, so let 1 < ¢ < 2. In this case 1 < % < 00,
and Young’s inequality gives

97q-2\1 p 2o0a, YU 5 o o
a? = (a*b?)2(b ) < atbiTe + b
Now (3.56) implies

IV2ul? < (Du)?~2|V?ul? + (Du)’.
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almost everywhere. Since in general |V?u| < 2|VDul| (see appendix) we deduce

V2uly < [ (Du?|V2uf do + |Duly
Q
<4 / (Du)P~2|VDul dz + | Duly.,

Q

(3.49) (' ~
< Zo(u) + |Dulp.).
1

The estimate for 9;Du follows analogously. O

LEMMA 3.14. Let ® and p be as in assumption 5.11. Then for all (sufficiently
smooth) w and v and for all 1 < q < 2 there holds:

Ivlly < & (5:Ga(w,v)* [(Dw) || 22 .

n

29 _

where 5g — for q=2.

ProOF. Observe that 1 < % <ooand 1< (%)’ = ﬁ < oo. Further for 1 < ¢ <2

~ _ 3~ (2—p)q
Wl = [ ((Bwy2ivP) (Bw)“#da

Q

N

(Dw)*v[Pdr | [[(Dw) 27| .

INA
B

s
s
=g

[

|
_

(Dw)P2|v[*dz | ||(Dw)

I
S
l
™
i
S
=]

This and (3.48) prove the lemma for ¢ < 2. The case ¢ = 2 is similar. O

Note that this lemma is applicable to Zg(u) = Go(Du, Vu) and as well to Jg(u) =
Gs(Du, 0;u). Analogously we have

LEMMA 3.15. Let ® and p be as in assumption 3.11. Then for all (sufficiently
smooth) u and v and for all 1 < q < 2 there holds:

ID(a—v)], < C (3(Du)—8(Dv), D(u—v))* |(Dw)*#* + (Dv) %] 2 .

where QZqu = oo for g =2.
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PROOF. Analogously to the proof of lemma 3.14

(2—p)g

||D(u—v)||g:/<(5u+l~)v)p_2|D(u—v)|2>g(l~)u+l~)v) # dz
Q

q
2

< / (Dut D)2 D(u—v)Pdz | ||(ButDv) =

q

Q

"L (S(Dw)-S(DV). D(u—v)) ! [[(Dw) 5" + (Dv) 5" |,

=7 2

This proves the lemma for ¢ < 2. The case ¢ = 2 is similar. U
In view of the A- and A-approximation, we define
Go™ == Gya, To™ == Tya, Jo™ = Tpa,
Go™ = Gan, I = Tga, To™ = Tan.
The estimates for ®* and ®* imply (note: A > 1, \; < 1):

(CyyAP==2 [|Dv|? da,
Q

3.57 A > _
( ) Ga'(w,v) = Cm f(DW)p_Z‘DVP dx,
L Q

( 2—poo
Cy ™ [|IDv[*dx,
(3.58) GoN(w, V) > Q

Cm f(lN)W)p*2|DV|2 dx.
\ Q

The consequences for Zo?, Jo?, To>, Jo™ are evident. Nevertheless for the sake of
completeness we state them for ®4.

(Cy, A== [|VDu|? dx,
3.59 Io" (u) > -0
(3:59) 2 () 2 Cv [(Du)P~2|VDul|?dz,
L Q
(CylAp"O’Z [10,Du|? dz,
3.60 4(u) > ~ 9
(3.60) Jo"(u) 2 Cv [(Du)P2|0,Dul? dx.
L Q
Note that in the derivation of lemma 3.12, 3.13, and 3.14 we have only used (3.49)
and (3.50). Since we have just shown that Ze*(u) fulfills the same estimate with
constants independent of A, both lemmas 3.12 and 3.13 remain valid if we replace
Ts(u) by Zp*(u). Certainly the same holds true for the A-approximation.

Later we will derive more interesting estimates connected to Zs, Je and their ap-
proximated versions, but most of them will depend on the dimension of the underlying
space. Therefore we will postpone these estimates to the appropriate chapters.







CHAPTER 4

2D Flow — Pressure Stabilization

1. Introduction

In this chapter we will study solutions of the following instationary shear depen-
dent flow problem in two space dimensions

Ju—div(S(Du)) + (u-V)u+Vr=f onl xQ,
(4.1) divu=0 on [ x €,
u(0) =ug on .

Here Q denotes the two—dimensional torus, I = [0,7] denotes a finite time interval.
Furthermore u is the velocity, 7 the pressure, and f represents the data. We assume
that the extra stress S is induced by a time and space dependent p—potential ' and
P with p € We°(I x Q), as we have defined in chapter 3, which additionally satisfies
(3.28). Due to the space—periodic setting we will only consider data and solutions
with zero mean value. This ensures the validity of the Poincaré inequality and the
wellposedness of the inverse Laplacian equation.

These flows appear for example in the study of electrorheological fluids, where the
behaviour of the fluids strongly depends on the applied electrical field. An important
model for electrorheological fluids, which is closely connected to the system above,
has been developed by K. R. Rajagopal and M. Ruzicka in [RR96]. Therein the
exponent p is a function of |E|, where E is the applied electrical field. See [Ruz00]
for a comprehensive work on such fluids.

In the view of numerics it is also quite of interest to study approximations of
this system, which do not require the use of divergence free functions. One widely
spread strategy is the use of pressure stabilization, that is divu = 0 is replaced by
divu = €Ar for some £ > 0. This method is for example used in the Van—Kahn,
the Chorin, and the Chorin—Uzawa scheme. For a description of these methods we
refer the reader to the book [Pro97] by A. Prohl. The important observation for this
approximation is that in the linear Stokes case —Au + V7 = f the error due to the
pressure stabilization is of the order . This fact is also valid for the linear Navier—
Stokes problem if the convective term (u - V)u is adjusted accordingly. There are
two canonical ways, each with its own advantages, how to adapt the convective part
to the stabilization. Both of the systems have in common that the trilinear form b
induced by the (adapted) convective term satisfies b(u, u, u) = 0, which is of absolute
importance for all analysis. Note that if divv = 0, there holds ((v - V)w, w) = 0 for
arbitrary w. But since divu = ¢Ar # 0 we have ((u- V)u,u) #Z 0. The first way to
compensate this is the anti-symmetrization of the trilinear form with respect to the

35
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last component, i.e.
(u-V)v,w) —((u-V)w,v)

b(u,v,w) := 3
={((u-V)v+ i(divu)v,w).

The other possibility is to use
b(u,v,w) ;= (((u—eVm) - V)v,w),

which corresponds to the projection of the first component in the trilinear form
((u-V)v,w) to the space of divergence free functions. Note that both adapted
versions of the convective term are used within the area of numerics. Therefore in
addition to (4.1) we will study the systems

dyu — div(S(Du)) + (u- V)u+ s(diva)u+ Vr =f on I x €,
(4.2) divu=cecAr on I x ),
u(0) =ug on €,
and
du — div(S(Du)) + ((u—eVr) - V)u+ Vr =f on I x Q,
(4.3) divu=¢e¢Ar on I x
u(0) =uy on Q.

In particular we will address the problem of existence, uniqueness, and C'**-regularity
of strong solutions for large times and data. Let us mention once again that these
systems unify with (4.1) if e = 0.

In the case of no stabilization, i.e. ¢ = 0, and p constant these questions have
been examined by P. Kaplicky, J. Malek and J. Stard. In [KMS97b] they show that
for zero initial data, i.e. ug = 0, and p > % there exists a unique, strong solution
of (4.1), which satisfies Vu € C%*(I x Q) for some a > 0. Note that for the stationary
system P. Kaplicky, J. Mélek and J. Stara have also studied the case of zero Dirichlet
boundary conditions (see [KMS99] and [KMS97al).

We will see that by refining the ideas of [KMS97b], it is possible to extend these
results to the case of p non constant, i.e. p € Wh°(I xQ), as long as % < Poo < po < 2.
Particularly we will prove that the systems above, i.e. (4.1), (4.2), and (4.3), have a
unique, strong solution, which satisfies Vu € C%*(I x Q) for some a > 0, where «
does not depend on €.

Furthermore in contrast to [KIMS97b] we have included the possibility of non—
zero initial data, since this is quite crucial for the application to numerics. Moreover
our result above also covers the pressure stabilized setting. Thereby we carefully pay
attention that the norms involved do not depend on ¢ as long as 0 < ¢ < gy, where
g9 does only depend on the exponent p, the data f, and the initial data ug. So the
theorem below provides all necessary information regarding regularity to establish a
numerical error analysis for a pressure stabilized time discretization.

Provided with the existence, uniqueness, and regularity of the stabilized systems
we will investigate the order of perturbation with respect to e. We will see that, as
in the linear Navier-Stokes case, the error, measured in the LP®)(I x Q) norm, is of
order €. The proof of this is related very closely to the existence of strong solutions
to the dual problem of the error. While for the linear Stokes problem the equation
of the error and its dual problem is just another Stokes problem, this is not the case
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in our non—linear setting. More precisely, the dual problem to the error equation has
the form

Ow + div(e(Du,Dv)Dw) + Vi + H(w) =g on I xQ,
divw =0 on [ x €,
w(T)=0 on €2,

for some function g and a linear operator H, where u, resp. v, are the solutions to
the non-stabilized, resp. the stabilized, p—Stokes system. Unfortunately it is not clear
if this system has a strong solution under the sole condition u,v € C(I, W?P0)(Q)).
In order to get strong solutions of the dual problem we need C%(I x Q) regularity
(> 0) of Vu and Vv. Luckily, the results above show that this is true for two space
dimensions. But for higher space dimensions (three and above) this is indeed a grave
problem, as it is not known if gradients of strong solutions to the p—Stokes system are
in C%(I x Q).

2. Stokes Flow — Weak Solutions

In this section we will examine the existence and regularity of weak solutions to
the pressure stabilized, instationary, generalized Stokes problem

omu — div(TDu) + Vr =divG on I x Q,
(4.4) divu=cAnr on [ x Q,
u(0) = ug on €2,

where  denotes the d-dimensional torus, I = [0, 7] a finite time interval, and € > 0.
Moreover, T : I x Q — R4*dxdxd gatisfies T € L®(I x ),

Tijrr = Ty = Tijak = Thaij,
and for all B € R4
Y[ B < Z Tk imBjk Bim < 72|B¥™|?.
Jkim

We use TDu as the abbreviated form of (TDu),,, = ij TjkimDimu. Note that the
symmetry of T implies TDu = TVu. Nevertheless we chose to use TDu in order
to point out the fundamental structure of the problem. Further note that section 2
is valid for any space dimension d > 2. But throughout the other sections we will
assume d = 2.

We are looking for solutions with space mean value zero, i.e.

(ui(t),1) = (m(t),1) =0 for all times t € I = [0, 7]

andi = 1,...,d. So additionally to the Lebesgue spaces L%(£2) and the Sobolev spaces
WH4(Q) we need the following versions with mean value zero:

Lj(Q) :={f € L) : (f,1) =0},
WPQ) .= {f € WrFI(Q) : (f,1) =0} for k > 0.
Analogously we define the generalized versions
Li(Q) = {f € L'V(Q) = {£.1) =0},
Wyt (Q) := {f € WO(Q) : (f,1) = 0} for k > 0.
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With these spaces A : Wit>%(Q) — W () is an isomorphism for all s € R, which
is a standard result from Fourier analysis on the torus. Further we need the spaces:

D(Q) :==C5P () (smooth functions with compact support),
Do(Q2) :={p D) : (¢;,1) =0fori=1,...,d},
Vo :={p : ¢ € Dy(2),divep = 0},
Wido(Q) == {u e W(Q) : divu =0},
L 0(€2) == {u € Lj(Q) : divu =0 (as a distribution)},

where £ > 0, 1 < ¢ < oco. Moreover, to handle the traces of u with respect to the
time we need the Besov spaces

B, (Q) and By(2) == B; (Q)

with p,q € (1,00) and s € R, which can be defined by real interpolation of the spaces
WhP(Q), i.e.

B3,/(©) = [WR(), W (),

for0< 0 <1,1<q<o0,k #ke, and s = (1—6)k;+60ky. For more details regarding
Besov spaces see Bergh, Lofstrom [BL76] and Triebel [Tri78]. We write B 4, (€2) for
the set of functions f € B;(€2) with divf = 0 (in the sense of distributions).
We say u,7 is a weak solution of (4.4) if and only if u € C(I,L3(Q)), u €
L2(I,W,2(Q), m € L*(I, L*(Q)), and (4.4) is satisfied in the sense of distributions.

The following lemma proves existence of weak solutions.

LEMMA 4.1. Let ug € L}, (), G € L*(I, L*(Q;R™?)), and let T be as de-
scribed above with ellipticity constants v1,7vs. Let G™ denote the symmetric part,
ie. GY™ = 1(G + GY), and G™ the antisymmetric part of G, i.e. , i.e. G™ =
5(G — GT). Then for alle > 0 there exists a unique weak solution u,m of (4.4) with

HUH%(I,L?(Q)) + (1—/~L)’71HDUH%2(I,L2(Q))
(4.5) < %HGSymH%m,L?(Q)) + iHGamHi%LLZ(Q)) + Cugll3,

- TR
71||V11||%2(1,L2(Q)) < %HGH%Q(I,L?(Q)) + C [luglf3,

for all n > 0 where C' does not depend on €, p nor 1. Further there holds u €
C(1, L§(©2)).
Moreover, if e =0 or T =y Id™™, i.e. Tigpm = %(5jk,lm + Oikmi), then

(4.6) Iz < C (201G a2y + 2ol

with constants independent of € and T. (if € # 0 and T # v Id™™ we only prove
€ L3I, LE(Q)) without a norm estimate that is dependent on €.)

PROOF. Let us first assume that v, = 1. Later we will see that the general case
follows from the case 75 = 1 by a scaling argument in time.

Case 75 = 1,6 = 0: Let S denote the Stokes operator, then there exists (see
[MNRR96]) a countable set {w"} of eigenfunctions with corresponding eigenvalues
A, which is orthonormal with respect to the L?(Q) scalar product. Define Xy by
Xy = span{w!, ..., w"}. Let us recall that we are only looking for (space periodic)
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solutions with mean value zero. So the w” all fulfill (w",1) = 0. Define PMu :=
Zi\;(u, w"w", then

A W) = (W Sw") = (Vu, Vw")

and the PN : W§* — (Xy,|||ls2) are uniformly continuous for all 0 < s < 2.
(See [MNRRI6] for a proof.)

Let us define u™(t,z) = 2N | eV (t)w”(z), where the coefficients ¢V (t) solve the
Galerkin system (for all 1 <r < N)
{

<8tuN,wT> +(TDu”,Dw") = (G, Vw"),
(4.7) N N
u" (0) = P uy.
Since the matrix (w;, wy) with j,k =1, ..., N is positive definite, this can be rewritten

as a system of ordinary differential equations. This in turn fulfills the Carathéodory
conditions and is therefore solvable locally in time, i.e. on a small time interval
I* =1[0,T*). Since G € L*(I*,L3(Q2)) we have c,0,cY € L*(I*) (norms may de-
pend on N). This implies u”,d,u” € L*(I*, Xy). To ensure solvability for large
times at least for this finite dimensional problem we have to establish a first a priori
estimate.

Since u, 9,u” € L*(I*, Xy), we can test the Galerkin system (4.7) with u” and
get

Ldi|u”|3 + (TDu”,Du) = (G, Vu®)
Thus
3di[[u™[3 + (TDu™, Du") = (G™™, Vu") + (G™, Vu®).
= (G¥ Du®) + (G vu").
The coercivity of T and Young’s inequality implies
sde 0|3+ 1 [DuV < 2o G + 3 [Du” |
+ s |GS + S Va3

for all § > 0. Due to Korn’s inequality there holds ||Vu®|, < C||Du®||,. Thus for
all > 0 there holds

sde[a”]3 + [ Duf; <

(4.8)

271 |

G5 + % Du™|f3

IG5 + 23+ Du” 3.

2’71 |

271#
This implies

de[u™][3 +71(1 = @)D 3 < LIGY™ |3 + S5 G2

Y

Integration over (0,¢) with varying ¢t € I* imphes

S}{PHUNHg + (1= @IIDu |72 120

IN

711||Gsym||%2(1*,L2(Q) + ﬁquGamHL? ) T [
711|’Gsym|’%2(1*,L2(Q)) + ﬁHGam”B(I*,L?(Q)) + [|1PMuglf3

%HGSymH%?(Lm(Q) + 'Y?uHGantlHL?(I,L?(Q)) + C [luglf3.

(4.9)

VARRVAN
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Note that the constants do not depend on N and T*. Since (u’¥,w") = ¢V and
|w"||2 = 1, this implies (independent of N, T*)

(4.10) [N ooy < O, r=1,...,N.

Let to € I* N I, then (4.10) implies that there exists an 7 > 0 (independent of T*),
such that (4.7) has a solution on [tg, to + 7) with initial value ¢V (¢y). Iteration of this
argument implies that (4.7) is solvable on the whole interval I. As a consequence we
can replace I* by I before intgrating over the time interval. This proves that the a
priori estimates (4.9) remain valid if I* is replaced by I, i.e.

SUPHUNH% +7(l - N’)HDuN”%Q(I,Lz(Q))
(4.11) I

> 711 ||GsymHL2 (1,2Q) T wcHHGanm”m rr2@) T Clluol3

with constants independent of 7. With Korn’s inequality and the special choice u = %
there follows

(4.12) YV L2 20y < NG L20r 220) + Clluoll3-

Thus there exists a subsequence (still denoted by u¥) and a function u, such that
(4.13) u’ S u in L>(1,L*(Q)),

(4.14) Vu" — Vu in L2(I, L3(2)).

Since the eigenfunctions {w"} are orthonormal, the operator PV is an orthogonal, self-
adjoint projection with respect to the L?*(€) scalar product. Let ¢ € L?(I, W012(Q))
with HSOHL?(I,WOL?(Q)) < 1, then

/<8tuN, p)dt = /(PNatuN, p) dt = /(8tuN,PNgo> dt
T T T

L / —(TDu”,DPY ) + (G, VPN ) dt.
T
Thus (recall v, = 1)

[ o] < (19 a0y + G 200 1Pl g

I
< (IVa™lz2qr,220)) + 1G z22,22000)) C el 2 w22 )
< C(IVa™2ri2) + 1G] 2r,220y)
4.12)
< O (111G a0 + = luoll).
This proves
[0u N”L2I(W12( Q)) — H@tu | (L2(I,W32 ()

(4.15)
<C (qHGHH(I,L? @) T —HUOH )

Thus passing to a subsequence (still denoted by u?) we get
(4.16) ou¥ — ou in L2(I, (Wy2(Q))),
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where we have used that the limit in D(I x )" is unique. Now (4.14) and (4.16) imply
u e L1, Wy*(Q),
du e LI, (W,2(Q))).
Thus by parabolic interpolation
uc C(I, L3()).

Moreover due to (4.14), (4.16), and the lemma of Aubin-Lions (see lemma 8.1) there
exists a subsequence (still denoted by u¥), such that

(4.17) u’ —u in L2(I, (W32 (Q))).
This and (4.16) imply
(4.18) u’ —u in C(I, (W,2())).

Since u™(0) = PNuy — ug in L*(2), we deduce u(0) = uyg, so u has the correct
initial value. Since system (4.7) is linear we further deduce from (4.13), (4.14), (4.16),
(4.17), and (4.18) that

(4.19) (0,w") + (TDu, Dw’) = (G, V")  in D(I)

for all w”. Since divu®” = 0 we also get divu = 0. Furthermore there holds by (4.11),
(4.12), and (4.15)

Sl}PHqu + (1= ) IDulZ2(; 120

(4.20) 1 2 c ti 2 2

< ﬁHGSymHL‘Z(I,L?(Q)) + ﬂHGan 1”L2(I,L2(Q)) + Clluol3,
(4.21) HatuHLQ(I,(WOl’Q(Q))’) <C (%HGHLQ(I,LQ(Q)) + \/%Hut)’b)a
(4.22) 71||V11||2L2(1,L2(Q)) < »y_ClHGH%?(I,L?(Q)) + Clluo 3.

Since |y D(I, Xn) is dense in D(I, Wj{io(ﬂ)) (see MNRR96]) and u satisfies (4.21)
and (4.22) there holds

(4.23) Oru — div(TDu) = divG  in (D(I, W2, ().
Furthermore from (4.21) and (4.22) we deduce
H@tu — le(TDu)HLQ I, wi20)) S C %HGHLQ(I,LQ(Q)) + %HUOHQ .
(L,(Wo (1)) gl Vi
Moreover,
Hle GHLz(I,(WOI’Q(Q))’) < C HGHLQ(I,LQ(Q)) < ’% HGHLQ(LLQ(Q))'

Thus by the theorem of De Rham and the theorem on negative norms there exists a
pressure m € L*(I, L3(Q2)) with

du — div(TDu) + Vr =divG  in (D(I,Wy*(Q)))’
and
Il 22 e < € (2 1G .z + S llvoll ).

Overall we have shown for 79 = 1 and € = 0 that there exists a weak solution u, 7
with the desired properties. It remains to show uniqueness. Let us assume that v, g
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is another solution to the same problem, then e := u — v and 1 := 7 — ¢ is a weak
solution of

Oe —div(TDe) + V=0 on I x ,
(4.24) dive=0 on I x €,
e(0) =0 on Q.

Since e € L=(I, L3(Q)), Ve € L*(I,L3(?)), and m € L*(I, L(2)), we can use e as
a testfunction. This implies (compare with the derivation of the a priori estimate
above)

%dtHeHg + (TDe, De) = 0.

Integration over [0, t] implies for almost all ¢ € [

slle®l: + /(TDe(T),De(T» dr = 3[le(0)] = 0.

Since (TDe(7),De(7)) > ~1||De(7)||3 > 0 this implies € = 0. This concludes the
proof for v =1, = 0.

Case 75 = 1, > 0: Let us now assume that ¢ > 0. We will proceed very
similar to the case ¢ = 0. The major difference is that we have to use different
eigenfunctions: Let w; be a set of eigenfunctions of the scalar operator —A with
corresponding eigenvalues \;, which is orthonormal with respect to the L?(2) scalar
product. Let Xy := span{wy,...,wy}. Note that by definition (w;,1) = 0 for all
j € N. Define PV : L2(Q) — X u s PYu by

PNu = (Z(uk,wj)wj>kl 77777 K
then
(4.25) Aj{wi, (PMa)i) = (Vw;, V((PYa)y)).

and the projections PN : W2(Q) — W¢*(Q) are uniformly continuous for 0 < s < 2.
Moreover PV is a selfadjoint, orthogonal projection with respect to the L?(Q2) scalar
product. Due to the periodicity UY_; X is dense in any WOS’Q(Q), s € R. We use the
ansatz

N

u¥(t,z) =) al(Hw;(), ™ (t) = LA divuN (¢)

=g
jk=1

with w; = (w;, Jk=1,...a and look for coefficients aé\,i : I — R, such that u? solves the
system

(4.26) O (u™,wj) + (TDuY, Dwyj) + (VA divu", wj) = —(G, Vw;)

for all j € {1,...,N}? and initial condition u™(0) = PYuy. Define M, R, and
Q by Mjs = (wj,ws), Rjs := (TDwj, Dws), and Q;s := —(A~!divwj, divws) for

.....
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with initial data onN(O) = (ug,wj). Note that M, R, and Q are positive definite.
Since especially M is positive definite, the system (4.27) is solvable for small times
I* .= [0,T*] with & € C'([0,T*]). To get existence for large times T we need an
a priori estimate: We multiply (4.27) by (a™)? from the left side, then
%at((aN)TMaT) ( N)TRaN—l—l( N)TQaN
= —(« ) (G, Vw5>)se{1 ..... N}d.

Let 7™ := LA~ divu™. Since

1 N\TAAN _  1/A-13:0 N 13- N\ _ 1, N Ny _ N2

(@) Qo = — (A7 divu,divu’) = —Z(en , eAnT) = e[| VT3,
we can rewrite the estimate for o in terms of u” and 7 as

10|[u™(3 + (TDu",Du®) + | VY[ = —(G, Vu®).

Analogously to the case € = 0 this implies
(428 S}lp”uN”g +n(l— M)HDUNH%Q(I*,LQ(Q)) + 2| Va3
4.28 ’
- ||Gsym||L2 (r.2) T L||G'amm||L2 rr2@) T ¢ ||‘10||§-

- m Y1
The only difference is the extra information about 2¢|| V¥ ||2. As in the case e = 0
this enables us to extend the interval of existence from I* to I and also to transfer
the a priori estimates from I* to I, i.e. there holds
( ) SI}PHUN”g +mn(l— M)HDUNH%Q(I,LQ(Q)) + 25||V7TN||§
4.29
- ||Gsym||L2 (.2) T _HGMU“L2 rr2@) T ¢ ||u0||§.

- n T1ip
with constants independent of ¢ and 7. As in the case ¢ = 0 the estimates (4.29)
immediately imply

(4.30) ’YlHV‘lNH?ﬂ(I,L?(Q) > MHGHLQ(I L2(Q )+CHUOH§-

Since PV is an orthogonal, selfadjoint projection with respect to the L?(Q) scalar
product, there holds for all || 2, w2y <1

/(8tuN,<p) dt = /(PNé)tuN,cm dt = /(@uN,PNc,o} dt
T T T

429 / —(TDu™, DPY @) +(G, VPV )+ L (A  divu”, div PV ) dt.
1
Thus (recall v, = 1)

Je

I
< (X + DIVulze ez + 1G22 @) 1PV @l 2w 2,
< ( 1+% [Vu? 220 + (|Gl 2r,p2 )))CHSOHL?(I,WOLQ(Q))
< C(A+ DIVa®lzzg.camy + 1Glzaz20))
4.30)
<14+ D) (L1G sy + = uall)-
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Contrary to the case ¢ = 0 this estimate depends on % But this fact does not matter
when passing (for a fixed € > 0) to the limit N — oco. Analogously to the case ¢ = 0
it follows that

(4.31)  9(u,w;) + (TDu, Dwj) + H(VA~ divu, wj) = —(G, Vw;) in D'(I)

for all w;. Certainly the estimate for u’¥ and 7 = %A‘l divu® transfer to u and
7= 1A divu, so by (4.29)

HUH%OO(I,L?(Q)) + (1_M)71||Du||%2(I,L2(Q)) +2e ||V7T||2Lz(1,Lg(Q))

< 711||Gsym||%2(1*,L2(Q)) + %HGanti”%?(l*,LQ(Q)) + Clluolf3,

(4.32)

Since UY_; Xy is dense in any Wy (Q) and by the a priori estimates for u", d,u’,
Vu?, which transfer from u” to u, there follows that (4.31) also holds in the space
D(I,(W,?(Q))). (The dependence of the norm on 1 does not matter.) As in the
case ¢ = 0 we further deduce from u™(0) = PYuy — ug in L?(Q2) that u(0) = uy
and that the initial data is continuously assumed in L(Q). Since divu = ¢Ar and
Vu e L*(I, L3()) there also holds 7 € L*(I, L3(2)) (norm may depend on ¢).

Overall we have shown that u, 7 is a weak solution of (4.4), which satisfies (4.5).

Let us now prove uniqueness. Let us assume that v, ¢ is another solution to the
same problem, then e := u — v and 7 := 7™ — ¢ is a weak solution of

oe —div(TDe) + V=0 on I x Q,
(4.33) dive =eAn on I x €,
e(0)=0 on 2.

Since e € L®(I,L%(Q)), Ve € L*(I,L%(Q)), and dive = €An there holds 7 €
L*(I,Wy*(2)). Thus we can test the first equation of (4.33) with e and use

(Vr,e) = —(m,dive) = —(r, An) = ¢| V75
to deduce
3dile[l5 + (TDe, De) + || V|3 = 0.

Integration over [0, t] implies for almost all ¢ € [
t
Hle(t)I + [ (TDe(r). De(r)) + | V()| dr = (o) = 0.
0
Since (TDe(7),De(7)) > v;||De(7)||3 > 0 this implies e = 0, which proves unique-
ness.
It remains to prove (4.6) for the special case T = Id¥™: From (4.4) we deduce in
D'(I x Q)
divdiv G = div(9yu — div(Id*™ Du) + V).
Since
div div(Id®™ Du) = divdiv(Du) = div (:Au + 1 V(divu))
= 1(div(Au) + A(divu)) = A(divu),
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this implies
divdiv G = 9i(divu) — A(divu) + Arw
= e, A — e A% + Arr.
So due to the periodicity and (7,1) =0
(4.34) A~ divdivG = edym — eAT + 7.

Since divu = £Ar (in the distributional sense), u € C(I,L3(Q?)) and divu(0) =
divuy = 0, we have 7(0) = 0.

Since 7 € L*(I, W'?(Q)) and A~ divdiv G € L*(I, L*(Q)), the function 7 (norms
depending on ¢) is an admissible test function. Thus

sdil|m3 + el Vrlfs + [[7]l3 < AT divdiv G|z < C[|Glla|7 ][
< NG5 + 5l
Integration over I yields
7l zer,z2@)) < ClGllr2(z,22(02))

with constants independent of ¢ and 7T'. This proves (4.6).
So far we have proven the lemma for the special case v5 = 1. It remains to check
the case 75 # 1. This will be done by scaling in time: Define

T = ’}/QT,
f:: [0772T]7 €= V2€E,
Y o= Yo :=1,
(4.35) N §a! 71/72 N V2 1
u(t,z) :=u(t/v,x), T(t,x) == gﬂ(t/yg,x),
G(t,z) = ,Y—IZG(t/vg,x), T(t,z) = 7—12T<t/’}/2,$>,
I_Nl() .= Uy,

then u, 7 solves (4.4) with G, T, ug replaced by G, T, uy. Since 7, = 1 we can apply
the calculations above for 75 = 1 to our scaled problem. Recall that the constants
in the a priori estimates did not depend on T" nor . Thus there will be no implicit
dependence of the a priori estimates on 7, via T or £. So we have

HuHLoo(] L2(Q)) + (1 )’}/IHDUHLQ 1,L2(Q))
(4.36) < LG 227 2y + 5l G™ Wz gy + C 1Tl

71”VU||L2 T,12(Q) = $‘|GHL2(I L2(Q)) + CHUOHQ
and additionally for the special case ¢ = 0 or T = % Id¥™, i.e. £€=0 or T = Id%™,
(4.37) 77 200 < © (NG ez iy + = l1T0ls).
This implies
[l Foe 1,220y + (L=)nDallZ2(7 20

%HGsymH%?(],p( 7?# ||Gantl||L2(I,L2(Q)) + C [luglf3,

NIVullZar 2@y < SNGHZ2r L2 + C lluoll3,

(4.38)

VAN
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for all 1+ > 0 and additionally for the special case e = 0 or T = o [d™™

(4.39) ez < C (LEIG 2z + Y2 [uoll2)
This concludes the proof of the lemma (4.1). U

The next lemma provides an L™ (I x ) result.
LEMMA 4.2. Let uy € B;@(Q), (ug,1) = 0, and G € L"(I, L"(;R¥>4)) for a
fized v > 2. Further let T = Id™™. Then for all € > 0 there exists a unique weak
solution u,m of (4.4) such that

[ull
()
IVl @) < C(IGler g + ol oz ),

N

< C(IGlwruLre) + luoll -2

c(1,Br~ ()

()
17l e ,er@)) < CNGHLr,r @),
where C' does not depend on c.

Proor. Case ¢ = 0: Let u, 7 denote the unique solution of lemma 4.1. Then 7
satisfies

Ar = div(—dyu + div(Du) + div G)
= —9y(divu) + 1 (A(divu) + div(Au)) + divdivG
= —0i(divu) + A(divu) + divdiv G
= divdiv G.
So by the L" theory of the Laplacian
|7l zr 2.2y < CIGllLr,zr ),
where C' does not depend on 7. On the other hand by (4.1) u solves
H :=divG — V7 = g;u — div(Du)
= du+ 1Au+ 1V(divu)
= od,u-+ %Au

with initial data u(0) = ug. The L" theory of the heat equation (see Grubb [Gru01]
corollary 2.3 and Grubb [Gru95]| corollary 4.5) now implies

[ull

cus-2ay T V|00

< IR
< ClE w1y + Cllwoll oz o

< C|Gllpra.Lr) + Cllrllor.Lr ) + C |laol| -2
< CGllzrgzr) +C HUOHBi—%(Q)?
which proves the lemma for € = 0.

Case £ > 0: In the proof of lemma 4.1 we have seen that 7 satisfies
(4.40) At divdivG = edym — eAT + 7.

Define g := n|n|"~2. Since eAr = divu and u € L*(I,W,?(Q)), there holds
m € L*(I,Wy*(Q)). Moreover, G € L*(I, L*(2)), so (4.40) implies 8y € L*(I, L3()).
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As a consequence m € C(I, W,2(Q)). If additionally there holds = € C(I,W,"(Q)),
then ¢ is an admissible test function for (4.40). This gives
(O, w|m|"72) + e(Vm, V(r|a|"2) + ||x||7 = (A~ divdiv G, 7|x|"~2).
Note that
(Vo) (V(xla™%)) = (r = DIVr a2,

SO

O |7lly +e(r —1) /IVWIQ\?T!’”_2 dr + |77 < C G, 1]
Q

We integrate over the time, neglect the positive terms involving e, and use 7(0) =
%A‘l divuy = 0 as in lemma 4.1, then

(4.41) 17l e Loy < ClGLr @),

where C' does neither depend on T nor €. If 7 & C(I, W, (R)), then we mollify (4.40)
in space to pass from 7 € C(I,W,;?(Q)) to the desired regularity, do all the calcu-
lations above, and pass to the limit in the last inequality. Thus we have proven the
desired regularity of 7 so far. Moreover, we deduce from (4.40)

(4.42) g0y — eAr = A7t divdivG — m =: K.
We have already shown that K € L"(1, L"(€2)) with
IK||zrz,r @) < CNGllzri,zr@)) + |7l ror@) < CNGl|r,r@))-

The L" theory of the heat equation (see Grubb [Gru01] corollary 2.3 and Grubb
[Gru95] corollary 4.5) now implies

(4.43) ellmll rawer ) < CIGllzra,cr@))-
On the other hand by (4.1) u solves
du — 1Au = 9,u — div(Du) + 5V (divu)
(4.44) = Oyu — div(Du) + 5§V (A7)
=divG — V7 + 5V(Am).
Due to the regularity of G, (4.41), and (4.43) we have
|div G — V7 + SV (A7) | raw-1r@)) < ClGllzr,zr@))-

The L" theory of the heat equation (see Grubb [Gru01] corollary 2.3 and Grubb
[Gru95] corollary 4.5) applied to (4.44) now implies

||u||C(I,Bi7%(Q)) TVl
S C ||leG —Vr+ %V(AW)"LT(IJ/I]*I,T(Q)) + C ”LIOHBl,%(Q)
< r r .
< ClGleaor@) + C ol -z
This proves the lemma for € > 0. 0

The next corollary will combines the strength of lemma 4.1 and lemma 4.2 to
optimize the continuity constants in 4.2:
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_2
COROLLARY 4.3. Letr>2, ug€ Bidi;(Q), (g, 1)=0, and G € L"(I, L™ (Q; R¥*4)).
Further let T = 1d™™. Then there exists K > 1, such that for all € > 0 there exists a
unique weak solution w,m of (4.4) with

C(1,B.
s—2

< K2

(=

@) + gz |G e oo + C ”uOHBig(Q»)’

s

=2 sym
< K% (e

C anti . .
Lo (1L () T \/ﬁHG |l Lo(r,Lo)) + C ||110HB;_2(Q))>,
I7llerior) < ClIGlr @@y,
forall2<s<randall0<p<1.

PRrROOF. Note that lemma 4.1 and lemma 4.2 show that for all 4 with 0 < p < 1
there holds

||u||C(I,L2(Q))
S NGz a2 + G @y + C uolle,
IDu|z2(7,r2(0))

< 715 (167 lezqr o) + GG Nz + C ol
and
1o -2

< HGSymHLr(LLr(Q)) + %HGantiHLr(LLT(Q)) +C HuOHBk%(Q))?

DUl (1,7 @)

1 sym C nti
< V5w (HG Y ||LT(I,L’“(Q)) + \/_ﬁHGa ’ ||LT(LLT(Q)) +C ||uo||Bi%(Q))>

Thus the interpolation theorem of Riesz—Thorin immediately proves the estimates for
u and Du. The estimate for the pressure 7 follows directly from lemma 4.2. This
concludes the proof of the corollary. O

Let us now consider the general case with T # Id™™.

_2
LEMMA 44. Let 7 > 2, ug € B, (Q), G € L'(I, L"(R)), (u,1) = 0,
and let T be as described above with ellipticity constants v,,7v.. Then there exists a
constant k > 0 (independent of 1 and 7y3), such that for all s with

2§s§min{r,2+/@ﬁ}

V2



2. STOKES FLOW — WEAK SOLUTIONS 49

and all € > 0 there exists a unique weak solution u,m of (4.4), such that

Vazllull, oz g < S (167 e
_i__HG-antl‘L.s IL.s +C\/%H 0” ls(Q))
(445) HDu Ls(I,L5(Q)) S % (HGsym Ls(1,L3(Q))

H Gantl |

Ls(I,Ls(Q) T C\/%HUOH -2

IIWIILsu,Ls(n))S%(IIGHLS(LLS vl iz ),

Bs S(Q)))

where the constants do not depend on € nor s.

PRrROOF. The uniqueness and the existence of a weak solution u, 7 follow from
lemma 4.1.

To prove the L estimates let us first assume that 75 = 1, G, T € C*(I x Q),
and uy € C*(Q) with (ug,1) = 0. Later we will show how to get rid of these pre-
assumptions.

For h > 0 let 3h be the discrete partial derivative in direction zy, k € {1,...,d}.
Then v := 9u, p" := 9!'m solves

ov" — div(TDvh) + Vo' = div(9}G + (0l T)Vu) on I x ,
divv" = eAp" on I x 2,
v'(0) = (9fuy) on €.
Thus by lemma 4.1

0rulleq,z2@) + 108l 2wz + 1057l 2,220
< C(10¢Gl 2.2 + 08Tl e rxey IVl 21,2200y + 105 10]|2)
< C(IVGIza.r2@) + VT e rxey [ Vull 2z 20 + [ Vaoll2).-
It follows by h — 0 that
IVullcu,rz@) + 1Vallizawrz@) + VAl 2,20
< C(IVGlz@.L2@) + IV Tl rxa) I Vull 2z ) + [ Vaoll2)
< 00,
which implies u € C'(I, Wy *(Q))NL*(I, W*(Q)), justifying the following calculations.
Let us rewrite (4.4) as
Ou — div(Id¥™ Du) + V7 = div G + div((T — Id¥™)Du) on I x Q,
(4.46) divu = eAn on I x
u(0) = ug on €2,
Since all eigenvalues of T are within [y1,72] = [71, 1], the eigenvalues of T — Id**™ are
within [—1 + 71,0]. Thus
(T~ 10)Du] < (1 —5)[Du]
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Thus
(4.47) (T — Id)Dullze,() < (1 = 7)|[Dul
Let H := G + (T — Id®¥™)Du, then
HY™ .= G¥™ 4 (T — 1d™)Du,
A . qanti

Ls(1,L5(2))-

Applying corollary 4.3 (with its constant K > 1) to (4.46) we get for all s with
2<s<min{r,3} andall 0 < p < 1

s—2
lall iz < K7 (10000
C(I,Bs *(Q)) 7
(4.48) |
+ ﬁHHaanLS(I,LS(Q)) +C ||110||Blg(m)>7
2 sym
" [Dul[zs(1,L50)) < K2 \/11,—M<HH M e ps )
. ) + £‘|Hanti| Lo(1,L*() -|-C’||u0H 2 )
Vi ( B 5 @)/
(4.50) 7l zr 2,y < CIH rz,2r ),

From (4.49), the definition of H, and (4.47) there follows

52 sym
IDul|zsr,20)) < K2 ¢f,—#<|!G psre@) + (T =)Dl LsrLo)

(4.51) Lo
GG v + Clwoll oz )
Fix p:= /2. If s — 27, then
522 1~y 522 1y 1-m M
Viep Ko V1-71/2 V1-m/2 =3

So there ex1sts so > 2, such that for all 2 < s < sq there holds K5 \/_l <1-2

2
and K*5° < 2. For such s we deduce from (4.51)

5=2 sym
FlDulle L) < K2 \/117/2<IIGY lLs(r,0@)

C anti
G o + C ol oz )
<C (HGsym\ LA(1,L5 (@)
C anti
G ey + C ol oz ).
where we have used that K5 < K < (C and — < 2. Thus
-7

||7T||LS(I,LS(Q <C((1+ QC)

2C
@)+ 31l iz )

- '71 (“GHLS ILS + ||u0|| ;*E(Q))
This proves the estimates for Du and 7 but we still have to determine a nice bound

=2
for s in terms of ;. Recall that we require sy to satisfy K o ——2_ < 1 — 2

V1=71/2 27
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which is equivalent to

K 0 < 2
IL—m
Since
(1-3)
1_|_'7_1<72
! L —=m

for all 0 < 7y < 1 it suffices to find sq, such that

E]

Ks <14+ —
0 —|—4

Let f(s):= K5, then f(2) = 1. Furthermore f is Lipschitz on [2,00), i.e. |f'(s)| =
In(K)K*5" 2| < In(K )&. Since K > 1 the function f is monotonously increasing.
So for all s > 2

In(K)K

f(s) <14+ (s—2) 5

Let k := and sg := 2 + k7, then for all s with 2 < s < sy there holds

21n(K)K

:ﬂ><f<><ruo—m“?K
_1_’_,}/ () _1+71

This proves the correct choice of sy and . So we have proven (note v = 1) that (4.51)
holds for all s with

N : 1
4.52 2 2 — th kK = ————
(4.52) <s< —1—/172 with & T(KIEK

1.e.

|Du

Ls(I, Ls(Q)) <~ ’71 (HG ym

_C anti . .
+ﬁ||G | 2o (1,050 + C |Juo]| ;S(Q))

Le(1,L2())

For such s there follows from (4.48), p = /2, K5 < K < C, and (4.51)

ll, oz, <C(IG™™
C(,Bs *(V)

Ls(I,L5(Q) T (1 —)[/Dul Ls(1,L5())

G anti

+ NG oy + €l oz )

<< (jGm

anti
el v + Clluoll oz ).

Le(1,L5 ()

This proves the missing estimate for u. Overall we have proven the lemma for v = 1,
G, TeC®I xQ),and ug € C*°(Q). If 75 =1 and G, T, uy are not smooth, choose



52 4. 2D FLOW — PRESSURE STABILIZATION
G", T", uj smooth, such that

G"— G in L"(I,L"(Q)),
T™ —-T a.e. in I x €,

*

™ 5T  in L xQ),

2

u; — g in B, "(Q),
and for all B € R4xd

|G |zr .o < 2|GlLr L@y,

o <
52, < 20l

W[BY <Y T 1 BikBin < 72| B,
jk,m

where T" has the same symmetry properties as T. Let u”, 7" be the solutions of
o — div(T"Du") + V" =divG" on I x Q,
divu" =eAn"  on [ x ,
u"(0) = ug on 2.

Then u™, 7" satisfy (4.45) with T, G, ug replaced by T", G™, uj. Since (4.45) is robust
under the limit n — oo, this proves that (4.45) holds for u,7. This concludes the
proof of lemma 4.4 for 75 = 1. The arbitrary case 7, # 1 can be deduced from the
case 7y, by the transformation (4.35) (scaling in time). This proves the lemma. [

REMARK 4.5. Note that it is not necessary for the right-hand side of (4.4) to
have the form div G with G € L"(I, L"(Q,R™%)). It is also possible to admit £ with
fe L"(I, (W' (Q))) as a right-hand side. This can be done by the following procedure.
Let v be the solution of —Av = f and define G := —=Vv. SodivG = —Av =f and
there holds

1G L) < CIEll vt @y

But by using f rather than G we cannot distinguish between G™ and G* anymore.
Thus the estimates for u,Du, 7 read as follows

c V2
VIl it o < 75 Bl + O ol oz ).

L (LWL (Q))) JFOQHUOH 13(9)),

LSI(WISQ) +\/%H 0” SI_E(Q))

< 072 (H

Hﬂ- - N

Le(I,L5(2))
Let us also make a little remark on the stationary case, which is a lot easier than
the parabolic one. Consider the system

—div(TDu) + Vr =divG on Q,

(454) divu=¢e¢Ar on Q,

with the same T is as above. Then the following lemma holds.
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LEMMA 4.6. Let r > 2, G € L"(Q;R¥>?), and let T be as described above. Then
there exists a constant k > 0 (independent of v1 and ~y,), such that for all s with

2§s§min{r,2+/€ﬂ}
Y2

and all € > 0 there exists a unique weak solution u,m of (4.54), such that

Dl

C
L) < \/\Qg 1G]

L3(9)
c
7)) < 2 NGllLe(@),
where the constants do not depend on €, v1, V2, and s.

PROOF. The proof of this result is just like the one of lemma 4.2 and corol-
lary 4.3. It is based on the stationary versions of the intermediate results of lemma 4.1,
lemma 4.2, corollary 4.3, and lemma 4.4. The proof is far simpler, since instead of
referring to the heat equation, we can immediately apply the theory of the Laplacian
equation. The modifications due to € > 0 do not differ from the parabolic case treated
above. To pass from v = 1 to 79 # 1 we use the scaling

€ = 26,
Y= m/72 Yo =1,
(4.55) fi(z) = u(z), #(2) = Lr(a),
G(x) == LG(y0,2), T(x) = LT(s,2),
which differs slightly from the scaling in the parabolic case. 0

REMARK 4.7. Note that, as in the parabolic case, it is not necessary in lemma 4.6
for the right-hand side of (4.54) to have the form divG with G € L"(Q,R¥>9). It
is also possible to admit £ with £ € (W,"(Q)) as a right-hand side. (Compare with
remark 4.5).

3. Shear Dependent Flow — Strong Solutions

As a further intermediate step to the C1*(I x Q) regularity of the systems (4.1),
(4.2), and (4.3) we will now examine suitable approximations of these systems. Espe-
cially we will replace the extra stress S in these systems by its A-approximation S4.
We will see that these approximated systems have strong solutions. Hereby we re-
fer to the term strong solution as a weak solution u, 7 which additionally satisfies
u e Li(I,W*2(Q)) for some 1 < g < oo and dyu € L=(I, L*(2)). We say u,7 is a
weak solution if and only if ue C(I,L2(R2)), Du € LPO(I x Q), = € LPo(I, LgB(Q)),
and u, 7 is a solution in the sense of distributions.

Let us remind that from here to the end of the chapter all considerations are
restricted to the two-space-dimensional case, i.e. d = 2.

Instead of examining both versions of pressure stabilization at the same time, we
will begin with the system

Ju —div(S(Du)) + ((u —eVrm) - V)u+ Vr =f on I xQ,
(4.56) divu=ecAnm on [ x Q,
u(0) =uy on .
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Note that this already includes the non—pressure stabilized case. Later on we will
sketch how to proceed if the convective term is replaced by (u-V)u+ 3(divu)u. But
first, we will prove existence of strong solutions of the following approximated system

du — div(S*(Du)) + (0 —eVr) - V)u+ Vr =f on I xQ,
(4.57) divu=¢eAm on I xQ,
u(0) =ug on .

LEMMA 4.8. Let p : Q — (1,2] be uniformly Lipschitz continuous, i.e. p €
Whoo(I x Q), with 1 < pe < po < 2. Let S be induced by a p—potential F,®, which
additionally satisfies (3.27). Let ug € W22(Q)NWy*(Q) and f € L*(I,Wy*(Q)) and
of € L*(I,L(Q)). Then there exists a constant eg > 0, such that for all A > 1 and
all € with 0 < ¢ < g the approzimated system (4.57) has a weak solution u, 74 with

IV U oo 1. r20)) + 1000 | Lo (12200 < C,
(4.58) I1Zo” (u) |y + [T (@) 2y < C,

||uA||C(I,W1’2Poo(Q)) < C,

where C does not depend on A. (Especially u, 74 is a strong solution of (4.57).)

PROOF. Asin lemma 4.1 we will prove existence by means of the Galerkin method
distinguishing the cases ¢ = 0 and ¢ > 0. Again we start with the case ¢ = 0. For the
sake of readability we will omit the index A of the functions u® and 74,

Case ¢ = 0: Let {w"} denote the set consisting of eigenfunctions of the Stokes
operator S. Let A, be the corresponding eigenvalues and define Xy by Xy =
span{w?!, ..., w"}. Let us recall that we are only looking for (space periodic) solutions
with mean value zero. So the w” all fulfill (w", 1) = 0. Define PNu = ny:lm, whw'.
Then

A (u, Wy = (u, Sw") = (Vu®, Vw')

and the PN : W5* — (X, ||-|ls2) are uniformly continuous for all 0 < s < 2.
(See [MNRR96] for a proof.)
Let us define u¥(t,z) = 27]«\[:1 cN(t)w"(z) and £ = PNf, where the coefficients

cN(t) solve the Galerkin system (for all 1 <r < N)
(O, w") + (SA(DU"Y)), Dw") + (0" - V)u",w") = (f¥,w"),

(4.59) u¥(0) = PNy,

Since the matrix (w;, wg) with j,k = 1,..., N is positive definite, this can be rewritten
as a system of ordinary differential equations. This in turn fulfills the Carathéodory
conditions and is therefore solvable locally in time, i.e. on a small time interval I* =
[0,7%). Since f,0,f € L*(I*,L3(2)), ¥ = PNf, and 9,fY = PY(9,f), we have
N, 0N € L*(I*, Xy), which implies 9;c, 0?cY € L*(I*) (norms may depend on N).
This implies u”,9,u™,0?2u” € L*(I*, Xy). To ensure solvability for large times at
least for this finite dimensional problem we have to establish a first a priori estimate.

Since u™¥, 9,u, ?u € L*(I*, Xy), we can test the Galerkin system (4.59) with
u? and get

s[5 + (S (Du), Du’) = (£, u").
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Note that {(u¥ - V)u®,u®) = 0 due to divu® = 0. The coercivity of S* implies
sdefu™3 + AP DU 3 + [Du |y < V5 + [[u]3 + Q.
By Gronwall’s lemma and ||f||z2(;,r2)) < C

(4.60) %HﬁXHuNHg + //]DuN\p dxdt < C.
0

This implies (independent of 7% with 7% < T')
(1.61) N ey < €.

As a consequence we can iterate Carathéodory’s theorem to push the solvability of
the Galerkin system (4.59) up to any fixed time interval I = [0,7"). (Compare with
the proof lemma 4.1.)

Since inequality (4.60) remains valid for I* replaced by I, there holds (indepen-
dently of N)

0| (1,200 + AP D3 + D] 1oy (1x0y < C.

We got the first a priori estimate by using u” as a test function. To derive our second
a priori estimate we want to use Su’¥ as a test function. The special choice of base
functions w” ensures that we do not leave Xy, the space of admissible test functions:
More explicitly we multiply the r-th equation of the Galerkin system (4.59) by \,.c¥,

use the definition of the w”, A", and sum up over r = 1,..., N to obtain
(9,u™ su) — (SA(Du?),DSu’) — ((uV-V)u",su) = (V¥ vu?).
Due to the space periodicity Sw” = —Aw" for all r, so

Ldy||vu |3 — (S*(Du”),DAuY) — ((uV-V)u", Au") = (VEY, vu®).
Let us simplify the third term on the left-hand side:
(u™ - V)u, —Au) = Z(—ufvﬁiujy, éﬁu;v)

ijk

= (O o), o)) + ) (u),0:(3(0ku))?))
ijk ijk

=00y, gul) = 3 (0, (5(0uy))?))
ijk ijk

= Z(@kufa@-uj.v, Opul), since divu’ = 0.
ijk

Since divu’ = 0 there holds djuY = —dyu). This implies that in our special two

dimensional case we have the following pointwise identity:

> (0ku)) (0 ) (Gpul) = 0.

ijk
In other words, if v is a divergence free function, then Av is in the two dimensional
space periodic case orthogonal to (v - V)v. This observation is quite crucial for the
calculations, since it enables us to test with both u’ and —Au? without having to
control the convective term. As a result we will get existence of a solution for large
times without restrictions to p.. Note that this is not the case for the non—space
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periodic setting, where one has either to restrict oneself to small times or to some
lower bound for p., in order to control the convection. So far we have shown

Ldi|[vu®|3 — (S*(Du"),DAu") = (VY vu®).
Let us simplify the second term on the left-hand side:
(8*(Du), —=DAUY) =) *(9,(S*(Du")),5,Du")

T

= Z <8r((8kl<I>A)(DuN)) s 0,«DkluN>

rkl

= Z <(8ij8kl<I>A)(DuN)8TDijuN, 87.DkluN>

rijkl

+ Z {(9,002)(Du"), 8, Dyu™)
rkl
(3.28),(3.15)

> Ty — © / (DuV P! In(Du)|VDu| da,
Q
where we have used ||[Vpl||o < C. Using (3.49) we get

(S*(Du"), ~DAWY) > 1T, uY) - C / (Du™ P 1n*(Du) da.

This gives
(4.62) L | Va2 + 124 (u) < [(VEY, Wu)| + C [ (Du¥)% In(Du™) .
Let 2 < s < 3, then with (3.51) we deduce
[(Du™)E n(Du)|[; < [[(Du)E ]

< (D)5l (Du™E |

< C|(Du™)E |57 + | (Du)E

< C[|(Du®) |7 + 24| (Du) | + 22| W ((Du™) )

< C|(Du)E |57 + 2¢| (Du)E

+eCZp(uV) + eo/(f)uN)p In? Du” dz.
Q

This proves

4

(D) (D)2 < (D) £+ [[(Bu [ + Zo(ur
< C 4 CO)(DuM)E|| T + Tu(u).
Since 2 < s < 3, we have 4%5 < 4. Thus

(4.63) [(Du™)E In(Du™)|2 < € + C ||V |2]|(Du™)E |2 + Zo(u™).
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Thus (3.51) and (4.62) imply

La|[ W a2 + ¢|[(Du™)E In(Du™) |2 + ¢ ||V ((Du™) %) |[2 + e Zp (u™)
(4.64) < (VEV, vu)| + O + C||[vu 2] (Du¥)E |2

< VN2 + VY |2+ O + C || Va1 Du .

Since |Du () € LY(I), an application of Gronwall’s inequality gives
N

(4.65) 170 sy + [|(Pu)E In(Da™ HW @)

(4.66) HIV (D)) |1 2y + 1T @) 11y < Civ,

where the constant Cy depends on [[fV|| 2wz, [Vud'|2, and T. But since
N = PNf ull = PMuy, the projections PV are uniformly continuous on WOI’Q(Q),
and the norms [[fV|| 27 wi2)) and ||[Vul'||s are finite, we see that Cy is bounded
uniformly with respect to N. Overall uniformly in NV:

Lo IV 132200y + (D)5 (DU 2
+HV((5uN)’

Z)HiQ(I,H(Q)) + HLPA(UN)HU(I) <C.

Thus by lemma 3.14

| /\

2 N2 A (DuM) %
IR / )[(Du”)
1

C

IN

(4.68) Zo* ()| Du|[; " dt

N\

2 po
< C | Zo™ (™)l (1 + VU oo rr2)))” "
< C.

Let us take the time derivative of the Galerkin system (4.59):
(0fu,w") + (981 (D(u™)), Dw’) + (9:((u" - V)u"), w") = (9", w"),

for 1 <7 < N. Since u”,0,u’, 02u” € L*(1, X,,), this makes sense and we can even
test with 9,u’v

5|0 |3 + (9,(S* (D(u"))), aDu’)
HO, (N -W)u), 0u™) = (Y, dpu).
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Once again the second term on the left-hand side gives us a positive term, namely

(0,(S*(Du™)),9,Du™) = > (9,((02*)(Du")), 3, Dyyu™)
ikl
— Z {(0:;j0n®™)(Du™)0,Diju", 9, Diyu’™)
ikl
+3 (002" (Du”), 9, Dyu™)

ikl

e X N
/ )P~L In(Du™)|9,Du”| dz
(3.50)
> 1T / N2 1n?(Du®) dx.
Q

This yields

de]|Opu™ |3 + To () < C (|(0((u”- V)u"), 8, N>|+||8tf||2)

(4.69)
+C |8 |2+ C'||(Du™)? In(Du®

)l

where we have used || O£V ]y = ||[PN(0:f)|]2 < C||0f||2- Due to (4.67) we can control
all but the first term on the right-hand side. Since divu® = 0, we have

[0 ((u™ - V)u™), 0™ = [{((Ou™)- V)u™, ou™)],
where we have used |[{((u’V-V)ou’¥, 9,u”)| = 0. Now (4.67) implies
(4.70) [(0((u™ -V )u), 0u™)| < [V |l]|0u™][F < Ol 0™
Further we conclude from lemma 3.14 that

(471) ||atVUN||ii4 < Cj@A(uN)(]_ + ||VUN||Loo([’L2(Q)))27pOO < qu;.A(uN)
Since 2 < 4 < 5=, we can estimate the convective term from (4.70) as

[(0((u™ - V)u"), ou™)| < C'l|ou™ ]
< oo™+ Csllou™];

<6C' |0 VuNH2 +05]\8tuN]|2
(4.71) N
< 6C T (u™) + Cs|0,u’ 3.
So overall for small (but fixed) § > 0 (4.69) simplifies to

(4.72) d )| 0|2 + 3 Tt (w) < C (|03 + | |13 + Hf)uNH% +1).
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To bound (9,u)(0) let ¢ € L?(Q2) with [|p]]2 < 1, then
[(9a™(0), )] = {0y’ PV )
= |(div$*(Dug")) + (ug" - V)ug' — £(0)", PV¢)|
< [|div 8*(Dug") |2 + || (ug’ - V)uy' [l + [[£(0)™][|2
< [[VSH(Dug) ||z + C uoll3 + [1£(0)™ |2

(3.34),(3.28) N ~ ~ N
< C|[VDuy || + C [[(Duo)’™" In(Du") |2

+C luoll3 2 + I£0)™ ]
< CIVDug' [y + C[Du™ |3 + C'l|uol3 5 + [1£(0)™[|2
< C(luoll2z + [[uoll3  + +lwoll35) + [£(0)]2 < C.

Here we have used that f € L*(I,W?(Q)) and that o,f € L*(I,L*(2)) implies
f e C(I,L*)). Thus [[(G;u™)(0)], < C.
Due to (4.68) and the regularity of f we can apply Gronwall’s inequality to (4.72),

SO
(4.73) HatuNHioo(I,m(Q)) + HJ‘DA(UN)HLI(I) <C
Summarized we have shown the following a priori estimates
(4.74) HVU‘N”%W(I,LZ(Q)) + ||I<I>A<UN>HL1(1) <G
(4.75) ||atuNH%°°(I,L2(Q)) + H~7<I>A(UN>HL1(1) <0,

2. N N

<

(4_76) HV u HL2(I,L4*%OO @) + H@Vu HLz(LLﬁ(Q)) <C.

With the embedding L*(I, Lﬁ(ﬁ)) — L*(I, Lﬁ(ﬁ)) and the interpolation
(L=, (), L1, L75= ()] 2

TFroo
further deduce

(4.77) [V u || p24ree (1x0) < C.

Thus there exists a subsequence (still denoted by u¥) and a function u, such that
(4.78) Vu"¥ = Vu in L>=(I, L*(Q)),

(4.79) ou” = du in L°(1,L*(Q)),

(4.80) v — Vv in L2(I, L7r= (Q)),

(4.81) 8, vu — 9, Vu in L2(I, L7 ().

Since W' rs () —< L) we can use the lemma of Aubin Lions to deduce (for a
subsequence)

vVu" — Vu in L*(I, L*(Q))
and

(4.82) Vu" — Vu a.e. in I x Q.
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From W'(Q) — C(Q) we further deduce
u’ —u in L*(I,C(Q)).
As a consequence of the derived convergences we have
" - v)u" — (u-V)u in LY(I, L*(2)).

It only remains to pass to the limit in the main part, i.e. — div(S#4(Du®)). First
observe that (3.11), (3.36), and (4.77) imply

IS (Du™)|| 24500 (150

< ISMu™)| 24ne (1x0) + 118 = SYDU) || L2rrs (1x0)

(4.83) N _2 N
<C ||(Du )p ||L2+poo(1XQ) + C AP ||Du ||L2+poo([><g)
<C.

On the other hand Du” — Du a.e. in I x ), so

(4.84) S4(Du") — S4(Du) a.e.in I xQ

due to the continuity properties of S# and p. Now Vitali’s theorem, (4.83), and (4.84)
imply
(4.85) S4(Du") — S4(Du) a.e. in LY(I x Q).

We still have to show that the limit function u is a weak solution of the system (4.56).
For this choose w” € Xy and ¢ € C§°(I). Then we can conclude from (4.59), the
convergence properties of u” derived above, and (4.85) that

[ ((omwr) + S Dw). D) + ((u- Vyuw))de = [ olt.w)t.
T T
Furthermore u fulfills (see above)

100ull o= (1, z2() + 1S (D) | p2toe (1) + (- V)]l gz, oy < C.
Since {w!,w?,...} is dense in W32 (), we deduce that
/4,0<<8tu,w> + (S*(D(u)),Dw) + ((u- V)u,w)) dt = /gp(f,w)dt
T T
is fulfilled for all w € ng’io(ﬁ), especially for all w € V;. Note that

(O, w) + (S*(D(u)), Dw) + {(u- V)u,w), (f,w) € L'(1),
(4.86) (01, w) + (S*(D(u)),Dw) + ((u- V)u,w) = (f,w)

for all w € V and a.a. t € I. It remains to show that u(0) = ug. But this follows
from the parabolic embedding

1P 1o — 1 (0)]]2 = [lu™(0) — u(0)]-

1 1
(4.87) < Ci\uN — UHEQ(I,LQ(Q)) [Opu™ — atUHEQ(LL?(Q)l — 0.

-~

~
—0 <C
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Since PMuy — ug in L*(Q) we get u(0) = ug. Overall we have shown by (4.86)
and (4.87) that u satisfies (5.1) in the weak sense. The convergence (4.78) and (4.79)
further ensure that u satisfies

”VUHLOO(I,LQ(Q)) + H@tuHLoo(LLz(Q)) S C

It remains to prove the boundedness of ||I¢A(u)||L1([) and ||j¢A(u)||L1(I). Define
H : T xQ x R x R4 by

H(t,2,y,2) =Y (Oaglx®)(t,2,y) 2ap ik,
Jkof3
then
(a) H >0,
(b) H is measurable in (¢, x) for all y, z,
(c) H is continuous in z and y for almost every (¢,z) € I' x ,
(d) H is convex in z for all y and almost every (t,z) € I' x Q.

Furthermore
A
(488) [0 @) a0y = || HDWS aDu) | |
d

4. To (™) | 1 1o :H H(Du" DN‘ .
(4.89) 1Zo " () |27, ; (Du”, 0;Du’) LLUI'x9)
From (4.80), (4.81), and (4.82) we deduce that

Vi — Vi in L'(I' x Q),

0, vVu" — 9,Vu in LY(I' x Q),

Vu" — Vu in L'(I' x Q).

Thus from the semicontinuity theorem of De Giorgi ([GMS98], pg. 132), (4.67),
(4.73), (4.88), and (4.89) we deduce

(4.90) IZo () 30y + 1707 (@)l 1) <
From (4.77) we further deduce
|Vl L2+ree (1x0) < C.

Hence ||(Du)? ln(ﬁu)\]%Q 1 12(q) < C. From this and lemma 3.12 we deduce

()

HV Du HL2 I,L2(9 "’_”81t Du HLQ(I’LQ <C.
Parabolic interpolation therefore (see theorem 8.21) implies
“(511)%“0([7{/[/%72((2)) - H<ﬁu)g||C(I,[W1»2(Q),L2(Q)}%’2) <C
Thus
H(Du)pTw HC(I,L“(Q)) <C.
Hence Korn’s inequality implies
”uHC(I,WL?poo(Q)) <C

This proves the lemma for € = 0.



62 4. 2D FLOW - PRESSURE STABILIZATION

Case ¢ > (0: Suppose now that € > 0. Instead of repeating all the steps above
for this new situation we will only point out the differences to the case ¢ = 0.

As in the case ¢ = 0 we will prove existence by means of the Galerkin method.
But instead of using the eigenfunctions of the Stokes operator we will proceed as in
lemma 4.1. So let w; be the system of eigenfunctions of the scalar operator —A with
corresponding eigenvalues \;, (w;,1) = 0, Xy = span{wy,...,wy}, and X3 :=
span{w;x : j,k=1,...,N} with wjr := (w;,wr)’. Then the projections defined
by PN : L3(Q) — X3,

N
PNu = Z (u, wik) Wik

Jik=1
have the same continuity properties as in the case ¢ = 0 (compare with lemma 4.1).

We use the ansatz
N

= o (twji(x ™V (t) == 1A divu® (t)

7,k=1

with coefficients o) sk - I — R. Then as in lemma 4.1 we get approximative solutions

u?, 7V of the Galerkm system

& (u™, w,) + (SH(DuV), Vw,) + H{VA divu", w,,)

(4.91) +H((uY = eV - WiuY, w,) = (FY, w,),
u’v(0) = PNu,
forallr,s =1,..., N for small times I* = [0, T*]. But as long as we can derive a priori

estimates for u" (depending on 7' but not on 7*) bounding also the coefficients o,
this existence can be extended to the large time interval [0, 7] (compare the proof of
lemma 4.1). Thus we will only point out how to get this a priori estimate.

Using u" € X% as a test function for the Galerkin system (4.91) we get (compare
lemma 4.1)

sdi[u][3 + (SH(Du"), Du) + ¢ Va3
H (N = vy . Wiu, u) = (¥ ).
Note that
(Y —evraY) . v)u¥ o) =0,

since div(u’¥ —eV7Y) = divu® — eArY = 0. Thus

Ly 3 + ($4(Du®), Du) + £ V|2 = (£, u).
Analogously to the case ¢ = 0 we derive from this

[ 2o (1 220)) + DU 1o 10y + ENVTY (1200 12(0)) < C,

where C' does not depend on T*. This boundedness of [[u® || o7+ r2(q)) implies bound-
edness of ||ays|[Lo(r+) independently of 7, which in turn enables us to extend the time
interval I* to I by retaining the a priori estimates for u”¥ and 7.

The next step differing from the case € = 0 is the testing with —Au’ in order to
derive higher order a priori estimates:



3. SHEAR DEPENDENT FLOW — STRONG SOLUTIONS 63

Using —Au’¥ € X% as a test function for the Galerkin system (4.91) we get
Ldy|[vu |3 — (S*(Du"),DAuY) — H(VA ! divu®, Au")
—(((uN —eva) . W)u, Au) = (VY vul).
Note that due to the space periodicity
—HvA~ diva", Au”) = L||divu |3 = ]| Ar"3.
Hence
3d: Va3 — (SY(Du™), DAUY) + ef| An™ |3
< (VY Vu) + [{((u" = evrY) - v)uV, AuV)|.
Analogously to the case € = 0 (compare (4.64)) we deduce from this
sV + e [ (Du)E In(Du?);
+e ||V ((Du™)3) ||s + cZoA () + ef| A2
< | VEV[5+ O (IDuy) + 1) Va3
+ |<((uN —evaly. V)uN,AuNH.

Different from the case ¢ = 0 the convective term does not vanish and has to be
controlled. Since ||eV?7V||3 < R ||eAnN||3 = C ||divu®|s, it is not difficult to bound
the convective term like

|<((uN — €V7TN) . V)uN, AuN>|

(4.92)

< VY g B
C Va3
s <O (W) + C5(1 4 | Va5

for some constant R > 2. But this would only imply an a priori estimate for small
times, since R > 2 restricts us to apply a local version of Gronwall’s inequality (see
lemma 8.7). In order to derive an a priori estimate for the whole time interval I, we
will have to use the extra information e||Ar?||3,

IN N TN

5, the smallness of € and the special
structure of the convection in two dimensions (space periodic): Note that

(¥ = =va) - V)u¥, Au)
=D (" —evr) - V), oPu?)

=Y {(9u" — 20, va") - V)uV, 9,u")
+TZ<<<uN —eVrY) V)ou”, gu’)

_ i(((@ruN — 20, vaY) - V)uV, o,u")
_sz(div(ufv —eva¥))gu, 9,u)

= (0" —e0,vrY) - W)ut, o).
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Let vV :=u" — V7", then

(uY = vy - w)u™, Au") =D (@0,v" - V)u™, 9,u")

r

- Z/<8TU§V>(ajukN)<arukN) dx.

Jkr Q

In the proof for ¢ = 0 we have seen that divv¥ = 0 implies in our special two
dimensional setting

S @) @) B0 = 0

Jkr
Thus
(Y —evrY) . v)u®, Au)

=3 @)@ 0 OO0

jkr Q

=3 [ @)@, — DO + G OO — )

jkr &
Hence with u?¥ — v¥ = eVr" we get
Vvl < [[Va]], + e Val, < [Va®|, + Cldivu™]|, < C[[Vu™],
for all 1 < r < co. There follows for r > pi%
(0" = evaY) - V)u™, Au")|

Z/(@rvjv)(sajﬁkwjv)(&uk ) + (9,05 (0,020,057 ) da
Jkr g

< e CIVP TN VYV [al| Vuls + e C V2™ o[ Vv Y13
<OV |o[Va®|}

<

r—4 _r_
< e OV o[ Va7 [ V|
< 2O A o a5 Va7

—2p Poo (r—4)
< || Vua|Pe 4+ Cs(e | AN |5 )WHVUNHFT Spoo—T

2poo(r—4)

< SV |+ 5 ATV 3 + (e AN |ly) s [ Wu |
Since e||ArV ], < C'||divul¥ |y < C'||[Vu||z, this implies
{(uY —evr™) - V)u", Au)|

2(pooT—4poc+T)

< 8| Vul (P> 4 e ATV + eCs || Vu || P
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Fix r = p4p =7 > by , then
(0™ —eva? )-V)u ,Au™)|

8
<O Vu[Pr. + SIATY]S +eCsl[Vut 3=

Poo—1
<60 Du |5+ slATY3 2G|V
< 6C [|(Du") H T 5l AN 3+ | a5

< 6C|| v ((Du” >§ !!2 +6C | (Du)E [} + 517" 3 + <Coll Va5
So with (4.92) and the estimate ||V |, < C||V£||2, we get
L | Va3 + ¢ || (Du™)E In(Du) |,
(4.93) 4| V((DuM)?)|[; + cZoA (uV) + 5[ ATV2
< CIVEN [+ O (1Dulyy + 1) [V} 4+ =C [T 57
Since || Vf]L2(r,c20)) + DU |pa)(1xa) < C, there exists by lemma 8.8 a constant
go > 0, such that if € suitable small, i.e. 0 < e < g¢, then

= P = 2
HVUN”%OO(I,L?(Q)) + ||(D‘1N)2 111(D11N)HL2(LL2(Q))

~ p
+HV((D11N) + %HATNH%Q(I,LQ(Q)) < C.

2) HiQ(I,LQ(Q)) +c HI‘I’A(UN

Mz

This proves that, when testing with —Au’ in the case 0 < £ < gy, we get the same
a priori estimate as for € = 0.

It remains to show how to obtain (4.73) for 0 < ¢ < ¢g. The only difference to the
case € = () is that we get the extra information ¢||9;Vr||3 and have to control

O((uY —eva) - v)u?), o,u).
Since div(u" —eV7Y) =0, we get
O,((0Y —evaY) - W)u), 0,u™) = (((Ou™ — 0, VaYN) - V)ul, 9,ulY)
< Va2 0™ — 0,V ||4]| 0™ .
Further div(du) = eA(9;7"), so |e, V|, < C||9;u?]|4 and
(@((" —eva™) - V)uh),0u") < C[|[Vu |2 ou™|.

From this point forth all calculations for ¢ = 0 also hold for 0 < & < g¢. This proves
the statement. 0

LEMMA 4.9. Lemma 4.8 remains valid if ((u* — eVz?) - V)u? is replaced by
(u? - V)ut + 1(divu?)u?.

PROOF. If ¢ = 0, then divu® = 0, so the two versions of the convective term do
agree and there is nothing to show. If € > 0, then we will prove that we can derive the
same a priori estimates for the system with (u?- V)u®+ 1 (divu®)u” as we have done
for the one with ((u? — eV74) - V)u? in lemma 4.8. Based on this everything else
will be just as in the proof of lemma 4.8, so we focus on the three a priori estimates.
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Note that the Galerkin system corresponding to the modified system is
dy(u, w,s) + (SHDuY), Vw,,) + LvA~tdive", w,,)

(4.94) (@ - w)u" + L(divuM)u, w,,) = (Y, w,,),
u¥(0) = PMuy
for all ;s = 1,..., N. When we use u’¥ € X% as a test function, then the convective
term gives
(0™ V)u" + L(divu®) Z/ (Bjup Jup + 3(0; u; Mulup du

> / @ el — S Oyl da
ik 9
= 0.

Thus exactly as in lemma 4.8 the convective part tested with u’¥ vanishes. Hence in
analogy we get

HUNHLOO(I,H(Q)) + HDUNHLP<‘)(I><Q) <C.

When we use —Au € X2 as a test function for the Galerkin system the calcula-
tions are more complicated. Note that

(uV - W), —Au)

:—Z/ (Oul ) (O%ul) da

Jkr Q

—Z/ )0 ) (Ou) + ¥ (80,4 )(D,ul) da

Jkr Q

= Z/ )(Ojup ) (Bruy ) + Ful 0 ((8ruy )?) dax

jkr 0

- Z/ )Qu ) (Oruy) — 5(0u)) (Oyuy ) da

jer
—Z/au (Qjup ) (Opuy)) — 2(divu™)|Vu™|?dz.
jer

So the convective term tested with Au’v reads

(V- V)u" + (divaV)u", —Au®)

—Z/ M (0,u ) (Oud ) da
(495) Jkr Q

— %/(diqu)|VuN\2da; — %((diqu)uN,AuN>.

Q
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Let vV := u" — eV 7" then divv" = 0. So as in lemma 4.8 (two-dimensional, space
periodic!)

S (@)@ )0d) = 0.

Jkr
Thus
> (@) O ) (D)
jkr
= D@05 (0ruy) = (0,07) (0500 ) (Do)
Jkr
|37 0,0, @) 00 + (0,0 ) 0,00 )0,
jkr
+ (8TU§V)(ajU]]€V)(68Tak7TN) .
Choose r := % as in lemma 4.8, then by eéArY = divu" we have ||vV|, <

[u™]], + [V, < C[[Va¥], and

> [ @)@ o) de - 4 [ e vu s

Jkr 0 Q

<

3 / O ) (Ol ) (Bl d

jkr Q

+ %/(EAWN”VUN’ZCZZ'

—4

< ClleVi Y [of[ V[l [ a2

But this expression can be controlled for small €, i.e. 0 < ¢ < gy as we have seen in
lemma 4.8. So from (4.95) and the estimate above we conclude that from the original
expression

(W™ V)u" + i(divu™)u”, —Au")
we have only left to control
H{(divu™)u™, —Au").
This will be done as follows:
[((diva™)u™, —Au")|
< /|6V27TN||uN||AuN\ dx
Q
< (5/(l3uN)p_2|V2uN|2 dx + C;s /(l~)u]\[)2_p|5V27rN|2|uN|2 dx
Q Q
< 5C T (uY) + O / (D222 Plu 2 de

Q
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Then

‘((diqu)uN —AuNﬂ — iZ A(uN)

< C(DuP | o (e VP a | [l
<O(1+ HVuNW e Vin Nn? [u™|%
<O+ || vu|,) 7 e v ANy uev2 N [V
< C(1+ || Vu¥[ )" eV flofldiv |2 [l
< C(1+ HVuNH )2 p°°\|eA7rNH HVuNH HuNH2
< Jan|E +eC(1+ v |,) HVuN|I2 I
< S1AT S 2O+ [[Tu )" e v e
< glanVI +e 01+ HVuN}W S S e A s )
+3pco
< SIATYE+ O+ || Vul) T Ve,
Poo(39—11psg) e

< SIATYE +e G (1 + [[Vu]l,) vt 4 oe | VatEs Ly

S5poo—T7

poo(39—11poo

< A3 +eCs(1+ || Vua],) =T +éelDu’ B,

B5Poo —7

N2 N Poo (39—11poo) ~ N ;2
< SIATYE+ 2 Cs(1+[[Vut],) =T+ G (Du) sy
Poo (9Poco —

< ARV 42 Cs(1+ [V ],) S e OV (Bu)E I 4 1D .

As in lemma 4.8 we absorb the second term into Zg* (u”). The first term can also be
absorbed by the left-hand side. The last term is in L'(I), while the third term can
be controlled for small £ > 0 with the help of lemma 8.8. Overall we have shown that
the convective term tested with Au” can be controlled. This implies

~ p o~ 2
HVUNH%OO(I,LQ(Q)) + ||(DuN)2 ln(DuN>HL2(I,L2(Q))

=~ Py (12 €
+|V((Du™)2) HL2(I,L2(Q)) +c HI‘1>A(UN>HL1(1) + iHAﬂNH%Q(I,LZ(Q)) <C
It remains to justify the third a priori estimate that was deduced testing the time

derivative of the Galerkin system with d;u’ € X%. In order to do this we need to
control

<at((uN~V)uN+§(divu ), 0 >
= (™) - V)u® 3t M)+ (- v)(9u”), gu”)
%((dlvu )(Ou?), du) + %((dlv@tu yu®, g,u’v)
= {((6,u™) - V)u, 0u) + (( ivo,uM)u®, g.ul).
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The first term can be estimated by C' ||[Vu®||5]|0,u”||3, which can be controlled exactly
as in lemma 4.8. For the second term we have

|((div o,u™)u™, gu™)| = |((0,Ax™)u™, du™)|

< /|€8tV7TNHVuNH8tuN]d:c+/]esatVWNHuNHﬁtVuNMx
Q Q

< 0V 4 V¥ o]0 | —|—/|€3tV7rN||uN||8tVuN| dz
Q

<C ||8tuNH4||VuNH2||8tuN||4 + /|58tV7rN||uNH0tVuN| dzx.
Q

The first term can once again be estimated as in lemma 4.8. The second term can be
controlled analogously to (see above)

/|€V27TNHuNHAuN\ dz,
Q

if we undertake the following substitution within the calculations
eV = 0, vl
Au” — 9, Vu”,
To (u™) — T (u™).
Overall we have proven the last missing a priori estimate:
10 |7 1,20y + H~7<I>A<UN)HL1(I) <C.

With all three a priori estimates as tools, we can now conclude the proof as in
lemma 4.8. O

4. Shear Dependent Stokes Flow — C1%(I x Q) Solutions

We will now get to one of the main results of this chapter. We will show that the
the systems (4.1), (4.2), and (4.3) have strong solutions u, 7 with u € C**(I x Q).
More precisely

THEOREM 4.10. Let p : Q — (1,2] be uniformly Lipschitz continuous, i.e. p €
Whee(I x Q), with % < Poo < po < 2. Let S be induced by a p—potential F, ®, which
additionally satisfies (3.27). Further let ug € Wy*(Q), div(S(Dug)) € W2(Q),
f e C(I,W,%Q), 0f € L2(I,W-15(Q)), and 0,f € L*(I,L§(Q)) for some s > 2,
B > 0. Then there exist constants g > 0, ¢ > 2 and a > 0, such that the system (4.2),
resp. (4.3), has for all ¢ with 0 < e < gy a strong solution u, 7, which satisfies
u e CH(I x Q)N L2(I,W?4Q)) and 7 € L>*(I,W"*(Q)) with norms bounded
independently of ¢.

To prove this result we will proceed similar to Kaplicky, Malek and Stara (see
[KMS97b]), who proved the same result under the conditions € = 0, up = 0, and p
is neither space nor time dependent but is a constant satisfying % <p<L2.

In contrast to [KMS97b] we have included the possibility of non—zero initial
data, since this is quite crucial for the application to numerical analysis. Moreover
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the result above also covers the pressure stabilized setting. Thereby we carefully
pay attention that the norms involved do not depend on ¢ as long as 0 < ¢ < ¢.
So the theorem above provides all the necessary informations regarding regularity to
establish a numerical error analysis for a pressure stabilized time discretization.

The idea of the proof is the following: Instead of (4.2), resp. (4.3), we examine
their A—approximations. According to the last section these systems have a strong
solution u4, 74. From the additional a priori estimates we will deduce that the
convective term can in all calculations be included in the force term f. This enables
us to apply the results of section 2 in order to prove higher regularity for u? and 74.
This information unfortunately depends on the value of A and therefore seems not
handy for the limit A — oo. The key idea is that the A—approximation only modifies
the system where |Du| > A. So by deducing an estimate of the form

1Du|p=(rx0y < CA”

for some 0 < v < 1 (independently of € with 0 < e < ), we see that for sufficiently
large A, i.e. A > Ag there holds

D |1 ey < A

But this means that the A-approximated system agrees for A > Ay with the orig-
inal system, so u?, 74 is a solution to the original system (4.1). Since u?o €
C(I,W?4(Q)) and u?e € CH(I x Q) for some ¢ > 2 and a > 0, this proves the
theorem.

Note that Kaplicky, Malek and Stard [KMS97b] have used a different approxi-
mation, namely the A—approximation with A = (A;,2). Since the A—approximation
differs from the original system for all \; > 0, they have to proceed differently to
conclude from the regularity of the approlximated system to the regularity of the orig-

inal system. They use that the terms A, ? and ||Du*||., are somehow interchangeable
within the estimates (see (3.33)). So they show that the estimates depending on A,
1

(see the estimates below and replace A by A; ? due to remark (3.9)) still hold true if

1
A 2 is replaced by [|ut||pe(rxq). This leads to a chain of inequalities not depending
on \;, which estimate ||Du*||, by itself, but with a power less than one:

IDuY|oe < --- < C+ C || DU,

with 0 < < 1. The finiteness of ||1N)u>‘||<>O then implies the uniform boundedness of

|Du||o with respect to A;. From this information it follows that it is possible to
once again apply the result of section 2 to the A—approximated system with ~; and
~v9 now independent of A\;. As a result Kaplicky, Malek and Stara can extract enough
regularity from u*, namely C(I,W?9(Q)) for some ¢ > 2, which is stable under the
limit A; — 0% and which implies CY*(I x Q) regularity of the limit u. This is the
solution of the original problem with the desired regularity:.

When we compare the conclusions for the A—approximation with the one for the
A-—approximation it seems that in the end the A-approximation is easier to handle:
There is no need for the limit A — oo, it just suffices to pick an Ay large enough. This
implies that there is no need to deduce a priori estimates uniformly in A, i.e. estimates
which are stable under the limit A — oo. For this reason we use the A-approximation
rather than the A-approximation.
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PROOF OF THEOREM 4.10. Let u?, 74 be the solutions of (4.2), resp. (4.3). From
lemma 4.8, resp. 4.9, we know that
A
[0 lewrzrs o)) < C.
This implies
laflcuxe) < C.
As a consequence we get

[(u* - V)u’ + 5(div uhu|| o z2vee () < C,

resp. (using divu® = —eA7?)
I((u* = eVa?) - V)utlo, o oy < C.
In either cases u?, 7 satisfy
ou? — div(S*(Du?)) + vt = g4 on I x
(4.96) divu® = eAr? on I x Q,

u(0) = ug on €,

where g = (u?- V)u + 1 (divu?)u?, resp. g* = ((u*—eVr?)- V)u?. Furthermore
(4.97) g™ e, L2vm () < C.
Taking the 9, derivative of (4.96) implies that (v, p?) := (9,u?,d,74) is a solution
of

Ot —div (V2,,@")(Du”)Dvy) + Vp! = 0,g" on I xQ,
(4.98) divv? = eApt on I x Q,

vA(0) =0,uy on Q,

where 7 = 1,2. On the other hand taking the J; derivative of (4.96) implies that
(WA, u?) = (Otu ,0,m4) is a solution (in the sense of distributions) of

Ow? — div ((V2,,@")(Du?)Dw?) + Vu* = 9,g"  on I xQ,
(4.99) divw? =eAp? on I xQ,
w(0) =9uy  on Q.
We will now show that
10,87 L2poe (1. w1200 () < C,
1087 | L200e (1,w—1.2000 (1)) < C,

which will enable us to apply the theory of section 2 to vZ4 and w#. While the
estimate of 9,g4 is just a consequence of ||g ||C 1,120 (Q)) < C we have to give some
explanation for c%g

Since || Jp” (u?)]| 117y < C, we deduce from lemma 3.13 that

HatvuAHLPOO(I,LPOO(Q)) § ¢ ”atDuAHLPOO(I,LPOO(Q)) <C.

2poo

Hence with Korn’s inequality (for p,, < 2) and the embedding WP (Q) < L3-r (Q2)

(4.100) |0 <C
Lres (ILLT55 (@)
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Together with the estimate ||Gyu?||f(r,r2()) < C (see (4.58)) this implies

||atuA||L2Poo (I,L2po5 (2))-

Let s:= (2ps) = 2p2§°j1, then for all ||¢|

Lo (W (@)
’<3t((uA - V)u?), )|+ [(0((div ut)u?), cp>|
< [{((Ou?) - ¥ A"P>|+\< 1 V) (0, )]
—I—K(div@t ,cp>‘—|—|< divu?) <p>}

Using integration by parts on the second and the third term of the right-hand side we
get

(B - W)ut), )] + [(94((div ut)ut), )|
<3 / 0|Vt o] de + 3 / 9| [u]| Vo] do

S 3 ||8tuA||Loo(1,Lz(Q)) ||VuA||L2poo (I7L2Poo Q)

*(I,L*" ()
+ 3105’ 1o (1,200 [0 |20 (1x) [V | (1,002
<C.

This proves

18: (- 7)) || 2o (10120 () < C,

|0 ((div uA)uA)HLQIJoo(LW—l,QPOO(Q)) <C.
The term [|0;(eVa? - V) u?|| 2000 (1,w-1.2000 (0)) can be estimated in exactly the same
way, if we keep in mind that eAr? = divu®. Thus we have

||atgA||L2poo(]7wfl,2poo(Q)) S C

We have proven so far that the theory of section 2 is applicable to the systems (4.98)
and (4.99). Let us be more precise. From (4.99), (3.32), (3.34), lemma 4.4 and
remark 4.5 if follows that there exists a constant x > 0, such that for all s with
2 < s < min{2pn., 2 + KAP>"2} there holds

A (2=peo
|0 ||C(I’B 2y = C'A,QA2 P )(||8tg | zs(rw-150)) + [[(9ra) (0 )HB;%(Q))'

We still have to prove that ||(6tu)(0)||31,%(m is finite. For this let P be the projection

onto the space of divergence free functions. Due to the space periodic setting we know
that P : Wy(Q) — We?(Q) is continuous for every k > 0. Since P is self adjoint it
follows that P : W~%2(Q) — W~"2(Q) is also continuous for all k > 0. Let § € (0, 1)
and let ¢ with [|¢o||y-s.2() < 1 be arbitrary, then

(0:u(0), @)| = [{0:u(0), Pep)|

= [{div(S(Duy)) + (ug - V)uy — £(0), Pep)|

< ||div(S(Duy))||s.2 + ||(110 - V)wlls2 + [[£(0)]]5,2
< [|div(S(Duy)) 5.2 + C [[uol|3 2 + IF(0)[|5.2

<C.
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2
Thus [[(0u)(0)||wse@y < C. Since WP2(Q) — B, *(Q) if s is close enough to 2,
there exists a constant sp with 2 < sy < 2ps., such that ||(9,u)(0) is uniformly

-2 )
bounded for 2 < s < min{sg, 2 + kAP=>"2}. Overall we have shown that
(4.101) [t . <O AT

C(I,Bs 5()

uniformly for all 2 < s < min{sg, 2+ kAP>"2?} =: s5;. For § € (0,1) define sy :=
2+ (81 — 2)6, then we deduce from (4.101) and (4.58), i.e.

100 || oo 1,220y < C,
by interpolation that

(4.102) |0,u?| 2z <C (A3@re)yzmsimm < (' A20CPe),
C(1,Bsy " ()

2

Since Bi;?(Q) — L®(Q) this implies

(4.103) 10,00 | g 10 () < C AZICP),

for all 0 < 6 < 1. This and the definition of sy imply

(4.104) 18,000 | o150y < C A20CP=)

for all 2 < s <2+ 6 min{sy — 2, kAP>~2}. From (4.98) we deduce for a.a. t € [

—div ((V2,,2")(Dut)Dv) + Vp! = 9,g* — 9,0,u” on Q,
div v = eAp? on {2.

From this, (4.97), (4.103), (3.32), (3.34), and lemma 4.6 we deduce that

(4.105)

HvaHLs(Q) < CA3H0(2—p) 430C2—pe).
Thus for a.a. t € 1
(4.106) |V u?|yrs () < C A3 (1+0)(2=px).

for all 2 < s < 2+ 60 min{sy — 2, k|| Du?|[P=~2} (with a possibly decreased «). Unfor-
tunately this estimate depends on A and is therefore not robust under A — co. But
at least it proves that ||Du?||, is finite. As mentioned before starting this proof we

will now try to replace the role of A by Hﬁu"lﬂw This is possible by using the second
version of (3.32) (not involving the constant A) rather than the first version (involv-
ing A). Doing so in the derivation of (4.101) we will get the alternative restriction

2 < s <2+ 60 min{sy — 2, k| Du||P="2}
instead of
2 <5 <2+ 6 min{sy — 2, KAP>"?}.
And (4.106) will transform to

~ 3 _
(4.107) IV u?[yr.e0) < C||Dut |2 T0E =)
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for all 2 < s < 2+ 6 min{sy — 2, k|| Du?|[r==2}. Using the embedding W*(Q) —
C(€2) for two space dimensions with its appropriate embedding constant (see for ex-
ample Ziemer [Zie89]) we get

~ 3 _
VU]l < C (s — 2) 72| VUt i) < O (s — 2)7 2| Du]|a )
for all 2 < s < 2+ 6 min{sy — 2, | Du?||2="2}. This implies
IDu| <1 + OVl
(1460)(2—poo)

<140 (s =273 D&
-3 —Poo ~ 3 —Poo
:1+Cmax{s02,<n||DuA||oo> B Dut 0

(2 1y(o—
<14 C sy ® [ Dut 3P 4 o Dut ),
Since || Du?||« is finite, this implies for all po, with 1 > (3(1+0)+ 3)(2— px) and
1>3(1+60)(2—pwo)
|Du?|ls < C = C(0).

Since po > 3 we can find 6y € (0,1), such that 1 > (3(1 4 6y) + 1)(2 — pe) and

1> 2(1+609)(2 — poo). This implies
1Dl < C(60) = C.
Now this and (4.107) imply that there exists so > 2 (independent of A) with

~ 3 _
(4.108) VUt i) < Cf|Dut |27 < ¢

We have finally found a powerful estimate, which is still robust under A — oo.
Especially we can pick a subsequence A,, and a function u, such that

Vu' - Vu in L1, Wh2(Q)).

Now we have found a suitable limit function u and are only left to prove that u
solves the original equations (4.2), resp. (4.3). As we have seen in lemma 4.8, resp.
lemma 4.9, the regularity derived for u? is sufficient to justify the limit (of a suitable
subsequence) of most of the involved terms. The limit that needs some attention is

div(S4" (Du?")) — div(S(Du)) in D(I x Q),
which we will prove now: Since W12(Q2) — L>(Q) continuously, we know that
[Du?"|| 0o (rxq) is uniformly bounded for all A by a constant Ay. So by definition of
the A—approximation we have for all A > A,
S4 (Du") = S(Du’").
This means that we only have to justify the limit
div(S(Du?)) — div(S(Du)) in D(I x Q).

But this can be exactly done as in lemma 4.8, resp. lemma 4.9. Overall we have found
a solution u of (4.2), resp. (4.3), which satisfies

| oo (1 w220y < C,

1Bul] <C

(LT (@)
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where we have used (4.100). Hence by Morrey’s embedding theorems there exists
a > 0, such that

lal oo (r,cre )y < C,
1Oeul] | 2 <C.
o (1,1 255 ()

Lemma 2.2 in [JS98] (see appendix) implies that there exists ay > 0 with

[uflcres (1o < C.

From this, [[ullzecrw2s20) < C, and [|0pu|pe(r,r20)) < C it follows easily that
all terms of (4.2), resp. (4 3) apart from V7 are in LOO( L?(2)). Therefore also
Vr € L>®(I, L*(2)). This proves the theorem. O

We have just proved the existence of a strong solution with C*(I x Q) regularity.
It is interesting to observe that this solution is unique within the class of weak solutions
satisfying

[ull oo (1,22(0)) + 1Dl o) (1x ) < C-
More precisely

LEMMA 4.11. Let u, 7 be the solution of theorem 4.10 and let v, p be another weak
solution with

[Vllew.c2@) + 1DV o gxa) < C-
Thenu=v.

Proor. Note that for p constant and ¢ = 0 this result has been proven in
[KMS97b|. The proof is in fact straight forward, but nevertheless we will give a
short sketch of it, since we want to point out once more the importance of the dual
viscosity.

Let e :=u— v and n := m — p, then by chapter 3 section 1

S(Du) — S(Dv) = o(Du, Dv)De.

Note that o(Du, Dv) is well defined, since Du,Dv € LPO)(I x Q). This implies that
e, n is the weak solution of

(4.109) e — div(e(Du,Dv)De) + V1 = h,
(4.110) dive = eAn,
(4.111) e(0) = 0,
where

h=(u-V)u+i(diva)u— (v V)v+ i(divv)v,
resp.

h=((u—eVr) - V)u— ((v—eVn) V)v.



76 4. 2D FLOW - PRESSURE STABILIZATION

We will now estimate (h,e) and show that (h,e) € L'(I). We begin with the first
version of pressure stabilization, i.e. the convective part is given by (u-V)u—i—% (divu)u:
[(h,e)| = |{(e- V)u+ i(dive)u,e) + ((u-V)e+ i(divu)e,e)|
=|{(e- V)u+ 3(dive)u,e)]

< [[ullcroqxo llells-

This (h,e) € L*(I). Let us now estimate the second version of pressure stabilization,
i.e. the convective part is given by ((u —eV7) - V)u:

[(h,e)| = [(((e = eVn) - V)u,e) + ((u—eV7)- Ve e)|

= [{((e —eVn) - V)u,e)|

< [ulleragxe (llellz + e Vallz[lel2)-
For & = 0 this proves that |(h,e)| € L'(I). If £ then from dive = c¢An we know that
el[Vnll2 < Cllell2, so

(b, e)| < Clullcrauxallell3.

Overall we have shown, that for both versions of pressure stabilization and ¢ > 0
there holds |(h,e)| € L'(I) and
(4.112) (h,e)] < C [ulloraeo el

Let us assume that ¢ = 0, then e is an admissible test function for (4.109). (Since
dive = 0 we can omit the pressure.) So for ¢ = 0 we get

(4.112)
%dtHeH% + <U(Du7 DV)De7 De> = <h7 e> < C HuHCI’O‘(IXQ)HeHg'

An application of Gronwall’s inequality proves e = 0.

Let us asume that € > 0. Then due to dive = €An and e € C(I, L*(2)) there
holds = € C(I,W,*(Q)). Thus 7 is an admissible test function for (4.110) and e is
an admissible test function for (4.109). Summing up the resulting equations implies

(4.112)
sdille[2 + (o(Du,Dv)De, De) +¢[| Vil = (h,e) < Cuflcrapxallelf.
An application of Gronwall’s inequality proves e = 0. O

Referring to this lemma we will sometimes only speak of the solution instead of
the weak or the strong solution.

5. Error Estimates and the Dual Problem

Let us recall our original intention. In the beginning we introduced the pressure
stabilization (two versions) in order to approximately solve the system (4.1). The
main advantage hereby is that to solve the pressure stabilized systems we do not need
to use divergence free functions. Actually this kind of stabilization is quite popular
within the field of numerics and is for example used in the Van—Kahn, the Chorin,
and the Chorin—Uzawa scheme (see [Pro97]). The approximated systems are indeed
much handier to solve numerically, since we got rid of the constraint diva = 0. On
the other hand the approximated solutions will not be exact and will differ from the
real solution. So it is certainly very important to know of which order of magnitude
the error due to the pressure stabilization is.
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Let for example v, p be the solution of the non—stabilized system and u, 7 be the
solution of the stabilized system. Further let e := u — v and 7 := 7© — p denote
the error. Then it is important to know how ||e||x depends on ¢ for some Bochner
space X. In the context of the Navier—Stokes equations (2D and 3D) this question
has been answered: The error due to the stabilization is of order e (for special choices
of X). Certainly the norm used for measurement depends on the smoothness of the
data (and the domain).

Since we are studying this stabilization with the purpose of future practical appli-
cation to numerics, we will have some restrictions on the norms ||-||x used. Especially
we are interested in lower order elements for the space discretization. In such a setting
it is only meaningful to measure the error in norms which are related to the natural
energy norms. This is due to the fact that lower order elements do not allow —Ae as
a meaningful test function in the derivation of error estimates. This will restrict us
to the following expressions measuring the error:

T

lel|Le(r,r2()) and </<0'(Du,Dv)De,De> dt)
0

1
2

In the Navier—Stokes case this corresponds to
lellz=(.r2@) and  [[Vellr2,r20)-

So for example A. Prohl proved in [Pro97] for the Navier—Stokes equations that the
error due to pressure stabilization in combination with a time discretization (Van—
Kahn, Chorin and Chorin—Uzawa) satisfies

eflie=(r,2() < C (e + k),
1
HVQHP(I,LQ(Q)) < Cl(e2 + k),

where [2(I), resp. [°°(I), is the discretized version of L*(I), resp. L*(I) with time
steps of size k. Note that the problems of time discretization and pressure stabilization
decouple in the analysis of the error. The point is that the order of the error with
respect to € will immediately transfer to the time discretization. Therefore it suffices
to examine the the error due to the pressure stabilization without any discretization
in time or space. The calculations of A. Prohl are therefore based on the following
estimates (for the time continuous problem)
lell Lo (r,r2(0)) < C'e,

(4.113) .
HVe”Lz(LLz(Q)) S Cez,

Note that it is possible for the Navier—Stokes equation to improve the 2 in the
second estimate to € but this needs higher regularity of u, especially information
about V3u. We certainly need smooth data to obtain this. But in our case, where
the potential depends on an exponent p, the situation is worse. We would need
second derivatives of ® with respect to x, which would require higher smoothness
of p than WH°(I x Q). Since we definitely want to restrict ourselves to the case p €
WL(I x ), we are restricted to information on V?u. Note that in this restricted
setting the estimates (4.113) are optimal for the Navier-Stokes equation (2D and 3D).
The aim of this section is to prove that in 2D these optimal estimates also hold true
for the generalized case of a p—potential. In order to prove this result we have to make
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one more assumption on the p—potential, which is satisfied for our example potentials
of section 3 of chapter 3 as long as p € Wh(I x Q).

ASSUMPTION 4.12. Let F' be the p—potential used, then we assume that there exists
a constant C > 0, such that for allt € I, x € Q2 and R > 0

(4.114) F"(t,z,R) < C.
Under this assumption there holds

THEOREM 4.13. Let p, S, £, ug be as in theorem 4.10, let assumption 4.12 hold,
and let v,p be the solution of (4.1) (in the sense of theorem 4.10). Then for all
solutions w,m of (4.2) (in the sense of theorem 4.10), resp. (4.3), with 0 < € < €q
there holds

(4.115) lel| oo (r,22(0)) < Ce,

(4.116) Vel 22y < Ce?,

where € = u — v and the constants C' do not depend on ¢.
Before proving this theorem we will provide a weaker result.
LEMMA 4.14. Under the conditions of theorem 4.13 there holds

(4.117) el L (.12 < Ce?,

(4.118) IVellr2(r2y < Ce?,

for all 0 < e < gg.

PROOF. Since v, pis the solution of (4.1) and u, 7 is the solution of (4.2), resp. (4.3),
the error e =u — v, n = 7 — p solves

(4.119) ore — div(e(Du,Dv)De) + Vi = h,
(4.120) dive — eAn = cAp,
(4.121) e(0) =0,
where

h=(u-V)u+ i(divu)u— (v-V)v — 3(divv)v,
resp.
h=((u—eVr)-V)u— (v-V)v.

Using e as a test function for (4.119) and 7 as a test function for (4.119) and summing
up implies

Ljlel3 + (o(Du, Dv)De, De) + || Vi = (h,e) — £(Vp, V).
As in lemma 4.11 this implies
L]} + (o(Du, Dv)De, De) + [ Vi
< Cllufleraaxallels +e(Vp, V).
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Hence by [|ul|crexo) < C and Young’s inequality
sdi]lel; + (o(Du,Dv)De, De) + 5[ V1|3
< Clullerexellellz + 511V oll2-
Since ||V p|lr2(1,2()) < C by theorem 4.10, an application of Gronwall’s lemma gives
||e||2Loo(1,L2(Q)) + ”VGH%?(LLQ(Q)) + 5||V77||%2(I,L2(Q)) <Ce.
This proves the lemma. U

This lemma gives a first estimate of the error with respect to a power of . Its
proof is simply based on the energy estimate of the equation of the error. In order to
proof the optimal result, namely theorem 4.13, we need a more subtle method, which
is based on the dual problem of the error equation. But this method is only successful
if the dual problem has a strong solution. We therefore need the following result:

LEMMA 4.15. Let p, S, £, uy be as in theorem 4.10 and let v,p be the solution
of (4.1) and u, 7 be the solution of (4.2), resp. (4.3), for some 0 < € < eg. Then the
backward problem

Ow + div(e(Du,Dv)Dw) + VE+H(w) =g on I X,

(4.122) divw =0 onlxQ,
w(T) =0,

where

(4.123) H(w) = (u- V)w — w(Vu) — s(divu)w + 5V (u-w),

resp.

(4.124) H(w)=((u—eVnm) - V)w —w(V(u—eVn)),

and (w(Vu)); = 37 wpdyug and g € L*(I,L2(Q)) has a weak solution w, €. If
additionally ||g||co.erxq) < K, then

(4.125) [Wllcrsxa) < C,
(4.126) ||WHL2(I,WO2’2(Q)) < Cllgllr2(1,r20),
(4.127) V&2, 220 < Cllglla,c2 )

for some 3 > 0. The constants and 3 can be chosen independently of 0 < e < g.
PROOF. From theorem 4.10 we know that

[lallcrexa) + [l o w2a@) < C,
170l oo (1w 200y < C,
[Vlloraxa) + IVlzerw2a@) < C,
1ol Lo (1120 < €

where the constants do not depend on . This implies the existence of i, ps > 0
independent of ¢ with 0 < e < gg, such that

(4.128) 1 BY™ [ <Y 0k (DU, DV) Bjy B < 112 BY™ [,
Jkim
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From (4.128) and [[u|craxo) < C we deduce (note the linearity of the system) that
there exists a unique weak solution, such that

HW||L2(I,W01’2(Q)) <C,

Wl Lo 1,220 < C,

with constants independent of 0 < & < gy. Further, from the continuity of V2, &
and the Holder continuity of Vu and Av we deduce that o is Holder continuous,
i.e. in C%*(I x Q), where the Holder constant does not depend on e. Hence the
dual problem can be seen as a generalized, instationary Stokes problem with a linear
perturbation H(w). If u, 7 is a solution of (4.2), i.e. H has the form (4.123), then we
see from [|ul|c1.e(rx0)y < C that

H(w)| < C(|Vw|+ |w]) on .
If u, 7 is solution of (4.3) (with € > 0), i.e. H has the form (4.124), then eV7 solves
eVr = VA ldivu.
Thus [[uf/craxo) < C implies |[eV7||crarxq) < C. Therefore also in this case
H(w)| < C(|Vw|+|w|)  on Q.

Overall we see that independently of the dicretization of the convective term (see
system (4.2) and (4.3)) H(w) is a linear perturbation with

[H(w)| < C(IVw]|+ |w]).

So we have to deal with a parabolic system in divergence form with Holder continuous,
uniformly elliptic coefficients o(Du, Dv) with pressure and a weak linear perturbation
H(w). As a result there exists a unique weak solution w,¢ of (4.122). But since
|£]|co.a (I x Q) < C, we can deduce more: The general theory about such systems
implies that w has also Hélder continuous derivatives Vw. (This result is proven as
follows: Freeze the coefficients locally to deduce the desired Holder continuity of Vw,
where W is the solution of the “frozen” system. This implies the existence of estimates
of VW in terms of parabolic Campanato spaces. Since the coefficients o(Du, Dv) are
Holder continuous, these estimates can by comparison with the unfrozen system be
transferred from VW to Vw. This in turn implies the C%?(I x Q) regularity of Vw.
In all these steps the pressure is handled by projecting the localized test functions via
the theorem of Bogovskii to the space of divergence free functions, while preserving
the norms. We refer to W. Schlag [Sch96] who adapted Campanato’s technique from
elliptic systems to parabolic systems and to M. Giaquinta and G. Modica [GM82]
who transfered Campanato’s technique to the stationary Stokes system.) Thus we
have

[Wllcrsrxa) < C.

for some 3 > 0 independently of €.

It remains to prove (4.126) and (4.127). We will do so by choosing the test
function Aw. The calculations are only “formal”, but since the system is linear
in w the calculations are easily justified by mollifying the equation and the test
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function Aw beforehand by some (Friedrich’s) mollifier ¢5 and passing 6 — 07. The
most interesting term when testing with Aw is obviously the main part, i.e.

(div(o(Du,Dv)Dw), Aw)
= Z <8j ajklm(Du, Dv)Dlmw),Gfka>

jklmn
= Z <8n(ajk,lm(Du, DV)DlmW), ﬁnajwk>
jklmn
= Z <(8n0jk,lm)(Du,Dv)Dlmw,Djk.(ﬁnw)>
jklmn
+ Y ((0rs0jtim) (DU, DV)(9, Dy s€) Dy w, Do (9, W) )
Jjklmnrs
+ Y {Ojkim (DU, DV) Dy (9,W), D9, w))
Jklmn
= Kl + K2 + Kg.

From assumption 4.12, inequality (3.28), the representation of V2 & of remark 3.2,
the identity

1

(0,0 35.1m) (D1, DV) = / (0,0;0m®)([C, B].) dz,

0
1

(6r50jkylm)(Du, DV) = /(8r80]k81m<1>)([0, B]z) dZ,

0
and u,v € CY*(I x Q) we deduce that
(0:0jk,im)(Du, Dv)| < C,
| (0y50j14m) (Du, Dv)| < C.
Therefore we can estimate K; and K, by
Ky < C[Vwls|[ V2w
< Cs || Vw|3 4 6| Vw3,
Ky < C[VWllcosrxay | Vel VW]
< O V22 V2wl
< C5||V2e|)5 + 6| V2w]|3.
Further (4.128) and lemma 8.5 imply

M1
K3 > m ZHD(@W)HS > Z||V2W||%

Thus the terms K; and K5 are of lower order compared to the information we get
from Kj. Overall if we test the system (4.122) with Aw and integrate over the time,
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we get

2 2 2
||W||L°<>(I,W01’2(Q)) + ||W||L2(I,W02’2(Q)) < C(HgHLZ(I,Lg(Q))'

This estimate implies that all terms in system (4.122) but the pressure term V7 are
in L*(I, L*(€2)) with norm bounded by C'[|g||2(1,12(a))- So the norm estimate of De
Rahm implies that

IVEl 2,30 < Cllgllizaz2@)-
This completes the proof. [l

Let us remark that it is also possible to derive (4.126) and (4.127) “directly”
(i.e. without the use of Campanato spaces) by using theorem 1.1 of [Sol00]. Therein,
V.A. Solonnikov considers the instationary, generalized Stokes system in the half space

(915 + Ao(%)u 4+ Vr= f,
divu = 0,
where “40(8%) is a matrix—valued elliptic homogenuous second—order differential op-

erator with real coefficients.
Let us get back to the proof of theorem 4.13.

PROOF OF THEOREM 4.13. Due to lemma 4.14 it remains to prove 4.115. Let w
be the solution of the dual problem in lemma 4.15, then there holds

Oyw + div(eg(Du,Dv)Dw) + V¢ + H(w) = g,
(4.129) divw = 0,
w(T) =0,
where
H(w) = (u- V)w — w(Vu) — J(diva)w + V(u-w),
resp.
Hw)=((u—eVnm) - V)w —w(V(u—eVn)).
Further the error e, n solve
oe — div(e(Du,Dv)De) + V) —h = 0,
(4.130) dive — eAn = —cAp,
e(0) =0,
where
h=(u-V)u+i(diva)u— (v V)v — 3(divv)v,
resp.
h=((u—eVr) - V)u— ((v—eVp) - V)v.

In the next step we want to use w as a test function for system (4.130) and e as a
test function for system (4.129). The results will be added and integrated over time.
Now it becomes clear why the dual problem has the special form as chosen: Most of
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the terms will be cancelled out after integration over space and time. For example
H(w) is chosen such that

(h,w) + (H(w),e) = 0,
resp.
(h,w) + (H(w),e) = —¢(Vr - V)u.
So (h,w) + (H(w), e) is either zero or of order £. Additionally we have
(o(Du,Dv)De, Dw) — (¢(Du,Dv)Dw, De) = 0.
Thus we get (if u, 7 is a solution of (4.2))

(g,e) = (Lh.s. of system (4.130), w) + (Lh.s. of system (4.129), e)
= (O,e,w) + (0w, e)
+ (o(Du,Dv)De, Dw) — (o(Du,Dv)Dw, De)
+(Vn,w) +(V¢,e)
+ (h,w) + (H(w), e)
= (Ore,w) + (0w, e) + (V¢ e)
) — (&, dive)
= Oy (e, w) — (£, eAm)
= Oi(e,w) +e(VE, V).

= O {e,w

If resp. u, 7 is a solution of (4.3), we get
(g, e) =0{e,w) +e(VE, V) —e((Vr-V)u,w).

Integration over time implies

/<g, e) dt = e(T) w(T) — &(0) w(0) +¢ /(Vg, Vi) dt,

resp.

/<g,e> it = g/<vg, V) dt — g/<(w Y )u, w) dt

Thus if u, 7 is a solution of (4.2), then

/(g,e) dt < 5‘/(V§, V) dt‘
I I
<ellVE&ll o2 IVl Lo .22 -

The regularity of m, i.e. [V7|l12; 20y < C, and lemma 4.15 imply

(4.131) /<g7e> dt < e Cllgllr2,r30)-
I
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If resp. u, 7 is a solution of (4.3), we get

/(g, e)dt < eC[|VE| 121,120
I
+e C IVl 2,2 IVl coarxoy W2 r2)-

The regularity of u and 7 and lemma 4.15 also imply in this case

/(g,e) dt < eC|gllz2r,L2(0))-
T

Up to now g has been an arbitrary function from L*(1, L§(Q)) with ||g[|co.e(rxa) < C.
We will now fix g := e to gain information from (4.131). This choice is possible since
HuHco,a(IXQ) + HVHCO,Q([XQ) < (' independently of 0 < e < gy3. Thus

”eHim,Lg(Q)) <eC ||9HL2(I,L3(Q))-
So
lell 2,2 < €C.
This proves the theorem. 0

Let us make a final remark on the three dimensional case: We have seen in theo-
rem 4.13 that for two space dimensions we get optimal error estimates in terms of ¢.
These optimal estimates have been derived via the existence of a strong solution to
the suitable dual problem. While it is not difficult to prove that the dual problem has
a weak solution in the 3D-case, we do not know how to prove the existence of strong
solutions. The problem is that when using Aw as a test function, we have to handle
terms of the form

1
//|V3<I>([Du,DV]Z)]|DWHV2eHV2w]dzdx.
Q 0

There seems to be no way to control this term without knowledge of the boundedness
either of Dw or of V2e. But neither of them is at hand in the three dimensional case.
In the 2D-case we have used the Hoélder continuity of Du and Dv to derive Holder
continuity of Dw via the theory of parabolic systems in divergence form with Holder
continuous coefficients. But since there exists no CH*(I x Q) theory in the 3D-case
we cannot argument in the same way. Therefore we do not see a way to prove the
existence of strong solutions for the dual problem in the 3D-case.

Nevertheless at least some error estimates in terms of € also hold true in the 3D-
case. Following on the line of lemma 4.14 (we rather absorb e into ((Du, Dv)De, De)
to avoid the Ch*(I x Q) norm for u), it is easily possible to transfer the results of
lemma 4.14 to the 3D-case. This provides the following estimates

1
(4132) ||e||Loo([’L2(Q)) < 052,
1
(4.133) ”Ve”LQ(I,LQ(Q)) < Cez.

These estimates are not optimal as in the 2D-case but still give some control on the
error. This at least shows that the pressure stabilization is a possible tool also for
three space dimensions.



CHAPTER 5

3D Flow

1. Introduction

In this chapter we will study the instationary p-Navier—Stokes problem in three
space dimensions, i.e.

Ju —div(S(Du)) + (u-V)u+Vr=f, onl xQ,
(5.1) divu=0, onl xQ,
u(0) =ug on .

We will use the same notation as in chapter 4, except that 2 denotes the three
dimensional torus. We assume that the extra stress S is induced by a time and space
dependent p—potential F' and ®, as we have defined in chapter 3. Further we assume
that the exponent p is uniformly Lipschitz continuous, i.e. p € Wh*°(I x Q). As in
chapter 4, we compensate the missing boundary conditions by restricting the solutions
to ones with mean value zero. This ensures that the Poincaré inequality remains valid.

Again we are looking for strong solutions, but other than in the two-dimensional
case we will consider only small times, i.e. T is sufficiently small. Note that even in
the Navier-Stokes case, i.e. —div(S(Du)) is replaced by —Au, it is not known if for
smooth but large data there exists a strong solution for large times. This is even one
of the yet unsolved and high priced Millennium Problems (Refer to Clay Mathematics
Institute).

If poo > 2, excluding the classical Navier—-Stokes problem, the situation is a little
different. So far it has been proven by J. Mélek, J. Necas, M. Rokyta, and M. Ruzicka
in [MINRR96] that for p constant with p > % there exists a unique strong solution
of system (5.1), where Q denotes the three dimensional torus. This result has been
extended by M. Ruzicka in [R11z00] to the case of space and time dependent expo-
nent p € CY(I x Q) with

3(3_P00)
2(5—2poo) *

2 <P <po <

Note that M. Ruzicka examines the case of bounded domains with C3! boundary.
The necessary upper bound of py in terms of p., is due to the not yet fully developed
theory of the generalized Sobolev spaces W#?()(Q). Some techniques that have been
used still require the use of the classical Sobolev spaces, for example embeddings of the
type W1P0)(Q) — Whr=(Q) reduce information and will later enforce upper bounds
for po. But it is probable that with a refined theory on generalized Sobolev spaces
this additional requirement can be dropped.

In the space periodic case M. Ruzicka has proven in [R1z99] that there exists a
strong solution to (5.1) as long as p € C*(I x Q) and

%<poo§p0<poo+%‘

85
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Again the extra condition py < ps + 1 is due to the use of classical Sobolev spaces.
This result is quite satisfactory in the sense that it generalizes the lower bound %
from the case of constant exponent p to the space and time dependent exponent. But
unfortunately the lower bound % is too big for real fluids.

One way to obtain lower bounds for p., is the use of weak solutions. It has been
shown in [MINRR96] for p constant, p > 2, and in [R0z99] for p € C*(I x Q),
% < Poo < Po < Poo + 1, that there exists a weak solution of (5.1) for large times.
The problem is that it is not known if this solution is unique. Furthermore the weak
regularity does not provide a solid basis for the numerical analysis (see chapter 6).

This finally leads us to the search of strong solutions with at least short time exis-
tence. Again there is a result to be found in [MINRR96]. For p constant with p > g
Malek, Necas, Rokyta, and Ruzicka prove short time existence of strong solutions
with

V| oo r,22(0)) + |00l 21,02 (0)) < C,
1Zs ()| 21y < C.

See also [PRO1] by Prohl and Ruzicka, where it has been shown by the same method
that this solution further satisfies

0nul| Lo (1,20 + | To(0) || L1y < C.

Due to lemma 3.12 this implies

(5.2) ||(1N)u)g ||L2(I’W1,2(Q)) + ||3t((lN?u)§) ||L2(I,L2(Q)) S C
The theory of traces of parabolic spaces (see also appendix) implies

(5.3) I(DW)* [l ey < O ll(Dw)| y S C

CIWE2(Q
In this chapter we will extend the result of Mélek, Necas, Rokyta, and Ruzicka with
respect to several aspects, smoothing the way to numerical analysis of electrorheolog-
ical fluids. First of all we will extend the result for p constant to the case of a space
and time dependent exponent p € W1>(Q). The basic principle of electrorheological
fluids lies in the dependence of the extra stress on the electrical field (in the used
model via the exponent p = p(|E|), where E is the electrical field). Therefore admit-
ting a space and time dependent exponent p is of absolute necessity. Secondly we will
lessen the lower bound for p,, from % to % under the condition py < 2. We will do
so by evaluating more a priori estimates than in [MINRR96] before passing to the
limit of the Galerkin system and by applying a local version of Gronwall’s lemma (see
lemma 8.7). This new lower bound provides a big step towards the exponents p of real
fluids. That is to say from the view of application it is desired to cover a preferable
large range of exponents p smaller than 2, for example a physically interesting range is
[1.3,2]. The new proven range [1.4, 2] for the exponent p is therefore of strong interest
with respect to applications. Last but not least we will improve the regularity of the

short time strong solution by the additional estimate

Za(ll spze -
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From this we can deduce by lemma 3.12 and the theory of traces of parabolic spaces
(see also appendix), that

|(Du)? | 2ot dpoe—) < C (Lorentz space),
oL pe 2

Poo )

where L?° denotes the Lorentz space. We further show that within the class of strong
solutions, which meet the same regularity as the proven solution, we additionally have
uniqueness. This is also a new result and has not been known yet.

2. Special Energies

In chapter 3 section 8 we have derived estimates for Zg(u) and Jp(u) for arbitrary
dimension. Now in the three dimensional case, we can establish more specialized
estimates. For the sake of simplicity we will now state some requirements on p and ®
that will be valid throughout this chapter.

ASSUMPTION 5.1. Let Q2 denote the three dimensional torus and I := [0,T] a
time interval. We assume that ® is a space and time dependent p-potential with
p e WL(IxQ) and 1 < ps < po < 2. Note that p will be fived in our considerations.
We will not make use of the constant ||p|lw1.e(rxq) explicitly but rather absorb it into
the generic constant C'. We do the same with the elliptic constants ~y; and . Only
when ps 18 tnvolved, we will state it explicitly.

LEMMA 5.2. For all (sufficiently smooth) u there holds

~ 1 ~ ~ ~
(5.4) n|Dulj,, < C <Iq>(u) + / | Dul? In?(Du) de + |Du|p(.)>.
Q
PROOF. By lemma 3.12 and the embedding W?(Q2) < L5(2) there holds

sl Dull,, = (B < OV (Db + | (D))
<€ (Ta(w) + |Vl [ |Dul1e?(Duw) de) + € 1| Duly
Q

This proves the lemma. U

LEMMA 5.3. For all (sufficiently smooth) w with (u,1) = 0 there holds

(5.5 [l < C (Ta(a) + 1)
(56) 0l < C To(w)F (To(w) +1)

PRrROOF. From lemma 3.14 we deduce
~ 2y
| VD] sese < CZy(w)2[(Du) =" || gue
1 ~ 2—poso
< CZp(u)?|Dull3,2
2_

(1+ |Dullsp) *

< C’I@(u)% (1+C | VDul| s ) goo, since (u, 1) = 0.
Poo+1

N

S CI@(u)
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This implies
|VDu||"s. <C(Zs(u)+1).
Poo+1

Since |[VDu| < 2|V?u| (see lemma 8.5) and (u, 1) = 0, we get
P < C (Zo(u) + 1).

3pco
27Poo+1

Analogously we can use lemma 3.14 to get
|0:Dufl s < C Ta(w)? [ (Du) 2" snoc
< C Jo(w)? | Dully,
< CJa(w)}(1+ |Dulls,.) *
< C Ja(w)* (1+C | VDul| 1s. ) 2 Gince (u,1) = 0

=

(5.5) 1 L 2-pee
< CJp()2 (14 C (Ze(u) + 1)r=) 2

1 2=poo
< CJp(0)2(1+ Zp(u)) 2= .
Now (u, 1) = 0 and Korn’s inequality imply

Poo

2poo
[0vall, e < C 10D 5o < C Ti(w)? (1+ Lo ()
which proves (5.6). The rest is an application of Young’s inequality. O

3
3. The case p,, > 3
In order to solve the system (5.1) we need some regularity for the data. So let us

assume for the rest of the chapter that the data f and ug fulfill:
(5.8) £l oo w200y + 10 (|21, L20) + [Iaollyy22 ) < €.

We will prove the existence of strong solutions by means of Galerkin approximation.
So let {w"} denote the set consisting of eigenvectors of the Stokes operator S. Let A,
be the corresponding eigenvalues and Xy = span{w!, ..., w™}. Let us recall that we
are only looking for (space periodic) solutions with mean value zero. So the w” all
fulfill (w",1) = 0. Define PNu= 3" (u,w"),w”. Then

(5.9) A (u, Wy = (Y, Sw") = (Vu®, Vw')

and the PV : W*? — X are uniformly continuous for all 0 < s < 2. (See  MNRR96]
for a proof.)

Let us define u(t,z) = Zivzl cN(t)w(x) and ¥ = PNf, where the coefficients
cN(t) solve the Galerkin system (for all 1 <r < N)
(0", w") + (S(Du"),Dw") + ((u" - V)u", w") = (f¥, "),
(5.10) N N
u (0) = P u.

Since the matrix (w;, wy) with j,k = 1,..., N is positive definite, this can be rewritten
as a system of ordinary differential equations. This in turn fulfills the Carathéodory
conditions and is therefore solvable locally in time, i.e. on a small time interval
I* = [0,T*). Furthermore, since f € L>®(I*, W'?(Q)) and O,f € L*(I*, L*(Q2)), there
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holds £ = PN € Lo(I*, W22(Q)) and 9, = PN(94f) € L2(I*, L2(2)). This im-
plies ¢, 0,cN,02cN € L*(I*). Thus uV,d,u”,0?u” € L*(I*, Xy). (Note that the

T

norms may depebd on V). To ensure solvability for large times at least for this finite
dimensional problem we have to establish a first a priori estimate.

Since u¥, g,u, ?u € L*(I*, Xy), we can test the Galerkin system (5.10) with
u? and get

L™ + (S(Du¥), Du) = (£, )
Note that ((u? - V)u®™ u¥) = 0 due to divu? = 0. The coercivity of S implies
pel w5 + D) < Y5 + a5

By Gronwall’s lemma and ||f||12(7,r2()) < C
(5.11) %m[%xHuNHg +//]DuN\pda: dt < C.
RV

This implies
e || ey < C, 1<r<N.

As a consequence we can iterate Carathéodory’s theorem to push the solvability of the
Galerkin system (5.10) up to any fixed time interval I = [0,7") as inequality (5.11)
remains valid for I* replaced by I. (Compare with the proof lemma 4.1.) Hence
independently of N there holds

(5.12) 0| poe(r,L2()) + DU || oer 150y < C.

We got the first a priori estimate by using u” as a test function. To derive our second
a priori estimate we want to use Su’¥ as a test function. The special choice of base
functions w” ensures that we do not leave Xy, the space of admissible test functions:
More explicitly we multiply the r-th equation of the Galerkin system (5.10) by A.c,
use the definition of the w”, \", and sum up over r = 1,..., N to obtain

(Ou Su®) — (S(Du?), DSu?) — ((u"¥-V)u®, Su) = (VY vu®).
Due to the space periodicity S = —A, so

1di|[vu™[3 — (S(Du”),DAUY) — ((u"-V)u", Au") = (VI vu).
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Let us simplify the second and third term on the left-hand side:
(0™ - W)ul, —Au) = Z(—uf\[@iujv, dul)

ijk

= (O} o), o)) +> (Y, 0:(3(9ku))?)
ijk ijk

= (O] ou], gu) — Y (9, (3(9u))?))
ijk ijk

= Z(@kufvaiu;v, 8ku§v), since divu =0,
ijk

(S(Du"), ~DAuY) = > (9,(S(Du")),5,Du")

= Z <ar((8qu))(DuN)) s &,DkluN>
rkl
= Z <<8¢jaqu))(DuN)&«DijuN, GerluN>
rijkl
+> {(8,00®)(Du), 8, Dyu™)
rkl

(3.15) ~ _
S @y — ¢ / (Du™ " In(Hu™)|[VDu| dx,
Q

where we have used |[|[Vpl||o < C. Using (3.49) we get

(S(DuY), ~DAWY) > 17, (uV) - C / (Du™y n*(Du) da.
Q
This gives
5 Va3 + $Zo (") < [Vu |+ [(VEY, Vu®)]

(5.13) +C [(Du¥yw(Du)da
Q
<1+ Va|) + [(VEY, Tu)),

where we used py < 2. If pos > L one can show that [[Vu® || < C.[Vu® |, || Vu[3+
eZp(u’) (see [MNRRO6]), which enables us to apply Gronwall’s inequality after
absorbing €Zg(u”) on the left-hand side. This would give us a global estimate. (Note
that we have ||[u™ |, ||z < C, since [u™ |y 1xo < C, both independently of N.) If
Poo > 2, it is still possible to deduce |[Vu[|3 < C.[Vu |, || Vu||F + eZs(u?) for
some constant 1 < R < oo and thereafter to absorb eZg(u) on the left-hand side
and apply a local version of Gronwall’s inequality (see lemma 8.7). Instead of using
Gronwall it is also possible to divide the inequality by (1 + ||[Vu®||s)® as was done
in [MNRR96|) and derive the same local estimates. This in turn implies enough
regularity for u’¥ to justify all the later testing of the Galerkin system with “0,u™”
and “0,uNo,”.
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Nevertheless we will not make use of these facts, since we are also interested in
smaller values of p than g What we do is, we test immediately with “0,u™d,” to get
in addition to (5.13) another estimate. Then we will use the resulting two estimates at
the same time to derive quite strong a priori estimates for u’v for values up to po > 2

2
in this section and up to p > g in the next section.
Let us take the time derivative of the Galerkin system (5.10):

(Ofu™,w") + (3,S(D(uY)),Dw") + (O, ((u" - V)u"),w") = (0", w"),
for 1 <r < N. Since u" € W2?(I, X,,), this makes sense and we can even test with
atuN S W1’2(I, Xn)

3dil|0a™ |13 + (2,(S(D(u"))), 0,Du™)
+H(0((uY-W)u), gu) = (9,£Y, 9,u’™).
Once again the second term on the left-hand side has a sign, namely
(0,(S(Du™)), 9Du") = " (0,((9u®)(Du")), 0, Dyu™)
ikl
= Z <(awaqu)) (DuN)ﬁtDijuN, 8tDkluN>
ikl
+ Z <(8t8kl<b)(DuN), 8tDkluN>

ikl

(3.15) _ ~
> Je(u®) - C /(DuN)f”_1 In(Du™)|9,Du’| dx
Q
(3.50) - -
> 1Jp(uV)-C /(DuN)p In*(Du™) da.
Q

This yields
di[|ou™ (|3 + T (u) < C (|(@:((0"-V)u"), 0u™)| + (9", 0u™)])
(5.14) e /(f)uN)p In?(Du®) dz,
Q

the second inequality to start from. Let us restate the two important inequali-
ties (5.13) and (5.14):

(5.15)  &(|VaV|3) + Zo(u") < C (14 | Vu¥ |3 + [(VEY, vu)),
d; (10u™]3) + Ta(u") < C (|{3:((0™-V)u"), u™)| + (0", du™)])
(5.16) + C’/(ﬁuN)p In?(Du) dz.

By a first view we have gained nothing. We have to control one more bad term,
namely [(9;((u”-V)u), 9,u’")|, but we only got more information about the time
derivative of u". But the critical term ||Vu®||3, which gave the lower bound for p.,
has no time derivatives. The next lemma shows that Jg(u) reveals indeed more
information.
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LEMMA 5.4. Let 1 < g < oo, then
- L~
di(|[Dullf) < ¢ C Jo(w)? (| Dufag—p())
<eJs(u) + Ce|Dulagp()-

(NI

(5.17)

PrOOF. Note that
8,((Du)?) = g(Du)2(Dyu) (8; D).
Hence
(1 Duly) < o [ (Duy0Du] do
Q
= Q/(ﬁu)1722|8tDu| (ﬁu)‘l”g dx

Q
<qCJp(n)? (|1~7“|2qu(~)>§’

where |5u|2q,p(.) = fﬂ(ﬁu)Qq*p dx even if 2g — py < 1. The rest is an implication of
Young’s inequality. 0

This lemma enables us to produce dy([|Vu™[|?) on the left-hand side of (5.16) if

we add C' |l~)uN |2g—p() to the right-hand side. Note that we have now three critical
terms to control, which are

Va5 (@ V), 0u™)], O [DuMzg ).

The first and the second one will be easier to estimate for large ¢, but the third
one for small q. The problem now is to find the optimal choice for q. We start by
examining which values of ¢ are needed for the first and the second term. In the
view of lemma 8.7, which we want to apply later, we will be able to control arbitrary
powers of [[Vu®||Z and ||d;u”]]3. Note that we will skip the index N of u® to keep
the notations simple.

LEMMA 5.5. Let g > %, then there exists a constant Ry > 1, such that
IVl < C|[Vullg? + Zs(u) + .

Proor. If ¢ > 3, then there is nothing to prove. Therefore assume that ¢ < 3.
We can interpolate L?(Q) = [L9(Q), L3P>= ()]s with

1:(1_9)+ 0 = QZ(S_Q)poo’ 1_9:€I(poo_1).
3 q 3poo Spoo_q Spoo_q

Therefore

IVully < [Vl Va3

3poo*
If 30 < poo, there exists an § > 1 such that

IVull§ < Gl Wl + ¢ ulf5

[ee]

< C| vl 4 Ce|| Vulfp

3Poo
271’004—1

< G|Vl 4 eC (Zo(w) + 1+ | V),
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where we have used (5.5). So
||Vu||§ < CEZIIVUH?I_Q)‘S' + e2Z(u) + 2.

We still have to verify 36 < ps, but this is equivalent to

3(3 — ¢)po 9 — 3pso
(B~ @pss _ R P
3poo —dq 2
which holds due to the assumptions on gq. 0

LEMMA 5.6. Let g > 2=22=

, then there exist constants Ry, R3 > 1 such that
((Oru- V)u,00)| < eTa(u) + C-([[0ul5 + | Dulf* +1).

PROOF. Note that lemma 3.14 (¢ — 27;i+q) implies

|oDul| 2 < C Ja(w)? (D) ="|| 20
(5.18) e .
< CJ@(U)EHDqu ’

_ 29 _ 6qg . _ . .

Furthermore W' #57a (Q) < L5073 (Q). Since *=5P= < g is equivalent to _q2_q— <
6q

6—3poctq

we can use the interpolation
2q 6q
La1(Q) = [L*(Q), L5373l

Hence

(O - V)u, )| < (|0 [ V70l
< C'[|dpull3" ™" H@tUHQO _ vl

0)
< C'|9pu|3" ||5tVu||29 vl

(5.18 _ 1, ~ | 2-Poo
< C ol ”(J@(u)anunq? )" Ivull,

< eJs(w) + Cc([[0nully” + [ Vullg +1).
O

It is indeed interesting that both terms |(9;((u’-V)u¥), d,u™)| and ||[Vu’||3 re-
quire the same bound for ¢, which is ¢ > 2= ‘5” = Now we have to find the upper bound
for ¢, which restricts the control of |[Vu¥ |2q_p(.) Unfortunately this requires exten-
sive calculations, so we will postpone this to the next section. Since the calculations
for py, > % are a lot simpler, we will finish this section by outlining how to proceed
in this simpler case.

So let us assume for the rest of this section that p., > 2. Set ¢ := 3+2p°°, then

2
2¢ —p(-) <2q — poo = 3, 50
IVu oy p) < C([Vullf +1).

That means that |[Vu®¥ \2q p() can be controlled if [[Vu¥||3 can be controlled. But

the choice of ¢ and po > 2 ensures that ¢ > 2= 3p = Hence by lemma 5.5, lemma 5.6



94 5. 3D FLOW

and the above calculations we get
d,([Vu"[3) + Zo(u")
< C 1+ vaV |5+ [(VEY, va))),
dy(1ou™]3) + de (V™ [|2) 4+ To ()
< C o™y + O [ Vu|F

+C (0N, u™)| + C /(5uN)p (D) da.
Q

The remaining terms involving f¥ are easy to control:
(VEY, V)| < [IPYE]12[Vut ]y < Cllf]]2] Va®]l2
< Cfl, + ClI Va3,
(0™, 0u™)| < [IPY(0:f) |2 ]| 0™ |2 < C (|05 o] VY|
< Claflz + C Va3,

Even the term with In(Du®) makes no difficulties, since ¢ > 2:

/(EuN)mn?(buN) dr < |[Du®|e+ C
Q
< CDu|e 1 C

Lo v+ c
Overall
di (|| Vu™[3) + d (0™ 13) + di (| Vu™][9) + Zo(u") + T (u™)
< C (14 | vuNyetivioa L jgaN 3ot g2, + o)3).

Now lemma 8.7 ensures that for small times, i.e. T' is small, we get boundedness of
the following expressions (uniformly in N):

||atuNH%00([’7L2(Q))’ H&guNH%m(I/,LQ(Q)), ||VuNquo(I/7L¢I(Q))7
1 Ze (a™)| 111, | Te (0™ || 1 1)

Later in section 5 will see that these a priori estimates are sufficient to pass to the
limit N — oo to get a solution u of our original problem (5.1). But beforehand we will
show in the next section how to derive similar a priori estimates in the more general
case % < Poo < 2. Certainly the next section in more general than this section, but we

wanted to point out explicitly how a simplified method works for p, > %

7

4. The case py > ¢

If poo is smaller than %, we have to do more subtle calculations. We cannot

just add (5.15) and (5.16) in order to get control of |5uN|2q_p(.). Recall that we
need ¢ > 2= for ||[Vul||3 and [((;u- V)u,dyu)|. But this implies (2¢ — p)o >
M3

9 — 3P — Poo > 3. SO lﬁuN|2q_p(.) is worse than ||[Vu Since IEuN|2q_p(.) grows

with respect to ¢ a lot faster than |[Vu™||¢, the term | Du” |2g—p(-) Tequires a preferably
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N 9— 3poo
13 =g

small choice of q. But since we cannot control ||Vu for ¢ = , we certainly

cannot control the worse term [Du® |5, for ¢ = 2=22= and thus for no q > =3k,
Hence we must proceed in a different way.

The central idea is that we have not made use of the term d;||Vu Since it
contains less information than d;||Vu™||Z, there is no need to extract information

M-

out of it. So we try to transfer dtHVuNH2 in its original form (9,u’, —Au®) to the
right-hand side of (5.15). This gives
(5.19) Zo(u™) < C (1 + || V[ + [(VEY, Vu)| + [(0a", —Au™))),

The disadvantage is that we have to control one extra term, but the advantage is that
we can raise this inequality to the r-th power. This gives, as long as we can control
the right-hand side, information on Zg(u)", which can be used to control |Dulag—p(,
for higher values of q.

Before we calculate the maximal allowed 7 and the resulting ¢ we will reduce (5.19)
to a more suitable form: Lemma 5.5 implies that for ¢ > % there holds

Zo(u™) < C (1+ [V ||[r + [(VEY, V)| + [(9u”, —Au™)]).
Since
IEY | oo (1w 20y = 1PV E] oo rwiz@)) < C NIl ooz < C,
this reduces to
(5.20) Zo(u™) < C (1+[[Vu||I* + [(9u”, —Au®)|).

M|, by the local Gronwall’s lemma 8.7,

Since we can control arbitrary powers of ||[Vu
we see that the convective and the force terms do not raise difficulties for ¢ > 2= 3p°°,
even if we raise the inequality to the r-th power. The following lemma gives control

of the remaining term [(9,u®, —Au®)|.

LEMMA 5.7. For py > % there holds

4(poo—1) 2— oo +2

(O, Au)| < C [[dpu|;7> 7 To (1) 553 Ty (u) + 1) o2,
Proor. With the help of lemma 5.3 we conclude

[(Bot, )] < O] s 50

< C|ol] s (Zo(w) + 1)7

< ||0aull5~* | Opull? o (Zo(u) +1)7

< [|0rull3 (Ta () (Za(w) + 1) 5) (Zo () + 1)

with
200 —1 1-—40 0
p _ L
3Poo 2 3Poo
Therefore 6 = % and 1 —0 = ;L’;‘:% and 22; ’; .0+ zt = 2(5;2:_22). This proves the

lemma. [l
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This lemma and (5.20) imply
To(u™) < C (14| V||

N ==2 Ny sk N L
+ H@tu ||2 jq;.(u ) (3poo )(Iq)(u )—|—1) (3poco )).

Thus
8(Poo—1) o
(5:21)  Za(u) < C (14 Va4 D], T (u) ).
We are finally at the point where we can raise the inequality to the r-th power

2—Ppoo

r8Poc—1)
To(u) < C2 11+ [V 4 o], 7 Tolu) %),

5Poc —6
27poo
and Jp(u). We summarize

N |2
12

As long as r < , the last term can be broken up into a large power of ||J;u

5Poc —6

R then there exist constants

LEMMA 5.8. Let po > £, ¢ > 22= and 1 <r <
R4, R5, such that

To(@V) < C(1+ [Va [ + o]

gs) + EJQ(UN).
As in the case p > 2 we calculate from (5.16)

di (|0 12) + Tp(u)
< C (|{0((u"-V)u"), )| + [(9f", pu™)])

+ C/(ﬁuN)p In?(Du®) dz
)

< C 1+ [0((™-V)u),0u™)| + [[Vu || + [(0£7, Ou™)]).

9—3pos

So lemma 5.6 implies for ¢ > =—5

di([0a™]3) + Ta(u™) < C (1 +[|0a™|52 + | a5 + |0:£]3),
where we have used || 0Ny = || PV (0:f)|2 < C||0,fV|2. Hence by lemma 5.4 and
lemma 5.8 for ¢ > % and r < %
Poo
To(u™) < C.(1+ [V |5 4 [[0u™]|57) + eTo(u™),
(5.22) d; (10,a™]13) + di([0u™]2) + Ta(u®) <
C (L+ o™ |3 + [ Du™ [ + (D™ gy + [£13).

Different from the case p, >3 we can use Zg(u™)" to control | Du® g, ().

3Poo (T+1)

o ,2Dso }, then there exists a constant

LEMMA 5.9. Let % < Poo < ¢ < min{
Rg > 1, such that

|Dulag—p(y < C-||Dul|f + £ (Zp(u)" +1).

PROOF. From the assumptions we know that p,, < ¢ < 2p., which implies
q < 2¢ — Poo < 3pse- Hence we can interpolate L277=(Q) = [L9(Q), L3>=(Q)]s. The
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constant # can be obtained by 2q}pm = %9 + :,)pioo. This yields 6 = % and

1—6= %. Now we can estimate
[y — 2q— %) o — —Poo I 0(2q— Sl
|Dulag_p(y < |[Dul3228% < || Dul|(=0Cr=) || Du20 7>

(5.5) 0(2¢—poo)

< ||Eu||g1_6)(2q_Pw)<I¢(u) +1)

If % < r, then we can use Young with ¢ := e<2§°f;m> > 1 to obtain the desired
result
|Dul32-0 < C.|| Du|| (0= 4 o (Zy(u)" + 1).

2¢—poo

Still we have to verify the condition @ < r. For this note that

2q-p) o Bla=pe) < (7”+)’
P 3poo —dq 3 +r
which holds due to the assumptions on gq. O

This lemma and (5.22) imply
dt(H(?tuNHg) + dt(HﬁtuNHg) + Jo(u) + Iy (u)"

(5.23) o
< C (1 + ||atuN||I2naX{R2,R5} + ||DuN||;nax{R3,R47R6})

as long as

S }<q<m1n{%,2pm} and r<2p_?.

max {poo,

3Poo (T+1)

Since e

is increasing in r we can always find a suitable r if p.., ¢ fulfill

max {poo, 9732’p°°} < ¢ < min {6(pOo - 1), 2poo}.

The existence of a suitable ¢ is in turn equivalent to p,, > % Hence we have shown

that for all poc > £ we can find suitable r and ¢, such that (5.23) is valid. For example

we can choose ¢ = % and r = g Before we can apply lemma 8.7 to ensure uniform

estimates for u”, we have to take a look at the initial data, namely ||[(Vu®)(0)||, and
|(,u™)(0)]o. The first one is easily bounded by

1(Vu™)(0)]l, = [VPYuolly < C 1PV uoll1 2.
< C||PMaglla2 < Cllugllaz < C.
To bound (9,u)(0) let ¢ € L*(Q2) with [|¢[]2 < 1, then
(0™, p) = (g (0), PY)|

= [(divS(Duy)) + (ug - V)ug — £(0), PYg)|
< ||div S(Dug) |z + [[(wg’ - V)ug'[l2 + ¥ (0)]|2
< [VS(Duy)llz + C'[Juoll3, + [1£7(0)]l2
< O|(Dud)*VDuy[lx + C uo3, + [£¥(0)]l2
< C|IVDu||s + C |luoll35 + [V (0)]|2
< C (Jluoll22 + [[uol5, + £(0)]2) < C-.
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Here we have used that f € L>®(I,WW'%(Q)) and that o,f € L?(I,L*(Q2)) implies
f e C(I,L*9)). Thus ||(0;u™)(0)|l2 < C. So we can apply lemma 8.7 to (5.23) and
get for small times I' = [0, T"]

(5.24) HatuNHLOO(I’,L?(Q)) + ||V11N||L°°(I’,Lq(ﬂ))
(5.25) HZo (@) £rary + | T (@) 201y < C.
We use (5.21) to get rid of the r—dependence:

(5.26) EACR P

where 5p°° 6 — 50 if po = 2.

In the next section we will show that these a priori estimates are by far enough to
pass to the limit N — oo.

5. Strong Solutions
THEOREM 5.10. Let % < Poo < po <2 and
£l ooz w209y + (106 | 22(1,22(0)) + [[W0]ly22(q) < K.

Then there exists a constant T' = T'(K) with 0 < T" < T, such that the system (5.1)

has a strong solution u on I' = [0,T']. Further
10eall oe v, z2(0)) + [[0ll ey 122 )

+ | To ()| 11y + | Zo(u )|| poo=e < C.

o (I')
PROOF. In sections 3 and 4 we have proven the existence of approximative solu-
tions u”, which solve (5.10) and satisfy

(5.27)

10a™ || oo (1 22002y + | VO || 20 (17, 29(02))

5.28
(5.28) HIZo @] gges )+ 100 10y < C.

/

Since ¢ = % and r = % was an admissible choice within the derivation of the a priori

estimates, we can assume q > % Estimate 5.28 especially implies || Zg(u™)]| 1111 < C,
so by lemma 3.13 |V?u¥|,)rxq < C. Thus ||[V*u¥||,)rxa < C and therefore
[ uN || Looe (17, w2000 () < €, since (u¥, 1) = 0. Overall we can pick a subsequence (still
denoted by u¥) with

(5.29) u’ —u in LP=(I', WP>=(Q)),
(5.30) uV Sy in L=(I', W% (Q)),
(5.31) oY = g in L>(I', L*(Q)),

where we have used that the weak limit of distributions on I x €2 is unique. Since
W2Pe(Q) —— W2(Q) for pe > I, the lemma of Aubin-Lions (see appendix) implies
the existence of a subsequence, such that

(5.32) Vu" — Vu in L*(I' x Q).
As a consequence we get convergence of the convective term

(5.33) W - V)u" - (u-V)u in L3(I' x Q).
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Observe that
(3.11)

ISDu")l| 20y < C (D) r2rxe

< C 1+ [IVuV|2xa) < C.
On the other hand by (5.32) Du’¥ — Du a.e. in I’ x €, so
(5.35) S(Du") — S(Du) a.e.in I’ x Q
due to the continuity properties of S. Now Vitali’s theorem, (5.34), and (5.35) imply
(5.36) S(Du") — S(Du) a.e. in L' (I’ x Q).

Choose w" and ¢ € C§°(I’), then we can conclude from (5.10), (5.31), (5.33), and
(5.36) that

[ ({0 + SD@). D) + (0 Ty dt = [ oty

I I

(5.34)

Furthermore u fulfills
[0l L2 xq) + [[S(D) || L2 1rxa) + (- V)ul| 4 <C.

L3(I'xQ) =
Since {w!,w?, ...} is dense in W52(Q) and W52 (Q) «— W°(Q) for s > 2, we deduce
that
/g0<<8tu,w> + (S(D(u)), Dw) + ((u - V)u,w)) dt = /cp(f,w)dt
v v
is fulfilled for all w € W32(Q), especially for all w € V. Note that
(Ou,w), (S(D(u)), Dw), ((u- V)u,w), (f,w) € L'(I')
SO
(5.37) (Ou,w) + (S(D(u)), Dw) + ((u- V)u,w) = (f,w)

for all w € V and a.e. t € I'. It remains to show that u(0) = uy. But this follows
from the parabolic embedding

1P 1o —u(0)]|> = [ (0) — u(0)].

1 1
(5.38) < Cl]uN — quz(p,Lz(Q))ﬂatuN - atuHEQ(I’,LQ(Q))J — 0.
e <c

Since PMuy — ug in L?(Q) we get u(0) = ug. Overall we have shown by (5.37)
and (5.38) that u satisfies (5.1) in the weak sense. It remains to prove the norm
estimates for u, Zg(u) and Jp(u). First of all from (5.30) and (5.31) there follows

|00 e 2 + J<c
Define H : I x Q x R4 x R4 by
H(t, T,y,z) = Z(aaﬁajkq))(t’ Z, }’) Zap Zjks

Jkap

Loo(1 W1 B (0

then
(a) H>0,
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(b) H is measurable in (¢, x) for all y, z,
(c¢) H is continuous in z and y for almost every (¢,x) € I’ x Q,
(d) H is convex in z for all y and almost every (t,x) € I’ x Q.

Furthermore
(5.39) |77 () s 22y = (DY, 0D ,
L1(I'xQ)
d
5.40 T , H HDN,aDN‘ .
(5.40) 1Ze (™) | 217,21 ) ; u”, g Du’) L(1%9)
Due to lemma 5.3 and Zg (u") 1 ) + Ja(uV) 1) < C we have

o (1, P 1 ()

[0ru N||

Thus we can pass to a subsequence (still denoted by u?) with

(5.41) 8, vuN — ,Vu in [P (I, Let1(Q)).
Note (5.41), (5.29), and (5.32) imply
Vi — Vi in L'(I' x Q),
O, Vu¥ — 9, Vu in L'(I' x Q),
Vu" — Vu in L'(I' x Q).

Thus from the semicontinuity theorem of De Giorgi ([GMS98], pg. 132), (5.28), and
(5.39) deduce

(542) ||j¢.A(U)“L1(I!) S C

Furthermore H, Du®, 9,Du’v fulfill all the requirements of corollary 8.12. Thus we
deduce from (5.28) and corollary 8.12

(5.43) IZo (W) e < C.

oo (I')
This proves the theorem. U

The next corollary shows what regularity for u can be deduced from (5.27). This
justifies that we call u a “strong” solution.

COROLLARY 5.11. Let u be the solution of theorem 5.10, then

Poo (5pcc —6)

we L (I W21 (Q),
Ofu e LAI', (Wgr (),
(Du): € C(I', L M%) (Lorentz space).
For all 1 < s < 6(psc — 1) there holds
ue oI, Wh(Q)).

Furthermore there exists a pressure w with

2(5pco —

Vre L 2r (I’,LQ(Q))
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such that
(5.44) Ou —div(S(Du)) + (u- V)u+ Vr =f
a.e. in I' x Q.

PROOF. From (5.27) and lemma 3.12 we deduce that
(Du)¥ € L5537 (1. W' 2(@),
0,((Du)?) € LA (I, L*(9)).

Thus by theorem 8.21 with 6 = 4(210:5?1) we get
S O<Iv [ng(Q)? L2(Q)]9 )
5poc —6

=C(I, Bf’""””g(Q)) Besov Space

(Poo—1)

(Du)*

1
'O

2—poo
12(poo—1) 4(pco—1)
— C(I,L™ r~ 2= (§2)) Lorentz Space.
For more details regarding Besov spaces and Lorentz spaces see Bergh, Lofstrom
[BL76] and Triebel [Tri78]. Let 1 < s < 6(po — 1), then

12(poo—1) 4(poo—1)

(Duw)t € O, L~ = = (Q)) — C(I, L~

(2).

As a consequence ||[(Du)2|| 2. € C(I'), so
Poo

Lol
El
£

m
Q
3

(s
Since L '»= () is uniformly convex, this implies

Du e C(I', L5 () — C(I', L()).
From Korn’s inequality we deduce
uc O, Wh(Q)).

From |[(u- V)ull; < luf|; 12 and the choice s := 2 < 6(ps — 1) we deduce
(u-VyueC,L* Q).

From (5.27) and lemma 5.3 we deduce that

<C.

||u|| Poo (5pc0 —6) 9. 3Poco
L 2-pco (I,W™ Poo+1(QQ))

Further note that
|V (S(Du))| < €' (Du)’"?|VDu| + (Du)""* In(Du)|Vp],
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SO
IV(S(Du))||2 < CZa(u)? + C || Dul 2.

Thus S(Du) € L o (I,Wl’z(ﬂ)). We have shown that all the terms J,u,
— div(S(Du)), and (u - V)u in (5.37) are in L 2 oo (I (I, L2{$), Thus De Rahm’s

theorem ensures the existence of a pressure 7 with Vi € L™ 2»= (I, L*()). From

|0,(S(Du))| < C (Du)p’ﬂ@tDul + (Du)p’1 ln(Du)\atp\

and lemma 3.12 we deduce
~ 12
10:(S(Du))||3 < C Jo(u) + C IIDullé + C.

This proves the corollary. 0

6. Uniqueness

THEOREM 5.12. Let % < Poo < po < 2 and let u and v be weak solutions of (5.1)
with

u,v e C(I,Whs (Q)).
Thenu=v.

PROOF. Let e := u — v. We take the difference of the equations of u and v and
use e as a test function, then

(Ore,e) + (S(Du) — S(Dv),Du—Dv) + ((u- V)u— (v-V)v,e) =0.
This reduces to
(5.45) 1d||e]l3 + (S(Du) — S(Dv),Du—Dv) < [{(e- V)u,e)|.
Since po, > g, there exists g > % with
2-p 2 _12
Thus
|(D)% 4 (Dv) 2" 20 € L(1),
Lemma 3.15 implies
|Dell, < C (S(Du) — S(Dv), Du — Dv)?.
Korn’s inequality implies ||e||33—_qq < Celli, < C|Dell4. So by (5.45)

sdillells +cllel’sy < [{(e- V)u,e)| < flelfilull; 2 < Cllels

Since ¢ > £ there holds 2 < 337‘7(1 < Z and L%(Q) = [L*(), Li’fq(Q)]g with 0 < 6 < 1.
Thus for 6 > 0

2(1-6
sdellell3 + cllel < Cllel3" el %, < Cillell3 + dlle|s,

Gronwall’s inequality implies e =0, i.e. u=1v. 0J
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Note that for p,, > % we have derived for small times the existence of a strong

solution u with u € C(I', W#(Q2)) for all 1 < s < 6(ps — 1). Especially this solution
satisfies u € C(/I', W115_2(Q)) The theorem 5.12 above ensures that this solution is
unique within the class of strong solutions in C'(I', W%5 (Q)). It is interesting to
observe that the uniqueness as proven above exactly holds up to the same bound
Do > % for which we have derived the existence of such solutions.






CHAPTER 6

Time Discretization — Nonlinear Stabilization

1. Introduction

In the last chapter we have studied the instationary p-Navier—Stokes problem in
three space dimensions

Ju —div(S(Du)) + (u-V)u+Vr=f, onl xQ,
(6.1) divu=0, on [l xQ,
u(0) =uy on £,

where 2 is the three dimensional torus and S is induced by a p—potential. We have
studied existence of strong solutions, its regularity and its uniqueness. Based on these
results we will now develop a numerical scheme to approximate the system by a time
discretized version. Thereafter we will derive error estimates in terms of the time step
size k.

The first investigations regarding time discretizations of system (6.1) have been
made by A. Prohl and M. Ruzicka. In [PRO1] they examine the following time
discretized version

div™ — div(S(Dv™)) 4+ (v - V)v" + Vg™ =", on [ x
(6.2) divv™ =0, on Iy x Q,
v(0) =ug on

where d; is the discrete time derivative with respect to the uniform step size k,
ie. dv™ = £(v™ — v™ ). I is the set of time steps within the time interval 7,
which comes from (6.1), i.e. Iy ={0,k,2k,...} N I. Further f™ := f(¢,,), where ¢,
is the time of the m-th time step, i.e. t,, := km. This kind of discretization is well
known from the classical Navier—Stokes equations and is usually referred to as the
“fully implicit” scheme. This name is due to the way the convection term is handled.
“Fully implicit” means that the full convective term is treated on the time level of
the new time step. In contrast we refer to a “semi implicit” scheme if the convective
term is discretized by (v"~!- V)v™.

From a theoretical point of view the “fully implicit” discretization is the most basic
one. The nonlinear discretization of the convective term is as close as possible to the
original system, which is very convenient for the analysis. For this kind of discretiza-
tion we expect, as in the case of the classical Navier—Stokes equations, optimal error
estimates. Indeed it is easy to show that we have optimal control of the error if we
assume that there exists an arbitrary smooth solution to the continuous problem (6.1)
(for example 0?u € L2(I, (WP(Q))") suffices). But we will not do so for several rea-
sons. One reason is that arbitrary smooth solutions require arbitrary smooth data f,
up and p. In the view of applications this is not realistic and error estimates of this
kind would lack the connection to real problems. But most important of all it is not

105
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known if the continuous problem actually has arbitrary smooth solutions for smooth
data. This is not a problem of the convection or the pressure but of the nonlinear main
part —div(S(Du)). The nonstandard growth condition of S in combination with the
sole dependence on the symmetric part of the gradient generates technical difficulties
that have not been solved yet. So it is not known for space dimension d > 3 even for
p constant, no convection and no constraint divu = 0, i.e. no pressure, if there exist
solutions with 0?u € L*(I, (WgP(Q))'). So as a basement of our considerations we
will only assume such regularity of u, 7 as has been proven in chapter 5 for short time
solutions. This basic assumption has also been used by A. Prohl and M. Ruzicka.

In the study of time discretized problem there arise several questions of fundamen-
tal importance. Most important is the unique solvability of the discretized problem.
Certainly it is also important to know what kind of solutions (weak or strong) the
discretized problem has, because the corresponding regularity is very important to the
error analysis. In fact we will see that for different lower bounds of p,, we will have
different type (weak/strong) of solutions implying different error estimates: Smaller
values of p., enforce the concept of weak solutions with worse error estimates. More-
over, strong solutions to the discretized problem are also important as a base for
a space-time discretization. In [PRO1] it is indicated that the space discretization
requires strong solutions.

Let us summarize the results of A. Prohl and M. Ruzicka [PRO1], who considered
system (6.1) for p constant, since this work is intended to be an extension of theirs.
Especially we will overcome some of the difficulties which they have encountered.
Additionally, we will consider the case of time and space dependent exponent p,
which has not yet been investigated before in numerics, but is important for the
applicability to the underlying physical problem. A. Prohl and M. Ruzic¢ka show that
the continuous problem has a strong solution and the data satisfies some regularity
conditions, which are slightly weaker than the ones assumed for the existence of the
continuous problem in chapter 5. They have shown that for % < p < 2 there exists a

weak solution v™, ¢™ of (6.1). If % < p < 2 this solution further satisfies

(6.3) Hem||12oo(1k,L2(Q)) + ||em||l22([k,W17P(Q)) < ck?W
with
op — 6
O[(p) - 2p )

where €” := u(t,,)—v™ denotes the error. Note that @ ~ 1.677. Furthermore they
have proved that for % < p < 2 there exists a strong solution v, ¢ (i.e. information
about second derivatives), which satisfies the same error estimate. Note that although

not mentioned in [PRO1] the same estimates hold true with a(p) = 57;—;6 replaced by
a(p) = 4?5:(13)-

It is remarkable that the value of p determines both the existence of weak/strong
solutions and the order of convergence. This phenomenon has its origin in the natural
energy associated with the nonlinear main part — div(S(Du)), namely

/ / S(Du) - Dudz dt.
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The inherent information about |[[Dul»e)(;xo) becomes less significant with decreas-
ing p, making it more difficult to control the convective term. But here we have to
distinguish between two aspects: In order to get any kind of estimates — a priori
or error estimates — we have to control the error somehow. This necessity restricts
the range of admissible p, especially it determines the lower bound for p: Like % for

weak solutions, % for an error estimate, and % for strong solutions in the context
of [PRO1]. The other aspect is that p determines the order of convergence, i.e. the
error estimated in terms of the step size k. This effect would even occur in the absence
of pressure and convection. It is important to emphasize and distinguish these two as-
pects in order to get a better comprehension of the problem. This for example implies
that in the case of the parabolic p-Laplacian equation (no pressure and no convec-
tion) the same error estimates hold true for the full range 1 < p < 2. In this point
of view the results of A. Prohl and M. Ruzicka improve the results of J. W. Barrett
and W. B. Liu [BL93] and [BL94], who proved error estimates for a space and time
discretization of the parabolic p-Laplacian equation, where k?*®) in (6.3) is replaced
by AP + k. It must be mentioned, of course, that J. W. Barrett and W. B. Liu do not
consider the simplified space periodic case.

The main weakness of system (6.2) as an approximation of (6.1) is that only for
a rather small range of p namely % < p < 2 there exist strong solutions of (6.2).
But strong solutions seem to be a necessity for an additional space discretization, so
this range is of great importance for the computations and simulations. Since the
physically relevant case rather involves small values of p, this range and even the one
for the existence of weak solutions is too small. A physically reasonable range of p
would for example be (1.3,2]. One of the main goals of this work is therefore to extend
the range of admissible p providing the existence of weak and strong solutions and
error estimates significantly.

Another important aspect of strong solutions are pointwise in time error estimates.
While for weak solutions it is only possible to extract the pointwise in time error
estimate from its integrated version (6.3), strong solutions also fulfill an additional
pointwise in time estimate. This technique will improve the error estimate

to
HeHl2°°(Ik,W1,p(Q)) <c k’a(p),

Note that this result is also new and cannot be found in [PRO1] but also applies to
the scheme (6.2) used therein.

The problem in passing from weak to strong solutions for system (6.2) is that the
a priori and the error estimate for weak solutions only imply that

(6.4) IV V™ | oo g wrn () < C.

Although this information is better than the regularity known for weak solutions of
the continuous problem (6.1), it is not sufficient to pass to strong solutions in the
time discretized problem. The reason for this is that in the continuous setting we
can use a local version of Gronwall’s lemma enabling us to estimate higher powers for
small times (see appendix), while in the time discretized setting we cannot. But there
is a way to overcome this problem. Additionally to (6.4) we know that the error e
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measured in the same norm is not only bounded but still has some smallness in terms
of a power of k, i.e.

(65) ||Veml|Loo(Lwl,p(Q)) S OkQa(p)_l.

So if we can extract a priori some higher regularity information for v in possibly
negative powers of k, we can use this smallness of the error and the a priori estimates
for the continuous problem to extract more information about v. Unfortunately
there is no higher regularity information for weak solutions of system (6.2). Therefore
A. Prohl, M. Ruzicka, and L. Diening proposed to stabilize the system slighty by
—k“®Av™. This way the order of convergence is not reduced and it is possible to
extract higher regularity (in negative powers of k) from the a priori estimate of weak
solutions. Overall this will enlarge the range of p for which to get strong solutions
to approximately [1.6955,2]. This concept is the subject of a publication to appear
shortly.

The linearity of the stabilization k*® Av™ seems to be very handy when it comes
to computations, since not many costs are involved. But on the other hand the nonlin-
ear main part — div(S(Du)) induces a nonlinear problem at every time step. So there
is no need to use a linear stabilization, as long as the stabilization does not increase
the costs significantly. For example it is also possible to add —&*®) div((Du)?"2Du)
for stabilization with a suitable choice of g. Most of the work required to calculate
the matrices of a finite element discretization of this term is already included in the
finite element discretization of — div(S(Du)). So the additional costs are rather low.
First considerations have shown that the choice ¢ = w + 1 will improve the range
of strong solutions to approximately p € [1.6,2]. This kind of stabilization will also
be subject of the publication by A. Prohl, M. Ruzicka and L. Diening.

But here in this work we will proceed differently. Instead of adding some stabilizing
term to the system, we will stabilize the extra stress S itself. Namely we will replace
S by its A-approximation S4. Note that the A-approximation modifies S only for
large values of |[Dv™|. So the scheme will only be stabilized where there is the need to.
If the computations show that the solution has bounded symmetric gradients, then
there will be no stabilization at all. This is a fundamental difference to the approx-
imations —k*® Av™ and —k®® div((Dv™)?72Dv™) mentioned above: Imagine that
there exists a unique, regular solution u € C*?(I x Q) to (6.1) although we can only
prove less regularity. Then (for suitable large A corresponding to sufficiently small
time steps) the A—approximation does not modify the original system and in addition
we get optimal order of convergence, i.e. k% in (6.3). On the other hand stabilizing
with —k*® Av™ and —k*®) div((Dv™)4~2Dv™) requires that we adjust a(p) and ¢
in advance. If we want to get the widest range for p to guarantee strong solutions,
then we have to stabilize exactly with the order of convergence we expect. So if we
expect k2*P) as the order of convergence for (6.3), then we have to use —k*® Av™,
i.e. half the exponent for k. But this implies that even for a smooth solution u the
optimal order of the stabilized system reduces from k2 to k?*(). So it might be that
we accidentally decrease the order of convergence, just because we do not know the
optimal regularity of u. This cannot happen with the A—approximation! If on the
other hand we use —kAv™ to prevent this problem, then the range of p for strong
solutions derived by the theory would reduce to approximately [1.763,2]. But this is
almost no gain compared to [1.8,2] in the case of no stabilization at all.
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Summarized we can say that the A-approximation as suggested below provides
the widest improvement in the range of p guaranteeing strong solutions and will not
decrease the optimal order of convergence if u is smooth. In addition we will see that
it is quite easy to transfer the error estimates of the fully implicit, A—approximated
scheme to the semi implicit, A—approximated scheme. So the nonlinearity due to the
convective term can be eliminated.

2. The Scheme

Let u, 7 be the unique strong solution of (6.1) as described in theorem 5.10 with
ug, f, S, p fulfilling the necessary requirements. Let I be the respective time interval
of existence. Then we propose the following scheme as a time discretization of (6.1)

dv™ — div(SHDV™)) + (V™ - V)V + Vg™ =™ on I}, x Q,
(6.6) divv™ =0 on [ x Q,
v(0) =ug on {2
with m = 1,2,..., M and a suitable choice of A > 1 depending on the step size k.
Hereby 2 denotes the three dimensional torus, k the time step size and I the set of
time steps included in the time interval I of existence, i.e. I := {0,k,2k,...} NI =
{0,k,2k, ..., Mk}. Further let £ := f(¢,,). Note that as in the continuous case (6.1)
we compensate the missing boundary condition by only looking at solutions with mean
value zero.
To get a better understanding of the problem we will rewrite (6.1) in a time
discretized form. Let
u” = u(t,), " =7 (ly),
"= 1f(t,,), R™ :=di(u(ty)) — onu(t,y,),
then u™, 7™ is the solution of
du™ — div(S(Du™)) + Va™ 4+ (u" - V)u” =" + R™ on [ x Q,

(6.7) divu™ =0 on I, x €,
u’ = u, on €,
with m = 1,2,..., M. In this way we immediately realize the connection of (6.6)

and (6.7). The differences consist in replacing S by S# and the error term R™, which
arises from the approximation of d;u” by d,u™.

We have seen in theorem 5.10 and corollary 5.11 that u has at least the following
regularity

||8tu||L°o(I,L3(Q)) + ||8152u||L2(I,(Wdli’3(Q))*) <C,

H(Zﬁiu)g || 12(poo—1) 4(poo—1) <C (Lorentz Space),
C(I',L™ Poe 727 (Q))

where C' certainly depends on the data. But since the regularity of u might be better

we introduce a parameter r > pi and require

HatuHLoo(I,Lg(ﬂ)) + HaquL?(I,(W;i’f(Q))*) <C,

H(lﬁju)g ”C(I',Lnoo(fz)) <C (Lorentz Space),
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in order to be more general. Nevertheless we will always show how the error estimates

will look for the special case r = 12(%:_1). Since (Du)? > |Du|" and Lorentz spaces
are Banach lattices, we have

||5uHC(I’,LTpOO o) = C (Lorentz Space).

2

Let us point out once more one of the advantages of (6.6) over the other stabilizations
mentioned in section 1: Since A is chosen only depending on k£ and p,, the proposed
stabilization (6.6) does neither depend on the expected regularity for u nor on the
expected order of convergence. Therefore the estimates for r = 12(poo 1) provide a

minimal(!) order of convergence, but if the regularity of u is better, we get a better
rate of convergence. Especially the approximation that we have chosen does not
reduce the theoretically optimal order of convergence.

Before we get to the main results let us introduce some “time discretized” spaces.
Let X be some Banach Space, then by [%(1), X) we denote the Bochner Space with
discrete measure in time (weighted by the factor k), i.e.

M 1
(k S ||um||§(>q for 1 < ¢ < o0,
m=0

sup |[u™||x  for g = 0.

m=0,...,

(@™ )m=o,.... v lia(r, x) =

Thus L?(1,X) measures u “continuously” in time and [9(I;, X) measures u at the
discrete time steps 0, k,2k,.... The factor k in the norm is necessary in order to
ensure

la(tm)m=o,...mllia(re,x) = [0l La(r,x)

for smooth wand k& — 0%. As a general rule I will always be measured by the Lebesgue
measure, while I}, will always be measured by the discrete measure (weighted by the
factor k). We further use the notation L¢ and [? in order to point out this difference.
For simplicity of notations we will not distinguish between (u™),,—o,...a and u™. For
example instead of |[(U™)pm—o,... a||1a(1,,x) We will write ||u™a(z, x)-

We will also make use of the generalized Orlicz Space LPU) (I}, x §2) induced by the
modular

M
DV g i= kY [IDV"Pda
m:OQ

Note that we use different measures in time and space although we use the capital
letter L, which we otherwise reserved for the Lebesgue measure.

THEOREM 6.1. Let p € WH(I x Q) with 1 < ps < po < 2. Further let
laoll2,2; [[fllc@r,r2)) < C and assume that (6.1) has a solution u,m which satisfies

10l o= (1,220 + 107 0ll 27 w22y < €

H(lﬁju)g ”C(I,Lmo(ﬂ)) < C (Lorentz space)
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with r > 2. Let A := k4poojpoo*4, then (6.6) has a unique weak solution v™™, 7™ which
satisfies

HVmHZQOO(Ik,L2(Q)) + ’Dvm‘LP(‘)(IkXQ) <C,
HDVmHzpoo (I, LPs () ApooizHDVmHZZZ(Ik,L?(Q)) <C.

Note that A = k™~ %=1 forr = %.

Note that the existence of the solution u, 7 implicitly requires higher regularity
of f (see theorem 5.10 and corollary 5.11). But in order to point out which regularity
of f is needed for the error analysis, we only demand this lower regularity of f.

Before we continue with the error estimates for weak solutions it is important
to mention the way that we measure the error. Instead of writing down the error
estimates in terms of ||[Vel||x for some Banach space X, we prefer to estimate the
natural error, which is given by

(o*(Du™, Dv™)De") - De™ = (S*(Du™)—S*(Dv™)) - (Du™—Dv"™).
Using the notation
oltm .= g4 (Du™, Dv™)

uv
this reads

(g7 De™) - De™.
We rather use this natural error, since it contains all of the error information. But
depending on the regularity of u”,v™ it is also possible to retrieve information about

De™ and by Korn’s inequality about Ve™. This can be done by the following lemma,
which is a direct consequence of lemma 3.15.

LEMMA 6.2. Let p € Wh°(Q) with 1 < pe < po < 2. Then for all (sufficiently
smooth) u and v and for all 1 < q < 2 there holds:
Del|?
(6.10) - H” |~|" — < C (o} ,De,De),
I(Du)™=" + (Dv) 2| 20

where e =u—v. If ¢ =2, then 227‘1(1 := 00. Note that this estimate holds true if €1 is
replaced by I, X €1, i.e.

De™ 2q
(6.11) [Derli: ) < (sz (olmDe™, De™)
|(Dum) 5" + (Dvm) 57|
L2 % (I x£2)

(6.12) =C H<°’§,’$nDem’Dem>Hzl(1k)

(2—po)q
This lemma especially states that if Vu™, Vv™ € [*([, L B (€2)), then we can

2
retrieve HVemHl%,o(Ik Le(y information about the error. If Vu™, Vv™ € L7 (I x Q),

then we can retrieve ||Ve||%q(1km) information. Note that in the first case we will
get better error information with respect to the time, while in the second case we
get (due to a slightly better choice of ¢) better space information. Writing down all
possibilities to extract information about Ve™ from the natural error would be quite
lengthy and would not provide us with further insight of the problem. Moreover, for
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Poo > g it is possible for weak and strong solutions to choose q := p,,. Thus we can
always extract ||Ve™ || ;. 1oy 18P (V€™ 1 1o (@), information from the
natural error. With a slighty better ¢ (close to 2) we would only gain little, since the
best information extractable from the natural error (for arbitrary smooth u™ and v™)
is HVemHIQZ,([k’LQ(Q)), resp. HVemleoo(Ik,LQ(Q)). For all these reasons we will consider the
natural error only.

THEOREM 6.3 (First Error Estimate) Let p, A, ug, f,u, m,v™, and ¢™ be as in

theorem 6.1. If r > max{4, o— (5p } then the error €™ wzth

e :=u" —v" =u(t,) —v"

satisfies for sufficiently small k

(6.13) slle™ ey 22y + [{oavDe™ Dem>||ll(lk) < O k2edp)
with a(pes) = %. As a consequence
(614) H<0.A mpem >Hloo([k) < Ck,Za(poo)—l

Note that a(ps) = Ezg""_?) ifr = 12(%:_1). In this case condition r >max{4

15 equivalent to peo > Hti(‘)/ﬁ ~ 1.55826.

(5poo—6) }

THEOREM 6.4 (Strong solution). Let p, A, r,ug, f,u, 7, v"™, and ¢" be as in theo-
rem 6.1. Additionally assume that

Hch IWi2(Q)) T HatfHC(I L2(%)) <C.

If 3 < Poo <po <2 andr > max{4, - 5poo 6)} then v™™ satisfies
V™ i@y + 1V g st g T IV g, ot (@) = €
||dtvm||l°°(1k»L2(Q)) + Hdtv HIQ(IMLFE%(Q)) + Hdt m” 4 <C.

190 (I, W e ()
Note that for r = 12(%:_1) the condition r > max{4,

Poo > HHY2L 1 55826,

poo(%i—ﬁ)} 15 equivalent to

THEOREM 6.5 (Second error estimate). Let p, A, r,ug,f,u, 7,v™, and ¢" be as in
theorem 6./, then for sufficiently small k

(o dzDer De) ., < O

with a(ps) = —4_(;:02?;; Note that a(ps) = Ezgz S ifr = —12(7;;_1).

THEOREM 6.6. Theorem 6.1, 6.3, 6.4, and 6.5 still hold true if (v"™-V)v"™ is
replaced in (6.6) by (v~ - V)v™ and if we additionally require u € C(I x Q).
If r > 1%’ then Du € C(I,L3(Q)), since (Du)z € C(I,L">°(Q)). This implies
u e C(I,W'3<(Q)) for some e > 0 using Korn’s inequality. Hence u € C(I x ).
So if r = % and peo > g this additional requirement is fulfilled.
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3. Weak Solutions

At first we show that system (6.6) has under the assumptions of theorem 6.1 a
well defined, unique solution in the following sense: There exists a solution v, ¢™
such that v™ € [°°(I;,, W22(12)), where the norm may depend on k and m. Let us
start with the existence. For this we reinterpret the system as an iterative sequence
of stationary problems: Let v®~! be given, then v™, ¢™ is the solution of

A B A m m m m _ em 1.,m—1
(6.15) v —div(ST(Dv™)) + V¢ + (v - V)v 7"+ v
divv™ = 0.

We will show that v* € W22(Q) for all m. Since v° = uy € W32(Q) we can prove the
claim by induction, so assume that v?~! € W22(£2). To prove v € W32(Q2) we have
to derive two a priori estimates for v by testing with v and —Av"™. This can be
justified by means of Galerkin approximation, so we focus on the a priori estimates.
Testing (6.15) with v gives
VT3 + (8HDv™), Dv™) = (7, v™) + L (v ™).

By (3.41) and Young’s inequality

IVTIZ + c AP IDVT; < C (R [IE]13 + 3V H2) < oo

Korn’s inequality implies v® € W12(Q). Testing (6.15) with —Av™ gives (compare
chapter 5)

o1 HITVIBETAR < A 4 v )
' + (V™ - Vv AV,
By (3.59) we have Zo* (v™) > ¢ AP*~2||u||3,. So by Young’s inequality
VTG 4 e AP=T2 IV 15,
FIVVT S+ CAP=(JIF]S + (| (v™ - V)vT3)
FIVVTHE + CA*P= (I3 + ||Vm||1 12)
FIVVTHE + CATP=([IF]5 + [[v™]]2.2)
TV S+ CAZP=((IF] + (V71T 2l v l22)
FITVTHE + CAZP=|[£|5 + Cs A2 v [ 4+ GAP= 2|y |3,

IAINIA IA A

If § is sufficiently small, then we can absorb the last term on the left-hand side. (Note
that we do not subtract oo, since the steps are justified by means of the Galerkin
method.) This proves that v € W22(€). Although we are not interested in the
pressure yet, let us mention for the sake of completeness that ¢™ € VVO1 2(9) for all m.
Indeed it follows from (3.42) that all terms of the first equation of (6.15) but V¢™ are
in L2(2), so by De Rahm it has to be also in L2(Q), i.e. ¢" € W,?(Q). We remark
that with this regularity for v'™ and ¢™ it is very easy to verify that v is unique:
Indeed v"™ and ¢™ are for every time step the solution of a stationary, uniformly
elliptic problem.

Note that in the above estimates additional multiplicative constants appeared for
every iteration (kK — 1 +— k). For an increasing number of iterations these constants
multiply and grow rapidly. Since k relates to the number of iterations, the global
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norm ||v™||;ee(r,,w22(q)) does strongly depend on k. So the regularity we have derived
so far is useful to justify(!) all the calculations later, but nothing more. In order
to derive error estimates we need global norm estimates which are independent of k.
This will be our next focus.

Using v"™ as a test function for (6.6) gives

5[V 3 + (SH(Dv™), Dv™) < [(£7,v™)].
With the help of (3.41) we conclude
sAl[VI3 + ¢ DV + e A2 DVT 5 < ClET |2V

The use of the discrete Gronwall and Young’s inequality implies
M
V™ s (rr2 ) + % Z|D"m|p(~) + AP= 2DV |13 g, 120y < C(F).
m=0

We see that v™ is a weak solution of (6.6). This proves theorem (6.1). Later we will
see that for a certain range of p..’s this weak solution is a unique strong solution.

4. The Error

We will now derive estimates for the error of weak solutions. Let €™ := u” —v"™ =
u(t,,) —v™and n™ := ™ — ¢"™. Further assume that the assumptions of theorem 6.3
are satisfied, then

de™ —div (S(Du™)—S*(Dv™)) + V" + (0™ V)u" — (v"-V)v"=R",
dive™ =0,
e’ =0.
Since o7 = o4 (Du™, Dv™) = S#(Du™) — S#(Dv™), there holds
de™ — div(oy'De™) = R™ + div(S*(Du™) — S(Du™))
-Vt —(v"-V)e" —(e"- V)u™,
dive™ =0,

e’ =0.

(6.17)

For the examination of the error it is important to control the right-hand side of (6.17).
Especially the term R™ is of great importance, since it will determine the order of
convergence. The following lemma provides all the necessary estimates for R™.

LEMMA 6.7. Let p, A, r,ug, f,u, and © be as in theorem 6.1. Especially u satisfies
(6.18) 10l o 1,130 + 11070l 27 w220y < C-
Then Opu € Cuyear (I, LA(R)) and
(6.19) [0ullc, ur.z2) < 100|120 < C

i.e. there exists a constant C' > 0, such that for all g € L3(Q) the mapping t —
(Opu(t), g) is continuous and there holds

[0, 2) sy < Clzlla O] s < Cllgla
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As a consequence (Opu(ty,))m=o.. a is well defined and

[0t )l (1, 220 < 10| oo (1,222
[di(a(tm))l 2() < 100 Lo (r,220)-
Furthermore R™ = dy(u(t,,)) — Owu(t,,) satisfies
(6.20) IR™ [l i2 1 w22y < CKs
(6.21) IR™[[100 (1, 22(2) < 21|00l oo 1,120y < C-
Note that we do not need dyu € C(I, L3(2)).
PrROOF. We rewrite R™ = di(u(t,,)) — du(t,,) as

tm

R = 1 / (5 =t 1)(020)(s) ds

tm—1

So by assumptions on u

2

b @) ds

M tm
<Ky /(s—tml)QH(@f w2
m=0

IR"2,

L, (W32 (9))*) (Wh2()*

(6.22)

2 2
<t z JRCEE.
tm 1
— k‘2H82
<k*C.
This proves (6.20). Since u € L>*(I,L3(2)) and divua = 0, there further holds
u € Lo(I, L, o(9).
Additionally 9,(9yu) € L*(I, (Wy:2,(Q))*) and L3, o — (W2 4(9))* continuously,
so dyu € C(I, (W(}WQO(Q))*) Since L, 4(2) is a closed subspace of the Hilbert space
L3(9), it is also a Hilbert space and its dual can be identified with itself. Thus

O € L>(I, (Lgsv 0())"), € O(1, (Wi o()))-

ulf7, (L(WL2(9)")

Since Wj{io(ﬁ) is separable and dense in L3, ,(€2) this implies (see Lions [Lio96],
appendix C)

8tu € Cweak([, (Lilv,O(Q))*)

Thus

(6.23) O € Coene(I, L2, o(2)

and

(6.24) 10l ey uiz.22,, o) < 000l (1 r20))
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Let L§(Q) := L%, ,(€)+X be the Helmholtz decomposition of L§(€). Since div dyu = 0
and dyu € L>=(I, L3(12)), there holds

<(9tu, a> =0
for all a € X. Together with (6.23) and (6.24) this implies
(6.25) Ot € Cuyear (I, L5())
and
(6.26) [0ulley uniz.z2) < 10| o (1,22 (2))-
This immediately implies that (O;u(t.,))m=o,. am is well defined and
(6.27) [Oa(tm) 100 (1, 22(0) < 1000l 0y (r.22(02))-
Furthermore for allm=1,.... M

tm

2 / (Opu)(7) dr

e (u(tm))llz(0) =

e L3(Q)
< (|0l Lo (1, L2(0))-
Thus
(6.28) [de(u(tim)) e 1, 2020y < 1000l oo (7,220 -

So (6.27) and (6.28) imply
IR™ 100 (1, 222y = llde(a(tin)) — Opa(tin) |l 1,222
< 2[|0wallc,, o r.z2()-
This proves the lemma. l

We continue with the derivation of the error estimates for weak solutions v, ¢™.

Testing (6.17) with e™ we get
(de™,e™) + (o4 De™, De™)
< |(R™e")|+|(8*(Du™) — S(Du™), De™)|
+|((e™- V)u™, e™)|
= K; + Ky + K.
The first term on the right-hand side of (6.29) K can be estimated as
Ky < IR™ [ a2y
< 05A27p°°”RmH?W§fV2(Q))* +OAP= 2| Ve I3,

(6.29)

emHl,Q

(6.30)
Due to (3.26) we can estimate Ks by

K, < C/X{|Dum|2A}Ap2]Dum||Dem\ dx
Q

<CcA™? / | Du™?|De™| dx.

{{Dum|>A}
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Let Q7 := {Du™ > A}, then by (8.9) and (8.11) there holds
~ - -
1D o e _ [(Bum? 5

O | <

| A| = A = A

So

(6.31) Q77 < AT (Du™) |00 < C AT
Hence

Ky < CA™Y|yay (Du™) % ||| De™ |,

~ b
< CA7 x|t g | (Du™) *

LT,OO(Q)HDemH?

1 2 m
<CA ||XQQ|L%I,1(Q)||D9 2
r—4\ 2
<A (x| ™) IDem s

(6.31) -

1 a5 _poay T34 2 m
< CA ()T (CATF) T ) | De o
1
1)

o<t<i
and therefore
Ky < AT AT [De
(6.32) < 5AP="2|De™|2 + CaA_poo_poog—zt)
r—2)poc

= (5Apoo72HDemH% + C(;A7< 2

The terms K7 and Ky will be responsible for the order of convergence. The third term
on the right-hand side of (6.29), which arises from the convection, will not affect the
convergence, but is still important, since it does restrict the range of admissible p’s.
We estimate

Ky =[{(e™-V)u™ e™)]

|
SR
D
=3
L
<
=3
=
=3
<y
8

2
S N e

2rpoo_ 1
TPoo —2’

<Cle™? o, -
Lipeo—2"1(Q)

Since r > 12 5 by assumption of theorem 6.3, there exists ¢ with

Poo(5Poc —
— < g < < .
e —2 1S 5. T3
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Hence

K3 < C(q) ||em||%q(§z)-

Note that the constant C'(q) grows, when ¢ — Tizg, ie.if 22’“ and 55— 5p are close,
2

which corresponds to r X\ m. But since we are not interested in the behavior
of the constants for r 13(5% we will neglect this fact and use C instead of C'(q).

6)°
So
K3 < C”em”%q(g)
Let 0 := 2”’2‘;, then
K3 < Cle™|3" " lel[# 10 o)
. <CIIE I, ko)

< Cs lle™5(1 + [Vu™ [l + [V V™ [lpo)
+ 0[[De™l5 (1 + V™[l + VY™ [l )P

If & > 0 is small, the last term can be absorbed by the left-hand side of (6.29). To
see this, note that by (3.38) there follows

(o7 De™, De™) > C /(1 + |Du™? + |DV™ )" ™2 da

(6.34) IDe™|2
2 Cf Poo - )
(1 + [[Dun{lp + [[Dvm{fp > P
On the other hand by (3.38) and Korn we get
(6.35) (o7 De™ De™) > c AP=7%||De™ |3 > c AP~ Ve™|3.
Now (6.29), (6.30), (6.32), (6.33), (6.34), and (6.35) imply
(de™, e™) + (o De™, De™)

(6.36) < CATPR™|[Gy 12y + CA

(r— Q)Poo

(2—pco)b

+[le™[5(1 + HVumeoo H Vv pe) T

Since
Laille™|2 < Ldifle™ |2 + Lk||die™|2 = (die™, ™),
there holds
Ldi||e™|3 + (o' De™, De™)
< CAP P Ry + CA”

(r— 2)1700

(2—p0)b

+ ™31+ VU™ e + IVV™ ) 70

T 5 and 6 := 2&)3’3 °‘3 there holds

(2_poo)9
1—g P~

Since q <
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Since [[u™||woo (1, Lroe (2)) F [ V™ |1p00 (1,17 (2)) < O, we can apply the discrete Gronwall’s
inequality, such that for sufficiently small & there holds

%”emHl%)o(Ik r2(@) + [{o 5w De™, De™) Hzl
(r— 2)Poo

< CATP R, w2y + CA”

By lemma 6.7 there follows

%HemHlZw(Ik @) T H(Uﬁ’zﬂDem De™) Hll(lk)

< OAP PR CA- =,
We get th§4 best order of convergence if we choose A2 P=k? = A~ (Pmpw, ie. fix
A 1= kT Tsctrre . So
oo N D D,
< O k% A2Po = O kTdrmtroe = ( k20P),
This proves (6.13). Further
[(otemen Do, <k (bDen Dem, < Ches

So the proof of 6.3 is complete.

5. Strong Solutions

Assume that the requirements of theorem 6.4 are satisfied. From theorem 6.3,
(6.37), and (3.38) we deduce that

HDem”lQ2(Ik,L2(Q)) < AQ?pmH<Uﬁ,’c¢Demv Dem>Hzl(1k)
(6.38) < CRPAPEP)

2(=4+7rpco)
— C k4 4poo+7‘o;0c

and therefore

(6.39) IDe™ [P re r2gayy < KD s, r2gqyy < C ki
Since r > max{4, m}, there holds W > (0. This implies
(6.40) HDemleoo(zk,m(Q)) <C.

So Korn’s inequality gives

(6.41) IV e™ iz, 2200 < C-

The regularity of u™ implies ||va||l2w(lk7L2(Q)) < C. Testing (6.6) with —Av™ gives
sl [VVT[3 4 Zo (v

(6.42) < [VE [l Vv l2 + ‘/ (v™- W)v™) Av™ dx‘

< C+ Vv
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Note that by lemma 3.14

2—p

VDV s < C T (v7)2|[(Dv™)

< CTA VDY,
So from (6.40) and lemma 8.5 we deduce
643 IV e <CIVATPL <CIVDYIL < 0TV,
So (6.42) and (6.43) imply

(6.44) [ VYV VYV 4+ Tt (v < O+ C VYT
In order to handle [|[Vv™||3 we calculate

nvwmz/WW%m

<C /|va|%|Vum|%da:+/|va|%]Vem|%dm

Q
= Jl + JQ.
Now
3 3
Jy < C VMgl We|l3 < GA™2([ V™ |[E + C5 AP Ve 5.

Due to (3.59) the term § AP>=~2||WVv™||2 can be absorbed by the left-hand side of (6.44).
We will show now that the last term can be handled by the discrete version of Gron-
wall’s lemma. By Korn’s inequality

_1 m
IVe™ i 2y < Ck75[|De™||i2(s, 120
(6.38)

(6.45) < Ok ikA2 P

—20—4poc+3TPoo
= Cl{j 4(4—4poot+rpco) |

So
M
EY (A e ) = A% Ve, 1a)
m=0
6.46 ’
( ) (féS) O 13 A7)
—44+416poo+3Tpoo

= C k‘ 4—4poo+TPoco

Since r > max{4, 5 —57 > there holds 0P #3700 () 50 the left-hand side

(5p 4—4poo+TPoo
of (6.46) is bounded in some [°(I},) with 8 > 1. So we can apply the discrete version
of Gronwall’s lemma to control

Cs AP 7P)|[We™|[§ = C5 AX 7P| We™ |3 Ve 3

€lP(Iy,)
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for sufficiently small k. J5 is handled and J; remains.

SN (A

J < C|||wun?

<C HVuerm IIVVmII"’

3rpoo
2T7Poo—6

<C HDuerm vamH? (by Korn)

3rpoo
2rpooc —6 ’

<OV

3TPoo 1‘
2rPpoc—67
If r > % then 23;i°j2 < 2 and J; is bounded due to (6.41) and the embedding
L*(Q) — L2T3;fooi6’1(9). If on the other hand max{4, —} <r < =, then choose
2rpo—6 _ (1—0)(8—3pss) 0 3(rp2, 2(12 TPoo
0 such that =£=— = St g e, 0= mandl—e—m So
2(12 TPoo) 9(rpoo —8)

Jo < C ||va||7”poo(3poo—2) HV mHm

Poo
2(12—rpoo)

< C vamHm

8—3poo

. (12—7rposo)
Since r > max{4, 7} there holds % <1, so

JQ < 5||VVmH2 12+ C§

3—Poco

Note that § HVVmH2 12 can be absorbed by the left-hand side of (6.44). Overall we

8—3poo
have shown

@[V A VYV 4+ Tt (V)
<O AE) IIVemHgHVemII%

€18 (Ix)

So the discrete version of Gronwall’s inequality gives

(6.47) IV V™ e (1,20 + HVVmHlQQ(Ik’LS_lg;w @) 1Ze (V™) i1,y < C.

Thus (6.43) implies

v 2t o = O
(1, W T ()

Now we are in the situation to apply more test functions to (6.6). We test with d,v"™
and get

[dev™ |15 + 1(S*(Dv™),Dv™ — Dv™ ')
< (W7 VW dev™) + CHIEM3 + olld ™3

Since ®4 is convex, there holds
(S4(Dv™),Dv" —Dv™ ) = (Vo) (Dv™),Dv" — Dv"™ ')
> ¢ (¢4(Dv™) — H(Dv™ 1)),
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so after summing up over m =1,..., M we get

| dev™ 21,202 + o4 (DvM)

M
<D (ClE™ V)Vl dev™(lz) + 24 (D)
k=1

M:

(Cs ||va||%2 + 8| dev™|3) + @ (Duy).

T

1

We absorb the term 6||d,v™||3 on the left-hand side. Since ps > 3 there holds

12

[1°° (T, LA(2)), (I, L5 ()]s = 1 (I,, L5 (Q)) — 14T, LF (Q)).

1
2

So from (6.47) we deduce for p,, > 5 that ||va\|l4(lk7L%z(Q)) < C. Thus

(6.48) 1dev™ |21, 12(0) + 24 (DVM) < C.
If we apply d; to (6.6) and use d;v™ as a test function, then we get
Ld||dev™||5 — {d; div(SH(DV™)), dpv'™)
(6.49) < (v - ™) dv™) ] + ™+ ldv™ 1,
Gll\(rfk)
where we have used that 0,f € C°°(I, L?(2)). Note that
’<dt((vm -Vv™), dtvm>}

= [((dv™ - V)V dv™) + (v V) dv™, dpv™)|
= ’<(dtvm -V)v™, dtvm>‘.

On the other hand by (3.38)
—(dy div SA(DVm)) dtv )

= ¢ (S*(Dv™) - 8 (Dv" ), Dv" — Dv"" 1))
12y B=2 m -
(6.50) g / 1+|Dvm|2+|Dvm ') D" — Dy 2 da
Q

c/( + [Dv™2 + [Dv™ L)) 2 [d,Dv™|* da.

Analogously to (6.43) we can show that this implies
(6.51) —({d; div(S*(Dv™)),dv™) > C HdthmHi . >C Hdtvmuigz

—Poo

From (3.38) and the second line of (6.50) we also deduce that

—(d; div(SHDV™)),dv™) > C A P> ||d,Vv"™|3

6.52
(6:52) > C A* Pl dv™ 3.
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Now we will estimate |((dyv™ - V)v™, d;v™)| as we did with |[Vv™||3.

[(dev™ - V)V dpv™) | < /|dtvm|2|Vum| dx + /|dtvm|2|Vem| dx

Q
= Rl + RQ.
So
Ry < Cldev™ e VU || 2252 o0 < CNldev™ [2rpee -
TPoo—2’ TPoo—2’
For r > there holds 2 < 22 = < 3 12 . Therefore 2 < 2”?"" 5+ 2 <
oo(5poo TPoo — 8— 3p

for some € > 0. Hence we can use the embeddlng Lrpoo—2+€(§2) — L%o—2 '(Q) and
interpolate between L?*(2) and L5 (©2) and use Young’s inequality to deduce

R, < (5Hdtvm||2 “u_ +GCi
Moreover
Ry < O Ve™|o]ldv™ |}
< C|Ve" Lo ldiv™ 3 1 drv™ 2
< Cs AP W™ 5| div ™[5 + G A= 2|dpv™ 1.

Due to (6.52) we can absorb the last term later on the left-hand side. For the other
term note that from the calculations for (6.46) we see that for r > max{4,

there holds

5poo—6) }

M
> <A3(2‘p°°) ||vem||§) <Ok
m=0

for some p > 0, especially the left-hand side is in L9(1}) for some ¢ > 1. This enables
us apply the discrete version of Gronwall’s inequality to handle (for sufficiently small k)
the rest of Ry. Taking the sum of (6.49) over k we get

(I}, L TP () 12 (I}, LE=3055 ()

sl dev™ e, 220 eV Ay e <C

Overall we have shown that

V™ e g + v oy IV

+ [ldev™]|

12 4
12(1,, W 8= 3ss ( 12(L, W T (Q) —

| dev™ 100 (1,2 (02)) + ||dev™

12 4
||l2(1k,Lg*3Poo () lm(lk,Wl’Z*Poo Q) —

This proves theorem 6.4.

6. Improved [*([;)-Error Estimate

Next, we will derive better pointwise in time estimates of the error in case of strong
solutions v, ¢". Assume that the conditions of theorem 6.5 are satisfied. Then from
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the derivation of (6.36) we deduce
(die™,e™) + <a’A 7De™, De™)
< [(R™, ™)+ CA™"

2)1’00

—Poo)f

+ e 31 + ||Vum||pw + Vvl T
<|(R™ e™)| + CA™ 2" 4. C ™2

(T_Q)poo
4—4poo+TPpoo

(die™ ey + <0'A rDe™, De™)
< CR*U=) H[(R™,e™)| + C [le™]3.

Since A = kirs=rr==1 and a(poo) = , this implies

Hence
<0'AmDe >
< CR0=) 4 |(R™, &™)] + C [le” |3 + |(de™, &™)
< CR20) 4 e o (JIR™ > + lle™ > + [ldie™
< CR0) e (JIR™ > + le™ [l + ldpa™ |2 + | div™ ).
Now theorem 6.4 and lemma 6.7 imply
(oduDe", De™) < CR20) 4 e o (|R™ 2 + e” 2 + C)
< ORe=) 1 O elr=) (O 4 O jor=) 4+ C)
< O fpo)

This proves theorem 6.5.

7. Semi Implicit
For practical purposes it would be better to use the semi implicit scheme
dyw™ — div(SHDw™)) + (W™ - V)W + VY™ =™ on I}, x Q,
(6.53) divw™ =0 on Iy x Q,
w(0) =up on

with m = 1,2, ..., M instead of the fully implicit scheme (6.6). This way, the problem
arising from the convective part at every time step is linear. In this section we will see
that this scheme has exactly the same properties as the fully implicit scheme (6.6).
Especially the existence of weak and strong solutions holds for the same range of p.,
and the error satisfies the same estimates in terms of the time step size k. The only
additional requirement needed is that the solution u of (6.1) additionally satisfies
u € C(I x ), which implies

u™ € [1°°(Iy, L=()).
Since most of the calculations for the semi implicit scheme agree with the ones for the
fully implicit scheme, we will only point out the differences to the previous sections.
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Since ((w™™ 1. V)w™ w™) = 0 it follows exactly as in section 3 that there exists
a unique, weak solution w™, 4™ of (6.53). Further w™ € W22(Q) and o™ € W2(Q)
for all m, justifying the later calculations.

Let E™ := u™ — w™ and {™ := 7™ — ¢ denote the error, then (compare (6.17)
for the error of the fully implicit scheme)

4E™ — div(o}wDE™)
= R™ +div(S*(Du™) — S(Du™)) — V™
(6.54) — k(du™-V)u™ — (E" 1. V)u™ — (w™ 1. V)E"
divE™ =0,
E’ = 0.

The only term that has to be handled differently to the fully implicit case when
estimating the error E™ is k(d;u™-V)u™. Tested with E™ this term gives

|(k(du™ V)u™, E™)| = k|((du™ - V)E™, u™)|
< kl[dpa™ |2 [ VE™ ||2[|u™ [
< kC[VE™[2
< B2 G5 AP7P= 4 §AP=2||[VE™|3,

where we have used that u € C'(IxQ) and 9yu € C(I, L*(Q)). So there arises a term of
the same order as in the handling of [(R™, e™)| (compare with (6.36)). Consequently
the calculations for E™ agree with the one for e€™. Especially we get exactly the
same error estimates. Note that whenever there appears m — 1 instead of m as time
step index, e.g. €™ ! instead of e™, the corresponding estimates become easier to
handle: Indeed the natural version of the discrete Gronwall inequality requires m — 1
as highest time step index on the right-hand side (which has to be controlled). Terms
at time step m can only be controlled for k sufficiently small (see the discrete Gronwall
in the appendix).

The rest of the calculations for the semi implicit scheme regarding the existence of
strong solutions and the improved pointwise in time estimate agree precisely with the
ones for the fully implicit scheme. Thus, as stated in theorem 6.6, the theorems 6.1,
6.3, 6.4, and 6.5 also hold true for the semi implicit scheme.

8. Plots

In the end of this chapter we like to present some plots regarding the order of
convergence and the requirements used in their proof. In theorem 6.4 (existence
of strong solutions) and 6.5 (improved error estimate) we have assumed that the
exponent p and the constant r representing the regularity of u satisfy

4 12
3 < Poo S Po < 27 7> max {4’ poo(5poo*6)}'

Furthermore we know from chapter 5 that for p, > % the solution u has enough
regularity to choose r := Ll‘;_l) as a minimal value of r. Nevertheless it might be
possible to prove better regularity of u providing a higher value for r. The following
plot therefore shows how the requirements for r correspond to the proven minimal

12(poo—1) . . 7
value e Although the minimal value is only proven for p,, > ¢ the range
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of the plot is % < Poo < 2, since this is the natural range of theorem 6.4 and 6.5.
Although for p,, > 1.57980 the restriction r > 4 is the stronger one, the other

Restrictions to r

104

12

condition r > is the really crucial one. This becomes clear by the fact

Poc (5poc—6)
that the minimal proven r, namely %, is bigger than 4 for all p,, > 1.57980.
Thus r > 4 is only a technical requirement. The intersection of r > m with

r= % is what determines the bound p., > H%B/ﬁ ~ 1.55826.

Let us turn to the order of convergence. Recall that by theorem 6.5 and 6.5 we
have

%Hem”?oo(lk,L?(Q)) + H<Ué,’31Devaem>“zl(lk) < C )

[(otDer. De) ., < e

(T'*Q)poo

with a(ps) = So the order of convergence depends on r (as does the

4—4Poo+TPoo
choice of A). Therefore we fix r := (=1 {4 show the minimal proven order of
convergence for the error. With this choice of r the error estimates imply

Sle™ B rzoy + [[(oduDe™ De™)|, ) < C R,
[(oawDem, Dem)|,. ) < C 0.
OPoc —0 5Poc—6

2(}70071) 4(1’00*1)
% < P < 2. Note that the optimal order of convergence is 2, resp. 1.

The plot on the next page shows the values of and for the range
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CHAPTER 7

Stationary p—Stokes

1. Introduction

In this chapter we examine the stationary p—Stokes problem, i.e.
-1 —div(S(Du)) + Vr =f, on Q,
(7.1) divu =0, on Q,

where €2 denotes the d-dimensional torus and S is induced by a space dependent
p-potential with ellipticity constants 7, v2. Moreover, let p € C(€2) with
1< Poo < Po < 00

fulfill one of the equivalent requirements of lemma 2.6, i.e. there exists a constant Cj
such that the module of continuity w of p satisfies

Co
<
w(R) < —InR

forall 0 < R < 1.
Assume that u, 7 is a weak solution of (7.1) with f € L4(Q), i.e. u, 7 solve (7.1)
in the sense of distributions and there holds

(72) |Du|p(.) S C.
This estimate corresponds to the boundedness of the natural energy (S(Du), Du).

We will show that u does indeed satisfy a better estimate, namely

|Du|1a)p) < C

for some 6 > 0. This type of inequality is often called Meyer type estimate. We
proceed in such a way, that we firstly derive Cacciopoli estimates and then deduce
reverse Holder inequalities. As a consequence we get the desired Meyer type estimate.
To be more general we include the pressure stabilized case into our considerations,
i.e. we will prove the result above for weak solutions of the system

-3 —div(S(Du)) + V7 = f, on €2,

(73) divu = eAm, on €,
with € > 0.

2. Cacciopoli Estimate

This section is dedicated to the derivation of useful cacciopoli estimates. Let us
start with some notation.

NOTATION 7.1. Let R be the set of all rigid displacements, that are mappings of
the form x — Cx + b, where C € R¥™? is a skew-symmetric matriz and b € R%,

129
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By Qr € ) we denote an open cube with sides parallel to the azis and side
length 2R. Let xy be the center of QQr, then QQor denotes the cube that we get by
resizing Qr by the factor 2, where the center stays fixed at xy. Certainly any other
factor is possible.

LEMMA 7.2. Let S be a p—potential with ellipticity constants ~,,7v2 and p € C(2),
1 < poo < po < 00. Further let u, 7 be a weak solution of (7.3) with £ € LY(Q). Let
A = 1—2 Then there exists Ry > 0, such that for all axis parallel cubes Qr € €2,

0 < R < Ry there holds

T ][(ﬁu)p dr +¢ ][\V7r|2 dx
QRy/2 QRr/2
< C’fylApo][ | 2T |P9R d 4+ €y AP
Qr
420 f |8 o+ O el
Qr

where k € R is arbitrary and T is chosen such that

/(u—T)-cpdx:O,
Qr
for all ¢ € R. Note that the constants are independent of v1, s, €.

PROOF. Since p is uniformly continuous, there exists 0 < Ry < 1, such that

dpoo,Q
d + poo,Q
for all cubes @ with diam Q) < Ry. Fix xy € Q and let Qg := Qgr(x¢) with 0 < R < R,.
Without loss of generality we further assume that Ry is so small that Qo is still a

strict subset of €2 and does not cover all of €.
Let qo := po,g, and ¢ = Doo,gr and let 7 € R such that

/(u—T)-goda::O

Qr

< Po,Q

for all ¢ € R. Define ¢ := (u — 7)n® + v, where n € C5°(Q3r/1), 0 < n < 1,
Nare =1, [Vnlle < C' R™!, and v will be specified later. The divergence of ¢ is
then given by

dive = n® divu + gen® ' (Vn) - (u—7) + divv.
Let g :=n®~1(Vn) - (u—7), then supp(g) C Q3r/s and

/|g|q0 dx < C/ {“;R"r]o dx < oo.
Q

Qr



2. CACCIOPOLI ESTIMATE 131

Since g € [Poo; Po] C (1, 00) we can choose by the theorem of Bogovskii (see appendix
lemma (8.2)) a vectorial function v € Wy ®(Q3g/4), such that divv = —g and

(7.0 Jivvrar<c [lgrar<c [ a
Qr Qr @r

for all ¢ with ¢, < ¢ < qo. Hence div ¢ = n?® divu = n®cAx. Further
Dy =n®Du+2p*'((Vn) @ (u—7))"" + Dv.
Testing the equation of motion with ¢ we get
(S(Du), Dy) — (m — x,div ) = (f, ),

where £ € R can be chosen arbitrarily. Thus

(S(Du), n*Du)

+(S(Du), 277q° (V@ (u—7)™™)

+ (S(Du), Dv)

—e(m — K, NP Ar) =(f,n®(u—71))+(f,v).

We rewrite this equation by Iy + Iy + I3 + Iy = I5 + Is and estimate I, ..., I5.

L > /nqo(f)u)p_2|Du\2 dx > m /(Eu)p dx — v, C R
Qr QRry2

and using ab < da?’ 4+ §—Pot+1pp

uﬂ§w0/hW%5w“ﬂ%%Mw

Qr
< 3’72 O/n(qo—l)P'(ﬁu)p + 75 C 5—po+1/ |% }p dr
Qr Qr

Since (qo — 1)p" > (g0 — 1)(qo)’ = qo we have

|[2| < gYQC/UqO(ﬁU)p—F’}QC(s_pO—H/ ‘u;RT‘pdx

Qr Qr
suitable &

<1in +0AP0%/|%\”dag
Qr

IN

LI+ CAPyy / |22 + 1dw
Qr

IA

1h + CAPy / |22 | da + CAPoy, RY,
Qr
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and

L) < s / (Du)'[Dv| dx
Qr

< s /(5u)p dx + 6Pty /|Vv\p dx
Qr Qr

<o [(Bupde 5, 1937 4 1da
Qr Qr

Using (7.4) we get

|I3] < 5271/(5u)p dx + C 5,7 APony, </ |u;R‘r|qO d:c—l—Rd)

Qr QRr
and
I,=¢ / V(n®(r — k))Vrde
Qr
— ¢ / 77‘10|V7T|2 dr + ¢ / qonqo_l(w —k)(Vn)(Vr)dz
QRr Qr
=:Iyq + Iy
and
Iiy=¢ /an\Vﬂ\zdx > /’Vﬂ"Q dx
Qr QRry2
and

sl < =C / n |55 | V| da
QRr

§5052/‘”—?{2dx+525/|V7r|2dx
Qr Qr
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and

Is = <f,77q°(u — T)>

< (/|f\ddx>é</\u—ﬂd'da:>%

Qr

_CRd</|f|ddx ][\ x)dl/

1

< C R*||f||4 ][|V u—T1)P dx) (Poincaré, d' = 1* < p%)

1

< C RY| |f||d<][|Du|p°° dx) (Korn and DT = 0)

< CRYfq( 0 |Du|p°° dx + 6 p°°+1) (Young)

< CRd||f||d(5][(5u)p dx + 5_p°°+1>

Qr
<éC ||f||d/(5u)p dx + R C||f||g 07"~
Qr

< dym / (Du)? dz + R® Cs, 7P| £
Qr

1 L
16| < / flivide < ( / £z ( / v[? dr )’

= CRY||f|l, ][\R| da:)—,

and

< CR||f||4 ]Z\Vv\p“’ da:)pTo Poincaré

1

< O RYf||4 ][|vuypoo dm)

1

< ¢ R, ][|Du|p°° ar)™  (Komn)

(
(
< C e f e[ dr) ™ by (74)
(
(



134 7. STATIONARY p-STOKES

< CRdHfHd((S][\Du\p“ dx + 5*“““) (Young)
Qr

<C Rd||f]|d(5][\ﬁu|p dx + 5p°°+1>
Qr

<6C||fla /\EuV’ dx + R C||f]|467P=*
Qr
< dm /Vﬁu!p dr + R Cg, ™|
Qr

Overall we get

T /(ﬁu)pdx+e /’V?T’le'

Q@R/2 QRry2
< nylApﬂ/ |27 | do + C AP R?
Qr
+525/|V7r|2dx+5052 / |75 |* d
Qr Qr
+0om /(5u)p dz + R Co, 7 " £
Qr

Due to a result of M. Giaquinta and G. Modica (see [GM82], lemma 0.5), we can
get rid of the third and the fifth term on the right-hand side by increasing the multi-
plicative constants by a fixed factor, i.e.

" /(Eu)pdx—l—s /|V7r|2dx

QRry/2 QRry/2
< ClePO/ |57 dx + C AP R
Qr
woC [ |5t RO el
Qr
Dividing by R? proves the lemma. U

3. Reverse Holder Estimates

LEMMA 7.3. Let ® be a p—potential with ellipticity constants v,,7v, and p € C(2),
1 < poo < po < 00. Let p also satisfy the requirements of lemma 2.6, i.e. the module
of continuity w of p satisfies
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for all 0 < R < 1. Further let u, 7 be a weak solution of (7.3) with f € LY(Q). Let
A= % Then there exists Ry > 0 and 0 < 6 < 1, such that for all axis parallel cubes

Qr € Q with diam(Qgr) < Ry there holds

" ][(Eu)pders ][|V7r|2dx

QRry/2 QRr/2

~ G
< CmAPC (][ (Du)ep dx) + C vy AP

Qr

1
0
veo( f 1wapran) "+ e,
QRry2

Note that the constants are independent of v1,7v2, and €.

PROOF. Fix 6§ € (max{ Ii, d;il}, 1). Since p is uniformly continuous, there exists
0 < Ry < 1, such that

dpoo Q
—— = <
d+ poog Po,@
for all cubes @ with diam Q) < Ry. Fix xg € Q and let Qg := Qgr(x¢) with 0 < R < Rj.
Without loss of generality we further assume that Ry is so small that Qo is still a
strict subset of €2 and does not cover all of {2. By definition of Ry we have

(7.5) <6lq and 1 <0gs.

Thus using the Sobolev embedding W1%=(Qr) — L%(Qg) in combination with
Korn’s inequality we deduce

g

wr gy < (f |Duf )™
[47r|" de < {  [Du[™ de

Qr Qr

< (][ (Bu)g”dx)gg_ow.

Qr

Since u is a weak solution, we have

/ (Du)? dz < C.

Q



136 7. STATIONARY p-STOKES

This implies

90

][!%VO dr < <][ (f)u)epdx)m

QR QR
1 40 —doo
~ ep 6 —~ 0p 000
< (][ (Du) dx) (][ (Du) d:c)
QR Qr
~ \0p % _ lap—acol
< ][(Du) dr )’ Qa2
Qr

a0 —acc |
Now lemma 2.6 implies |Qg|™ Y < 0, 50

][ v | gz < C <][ (5u)0pdx)%.

Qr Qr

Thus lemma 7.2 gives

o ][(f)u)p dr + ¢ ][\Vﬂzdx

QRry2 QRry2

~ 3
< CyAPC (][ (Du)ep dx) + C' vy AP°

Qr

420 f |5 do O el
Qr

On the other hand from di+2 < 6 < 1 and the Sobolev embedding Wl’%(QR) —
L*(Qg) there follows

a+2

][ 7| de < ( ][lwlf—f? dw)T

Qr QRry2

é
< ( ][|V7r|26d$) .

QRr/2
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Thus
" ][(f)u)p dr +¢ ][|V7r|2 dx
Qr/2 Qry/2
N
< Cy AP C <][ (Du) pdx) + C AP0
Qr
g
+ EC( ][|V7T|26 dx) + C”yfp""HHfHZw.
QRry/2
This proves the lemma. O

4. Meyer Type Estimates
From the reverse Holder estimate in lemma 7.3 we deduce:

THEOREM 7.4. Let ® be a p—potential with ellipticity constants v1,7v2 and p €
C(2), 1 < poo < po < 00. Let p also satisfy the requirements of lemma 2.6, i.e. the
module of continuity w of p satisfies

C
R) <
w(R) < —InR
for all 0 < R < 1. Further let u,7 be a weak solution of (7.3) with f € L%(Q). Let
A= z—f Then there exists 6 > 0 and K > 0, which only depend on p, v1, and s,

such that u € WHPOU)(Q) - Further for all s € [1,1+ 6] there holds

( ][(ﬁu)s”da:)%—ka( ][|V7r|25dm)%

QRry/2 QRry/2

SK( ][(Eu)pdx—i-e ][|V7r|2d.r—|—1+||f||5°°).

R/2 QRry/2

Proor. This theorem is a direct consequence of lemma 7.3 and theorem 1.2
in [Gia82] (M. Giaquinta). O






CHAPTER 8
Appendix

1. Miscellaneous

LEMMA 8.1 (Aubin-Lions). Let 1 < o, f < 0o. Let X be a Banach space and let
Xo, X1 be separable and reflexive Banach spaces. Provided that Xo —— X — Xj,
we have

{veL*(,Xo); Owe LI, X))} —>— LI, X).
PROOF. See Lions [Lio69] (section 1.5) or the survey paper of Simon [Sim&87]. [

LEMMA 8.2 (Bogovskii). Let Q be a bounded domain with Lipschitz boundary in
R with d > 2 and let 1 < g < qo < 00. Given f € L9(Q) with

Q/fdxzo,

there exists a vector field v : Q0 — R? such that
divv = f,
v e Wy (),
IVVlg < Cllfllg  for all g with g < q < o,
where C' = C(f, ¢oo, 90, 2).
PROOF. See Bogovskii [Bog80] and G. P. Galdi [Gal94]. O

LeEMMA 8.3 (Korn). Let 1 < p < oo. Further let Q2 denote the d-dimensional
torus, resp. an open bounded domain of R? with Lipschitz boundary. Then there
exists a constant C = C(p,Q), such that for all v.€ WHP(Q), resp. v € WyP(Q),
there holds

HVVHp < CHDVHP'

PROOF. See for example J. Gobert [Gob62] or J. Malek, J. Necas, M. Rokyta,
and M. Rizicka [MNRR96]. O

LEMMA 8.4. Let Q be a bounded domain in R with smooth boundary. Assume
that for any B >0 and r > 1

uc L>(I,C*(Q)), ou e L™ (I, W (Q)).
Then
uec CH(I xQ),

with o = min {3, ﬁﬁ(:jrcll)}.

PROOF. See John, Stard [JS98] lemma 2.2. O
139
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LEMMA 8.5. For all (smooth) u: R? — R? there holds pointwise
(8.1) %|VD*U\ < |V?u| € 2|VDu],

where D™u = $(Vu — (Vu)?). If d > 3 these estimates are optimal, even if we
restrict ourselves to divergence free functions.

PROOF. Define X := R4*4xd by
X = {ae R . g = ajy for all i, 5,k =1,...,d},
then V?u € X. Further define 7, p, o : R¥*dxd _ Rdxdxd py
(7(2))ijr = @i,
(@))igr = 5 (@i + aign),
(07 (a))ijk = 5 (am; — aijn),
(a)) § (aijr + airg + ajie + @i + arij + argi)
forall 7,7,k =1,...,d, then
o™ (V?u) = VDu,
o (V*u) = VD u.
For all a € X there holds
p(a)-p(a) =a-p(a)
= % Z ik (aijk + Qikj + Qjig + Qjgi + Qi + aka‘)

ik
1

=3 E aijr (aijr + aing + ajr;)
ijk

1 1 1

=3 E AijkQijk + 3 E AijkQikj + 3 g @ik Ajki
ijk ijk ijk

_1 2

=za-a+z;a-7(a)

_ 1 4 -

=-—za-atza-o'(a)

_ 1 4+ +

=-—za-atzo0'(a)-0"(a).

Thus
a-a=40%(a)-ot(a)—3p(a) - pla)<4ot(a) ot (a).
This proves
|V2u|? < 4|VDul%.

Since

there follows
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So |V?u|? = |[VDu|? + |VD u|? and |[VDu|? < 2|V?u|. This proves (8.1).

It remains to prove that for d > 3 the inequality (8.1) is optimal even for divergence
free functions. Obviously it is enough to prove this for d = 3. Define u(z,y, z) :=
(yz,72,0)T, then divu = 0, |[V?u|? = 4, |[VDu|? = 1, and |[VD~u|? = 3. This proves
the lemma. 0

REMARK 8.6. Note that
(8.2) 8j8kum = 8]-ka11 + 8kiju — 8ijku.
This immediately implies |V>u| <3|V Du|, which is only slightly weaker than lemma 8.5.

2. Gronwall’s Inequality

LEMMA 8.7. (a local version of Gronwall’s lemma)
Let Taa > 07 ham € Ll([()?T])f f € Cl([O,T]), f7g7 ham > 07 and
() < h(t) f(t) +m(t) f(£) 7,

then

t
1

(1) < exp(H (1)) 7(0) (1~ af (0)° / exp(aH(s))m(s)ds)

0
for all 0 < t such that o f(0)® fot exp(aH (s))m(s)ds < 1, where

H(t) = /t h(s) ds.

PROOF. Define a : [0,T] — R2° by

t

a(t) = exp(H (1)) £(0) (1 —af (O [ esplati(s)m(s) ds)

_1
a

Then a solves

'(t) = h(t) a(t) + m(t) a(t)' .
< <a

a
Since a(0) = f(0) and f/(t) < a'(t) this implies f(t) (t). This proves the lemma.

O

LEMMA 8.8. (a second local version of Gronwall’s lemma)
Let T,a >0, g,h € L'([0,T]), g,h,m > 0. Let f € C*([0,T]), and f > 0. Define &,
by

co = (1-27°) (a(l + £(0)° / exp(a(G + H)(s)) ds)

where

G(t) ::/tg(s) ds, H(t) ::/th(s) ds.
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Then if
F1(1) < g(t) + h(t) f(t) + f(£)+e

for some € with 0 < e < gq, there holds

£(t) < 2(1+ £(0)) exp /g ) -1

0

forall0 <t <T.

PROOF. Let a(t) := f(t) + 1, then a satisfies

a'(t) < g(t) + h(t) f(t) + e f(1) 7 < (gt) + h(t) a(t) +ca(t)F.
Thus by lemma 8.7

_1
a

a(t) < a(0)exp((G+ H)(t)){ 1 — aaa(O)o‘/exp(a(G + H)(s)) ds> ,

_1
«

< a(0)exp((G+ H)(t))| 1 — egcva(0 /exp G—l—H())d) :
)

e N

1
«

< a(0) exp((G + H)(1) (1 - (1 -2
— 24(0) exp((G + H)(t)).

\/

This proves the lemma. 0

LEMMA 8.9. (discrete explicit version) Let a,,, by, ¢, be sequences of non—
negative numbers, satisfying

(83) dtam + bm S Am—1Cm,
for all m > 1, where d;a,, = %(am — Qy_1). Further let c,, € I'(I). Then there holds
el 1) + Nomllir ) < aoexp ([lemlliy))-

LEMMA 8.10. (discrete implicit version) Let a,,, by, ¢, be sequences of non—
negative numbers, satisfying

(8.4) Ay + by < Ay Coms

for all m > 1, where dia,, = %(am — Qy—1). Further let ¢,, € 19(1}) for some q > 1.
Then there exists ko > 0 with kg = ko(q) and C = C(q), such that if (8.4) is fullfilled
for some k with 0 < k < kg, then

lam iy + lomllizy < C aoexp ([lemllisq,))-
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3. Lower Semicontinuity

LEMMA 8.11. Let Q be a domain in R and I := [0,T] C R, T > 0. Further let

F:TxQxR™xR" with

(1) F >0,

(2) F measurable in t,x for a.a. y,z,

(3) F(t,z,-,-) continuous for a.a. t,z,

(4) F(t,z,y,-) be convez for all y and a.a. t,x.
If wh — win LL (I x Q) and VWY — Vw in LL (I x Q), then for all r,s with
1<r<oo,1<s<ooorr=s=1 there holds

HF(t, T, W, VW)‘

< limNinf HF(t,JZ,WN,VWN)‘

L7(I,L5(2)) L7 (1L ()

PROOF. If r = s = 1 the result follows immediately from theorem 1 (De Giorgi)
from [GMS98], pg. 132. So let us assume 1 <r < oo, 1 < s < oco. Since L*(Q)
is reflexive, the dual of L"(I, L*(R2)) is L' (I, L% (Q)) (see [DjU77]) and for all f €
L7(1, L2(€2))

I/

Lr(I,L5(Q)) = sup [(f, )]

lle LT’(I’LSI(Q>>§1

For p € L' (I, L*(Q)) with ¢ > 0 and ol prr 1. psr @) < Tlet Fip : IXQXR™XR™ — R
be defined by

Fy(t,z,y,2) = F(t,z,y, 2)p(t,x).
Then F,, fulfills

(1) Fo >0,

(2) F, measurable in ¢,z for a.a. y, z,

(3) F,(t,z,-,-) continuous for a.a. ¢, z,

(4) F,(t,z,y,-) be convex for all y and a.a. t, z.

Hence by theorem 1 (De Giorgi) from [GMS98], pg. 132

// F(t,z,w, Vw)p(t,z) dxdt
TQ

(8.5) < limNinf // F(t,z,w" , Vw™)o(t,z) dz dt

< limNinf HF(t,J:, wh, VWN)‘

Lr(I,L3 ()
Since F' > 0, the norm formula for F' reduces to

HF(t,:U,W, VW)‘

L7 (I,L35(Q

_ <1// (1, W, VwW)p(t, o) da .

||¢||LT/U oo

This and (8.5) proves the lemma. O
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COROLLARY 8.12. Let Q be a domain in R" and I := [0,7] C R, T > 0. Let
F:IxQxR"xR" =R and G: 1 xQ xR™ — R"™" with

F(t>$ay>z) = Z Gaﬁ(t,QT,y)ZaZg.
a,B=1

Moreover assume G satisfies

(1) G >0, i.e. is positive semidefinite,

(2) G measurable in t,x for a.a. y,

(3) G(t,x,-) continuous for a.a. t,x.
If wh — win LL (I x Q) and VWY — Vw in LL (I x Q), then for all r,s with
1<r<oo, 1< s < oo there holds

HF(t,a:,w, Vw)’

< liminf HF(t, z,wV, VWN)(

LT (1,L5()) Lr(I,L ()
PRrOOF. For % < ¢ < 1 define Fy by
Fy(t, 2y, 2) = (F(t,2,y,2))
then F, fulfills the requirements of lemma 8.11. Thus
1
q

HF(t’ O VW)’ L (1,13 (%)

F,(t,z,w,Vw)

L (1,15 () N ’
1
q

E,(t,z,w", Vw")

< lim inf ‘ . s
N La(1,LE ()

= lim inf HF(t,x,wN,VWN ‘
N Lr(1,L5(€))

4. Interpolation (Espaces de traces)

In this section we will prove an interpolation theorem, which is very useful in
deriving estimates for solutions of parabolic problems pointwise in time. Suppose
that u is a solution to a parabolic problem, such that u, resp. dyu, are in the Bochner
spaces LP°(I, Ay), resp. LP'(I, A1), where Ay and A; are Banach spaces. Then we
will see that u is with respect to the time a continuous function with values in the
real interpolation space Ay, := [Ag, A1]g,q, where 8 = 0(po, p1) and ¢ = q(po, p1). The
proof will be quite standard and we will mainly compile results which can be found
in [LP64], [BL76] and [AdaT75]. Nevertheless to the knowledge of the author there
exists no exact statement of this result in literature. Since this interpolation result
plays a fundamental role in this thesis it is indispensable to prove it in some detail.

DEFINITION 8.13. Let Ay C A; be two Banach spaces. Let 1 < p; < oo, a; € R
and n; = a; + 1% for 7 =0,1. Let X denote the space
J

X(A()?Al) = {U < Llloc(RZO; A0)7ul € Llloc(RZO;Al)}‘
We shall work with the Banach spaces V=V (po, a, Ao; p1, 1, A1) with
V ={u e X(Ap, A1); ||ul||y < oo},

lJully (1) = max {[[t°u| 1o 20, a0), £ 0 || L1 ®20,4,) } -
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These spaces have been introduced by J. L. Lions and J. Peetre [LP64], but
J. Bergh and J. Lofstrom have defined similar Banach spaces V (A,p,7) (see [BL76],

se
corollary 3.12.3). The interconnection of these spaces is that both V((Z,ﬁ,ﬁ) and
V(po, g, Ao; pravr, Ar) are norm-equivalent, if we choose n; = a; + p%. with 7 = 0,1
(see [BL76], remark 3.14.12).
LEMMA 8.14. Let u € X (Ao, A1) then there exists b € Ay + Ay = Ay such that
t
u(t) =b+ /u’(T)dT, a.e. in R7°.
1

FEspecially u is continuous on (0, 00) with values in Aj.

PROOF. The proof of this lemma is standard. We refer to Adams [Ada75],
lemma 7.12, for a similar result. [l

Note that due to this lemma every function u € X has a limit u(0") in Ag+ Ay =
A;. The lemma still holds true if R>? is replaced by an intervall I = [0, T].

DEFINITION 8.15. By T = T(po, v, Ao; p1, 1, A1) we denote the space of traces
u(0%) of functions u € V.=V (po, g, Ao; p1, 1, A1) equipped with the quotient norm

fullr = inf ol

T (po, g, Ao; 1,1, A1) is a Banach space.

THEOREM 8.16. Let 1 < p; < 00, aj € R, and n; = o + ]% with 7 = 0,1. Further
J
let 0 and p be given by

0= ———,
m+1—m P Po D1
Ifno > 0 and n; < 1, then

T (po, a0, Ao; p1, a1, Ar) = Ag .

PROOF. J. Bergh and J. Lofstrom have shown that their trace space T(A,p,6)
is under the stated conditions 19 > 0 and 7 < 1 equivalent to the trace space
T (po, g, Ao; p1, 1, Ay) of J. L. Lions and J. Peetre (see [BL76], remark 3.14.12).
Further J. Bergh and J. Lofstrém showed that T(A,p,0) = Ap, (see [BL76], pg.
72-75). O

REMARK 8.17. Let 1 < pg <00, 1 <p; <00 and ag = a3 =0, thennozpio >0
and ny = pil < 1. Hence the requirements of theorem 8.16 are automatically fulfilled
for T'(po, 0, Ag; p1,0, Ay). This case will later be of great importance. Hence we define:

DEFINITION 8.18. For 1 < p; < oo with j =0,1, let

V(pOaAO;plaAl) = V(p07OaA0;p1707A1)7
T (po, Ao; p1, A1) :== T (po, 0, Ao; p1, 0, Ay).
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THEOREM 8.19. Let 1 < p; < oo with j = 0,1 and

(8.6) S —

P1+ P1pPo — Po
then

T(pOaAo;pbAl) = Zg,%
and
V(po, Ao; p1, A1) — LOO(RN);Z%) N C(R>0;Z%).

Furthermore
(8.7) el iz, ,) < llellv,
(8.8) ||u||L°°(IR{ZO;ZG%) <C ||u||2;09(ﬂg20;,40)||u/||6LP1(]R20;A1)'

PROOF. In the notation of theorem 8.16 we have ny = pio >0 and n = 1%1 <1

and

1
Mo Po D1

6: p— p—
no+1—m

T T = :
oo T 1—2  DPitpipo—Dpo

Furthermore
1_ 1—9+ 0 B (m—1)+1

= =0.
P Do P1 P11+ DPipo — Do

This proves (8.6).
Due to lemma 8.14 we can assume u € C(R=% Ay + A; = A;). Let u € V =
V(po, 0, Ag; p1,0,A1). For h > 0 we define mu by (t,u)(t) = u(t + h), then Tu €

V NC(R2% Ay + Ay). By definition of T and theorem 8.16 there holds
[uh) s, , = IO,

L S mully < lullv.
0 ' 0

This proves the embedding V — L>®(R>% A4, 1 ) and estimate (8.7). In order to show
Ve C’(R>0;Z9%) let t >0and h — 0 (for t =0 let h | 0), then

lu(t +h) —u@®lz,, = I(7ernu = 7u)(O)1z,

Tl
=

< (Tegnu — mu) ||y

S max {\H7—t+hu — Ttu||Lpo(R>0;AO),1|Tt+hu/ — Ttu/”Lm (R>O;A1)J}

NV TV
0 0
h
— 0.

Still we have to prove the logarithmic convex inequality for the norms of w. This will
be done by a scaling argument. For A > 0 let myu be defined by (m\u)(t) = u(At).

[u(0)llz, , = (mxu)(0)l7,
< Clmullv

1
0

S

S C max{||7r)\u||Lpo(R>o;Ao), ||(7T,\)u/||Lp1(]R>0;A1)}

_1 _1
= C max {A PO ”’LL”L;DQ(R>O;140)7 )\1 r1 ||ul||LP1(R>O;A1)}'
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The minimum of the right-hand side over all A > 0 is attained at \y with

_1 1—L
Ao " lullro@=0,00) = Ao " H[U' | om m0sa,).

Hence
HU(O)HZG = C HUHLPO(R>0 Ag) v/ HLm ]R>%1A1)

|

=C ||u||Lp0 (R>0; Ag) ||u/||LP1(R>0;A1)'

This implies the desired inequality for «(0). For A > 0 consider

lu(Mliz, , = I(7)u0)ll7, ,

|
Q:a

<C HThuHLPo R>0;A0)”Tl/zH%Pl(R>0;A1)
<C HUHLPO R>0;A0)||“/||(zp1 (R>0:4,)"

O

Later, when u will be the solution of a parabolic differential equation, we cannot
always ensure that v is defined for all ¢ > 0. Instead there will be a constant 7" with
0 < T < oo such that u is defined on (0,7).

DEFINITION 8.20. Let Ay C Ay be two Banach spaces and I = [0,T] with 0<T < oc.
Let 1 < pj < oo with j =0,1. Let X; denote the space

X;(Ao, A1) = {u € Lo (I; Ag), o € LL (T A},
We shall work with the Banach spaces Vi =V (I; po, a, Ag; p1, 1, A1) with
={u € X1(Ao, A1); ||ully, < oo},
||UHVI(U) = max { [t*ul| pro (1.0, [t ' | o1 (130 }-
Note that V(po, 2o, Ao; p1, 1, A1) = Vi=o(po, o, Ao; p1, a1, Ar).
THEOREM 8.21. Let 0 <T < o0, I =[0,T], 1 < p; < oo with j =0,1 and

0 = L
P14 pipo — po’
then
Vi(po, Ao; p1, A1) — C(I;zg,%)-
Furthermore

HUHLOO(I;Z < C max { [lull zro(r.a0) I1ull oo (roa0) 14 1201 (1:40) }-

PROOF. Let u € Vi := Vi(po, Ao;p1, A1). Let ¢ € C°(R) with 0 < ¢ < 1,
¢|[07§T} = 1, and g0|[%T,OO) = 0. Let w =u-¢, then w € V := V(po,Ao;pl,Al).
By theorem 8.19 we conclude w € C(RZO;ZQ ), hence u € C([ 2T); Ags 1). If we
substitute u by w with w(t) := w(T — t) and w by w with w = @ - ¢, we get u €
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Ze 1). Altogether we have proven u € C(I; Zéh %), which implies V; —
(as

s a linear mapping). Furthermore we know that
||U||Loo(1;zg = ||7~U||Loo([o;§}; ) 170 ooz TT)A, 1)
' 0 9 ' 0
< fwllv + [[@]lv.

We will now show that the right-hand side is bounded independently of w. For this
we will only examine ||wl||y, for |||y can be handled by exchanging w by w in
the following calculations. Recall that ||ully, < 1, so by lemma 8.14 there holds
1o (a0 < Cllullvy-

[l ro >0, 40) = [t - llro g>0,40) < [ @lloollullro(r,40) < Cop [lull oo (1, 0)-

Hw/HLm(R>0,A1) = [|(u- SO)IHLPI(R>0,A1)
<" @l @zo,.ay) + | w - @[l o1 =0,41)
= |lu" - pllLe@>0,4,) + |- &[|Lrr(1,41)
< lelloo 1t ll o1 (1,40) Flell1,00 1l zor (r,a1)
<llullv, <C lullv;
< (1420 9lli00) llullvy
< Cy [[ullv;-

Hence

lwlly < lwll @0 a1 170 @>0.4,)
( )

< Collull a1, a0 1ullY;
< Collullv;-

This shows on the one hand that V; — C(I; Za,é) and on the other hand that
||u||L°°(I;Ze’é < ||w||L<>o(o-Z]-Z 3) + ||w||L°°([%;T];ZQ%)
< Cllull5 s

=C maX{Hu”LPO I,Aq)> HUHLPO (I,4) ”uIHil’l([,Al)}'

This proves the theorem. U

5. Lorentz Spaces

In chapter 4, 5, and 6 we make use of the Lorentz spaces L%"(Q2) with r, ¢ € [1, o0].
Therefore we give a short overview of the properties of these spaces (see [BL76] for
reference).

Let Q be an arbitrary domain (Q C R? or the d-dimensional torus) and let
f 2 — R be measurable. For A > 0 let

m(A, f) =Ry € Q= [f(y)] > A}
Then
fr@) :=inf {A>0: m(\ f) < t}, t € 10,00)
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is the decreasing rearrangement of f. This is a non—negative and non—increasing
function on (0, 00), which is continuous on the right and has the property

m(A, f) =m(A f),  A=0.

Now the Lorentz space L?" := L%7(Q) is defined as follows. We have f € L%7,
1 < g < o0, if and only if

i 1 rdty 7
= ([ @@y g) <o whentsr<e

0
| fllaee = Stu%))t%f*(t) < 00 when r = oo.
>

For 1 < g < oo we further introduce the weak L? spaces denoted by Lyea?. The space
Lyeak? := Lyea’(2), 1 < ¢ < 00, consists of all measurable f such that

1

(89) HfHLweakq = Supm()\7 f)q < 0Q.
A>0

In the limiting case ¢ = 0o we put Lyeax? := L. Note that |||, is not a norm if
1 < ¢ < 0o but a quasi norm thus defining a topology. For all 1 < g < oo we have
(8.10) L9(Q) = LI(Q),
(8.11) L9°(Q) = Lyeax?(€2)
with equality of (quasi-)norms. Especially a set M C L%*(Q2) is bounded with

respect to ||-||e if and only if it is bounded with respect to ||-||., ... For more
details regarding Lorentz spaces see Bergh, Lofstrom [BL76] and Triebel [Tri78|.






Notation

generic constant

d—dimensional torus

scalar product in space, i.e. (f,g) = [ fgdx
Q

smooth functions with compact support
Lebesgue space

Lorentz space

Sobolev space

Sobolev space on torus with mean value zero
Besov space

Bochner space (with I = [0,77)

discretized time interval, i.e. I = [0, k, 2k,...,T]
with time step size k = %

time discretized version of L9([)

1
with norm || fllusry = (k3 polfm|")7 for 1 < ¢ < oo
symmetric part of the matrix A
scew symmetric (anti symmetric) part of the matrix A
symmetric part of the gradient Vu
mean value integral over the set B
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