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München, den 28.02.2023

Jago Silberbauer





Dedication

This thesis is dedicated to my mother Regina and both my sisters Jana and Nina. Without
their continuous and unconditional support in all my endeavors, this work would not have
been possible. They are my role models and I am eternally grateful for them.

Acknowledgements

I would like to express my sincerest gratitude and appreciation to my supervisor Dr. Dirk-
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1 Introduction

In this thesis, we examine the approximation capabilities of Neural Ordinary Differential
Equations depending on the dimension of their input space. Moreover, we argue why a
certain Sobolev norm is a reasonable choice for quantifying the richness of the hypothesis
space (also called complexity) of this model.

In 1989, Hornik ([HSW89]) and Cybenko ([Cyb89]) proved that, for an appropriate non-
linear function σ : R → R (acting componentwise, if the domain has dimension higher than
1; often called activation), and upon choosing N ∈ N large enough and finding suitable
so-called weights C ∈ RN×d, d ∈ RN , S ∈ Rm×N , the map

K ∋ x 7→ S · σ(C · x+ d) ∈ Rm, (1.1)

can approximate any continuous function h : K → Rm, w.r.t. the sup−norm on K, where
K ⊂ Rd is compact. The function given in (1.1) is a neural network with a single hidden
layer, where N is potentially large. Neural networks with multiple hidden layers are typically
functions x 7→ S · yL[x] that are given by the recursion

K ∋ x 7→ y1 := σ(C1 · x+ d1) (1.2)

7→ y2 := σ(C2 · y1 + d2)

7→ . . .

7→ yL := σ(CL · yL−1 + dL) ∈ Rm,

where we choose L ∈ N and natural numbers Nl, l = 0, 1, . . . , L with N0 = d. For the
weights, we have Cl ∈ RNl×Nl−1 , dl ∈ RNl and S ∈ Rm×NL in this case. The number of
recursion steps L, or synonymously the number of hidden layers, is called depth of the neural
network and N := maxl=1,...,LNl its width. For such neural networks several approximation
results have been proven, where either L or N is unbounded, or even both are; see, e.g.,
[LPW+17], [KL20], [HSW89] and [Cyb89]. These results are called universal approximator
theorems and they sparked the idea that neural networks can solve virtually any prediction
task. A popular procedure of finding a predictor x 7→ pθ(x) as in (1.2) depending on the
collection of all weights θ is the following:

1. Take data D := {(xj, h(xj))}j=1,...,J , J ∈ N, which represents evaluations of a target
function h, i.e., the function that is to be approximated;

2. Choose depth L and N1, . . . , NL for your particular network architecture;

3. Define a loss function depending on the weights of the network, where a smaller output
means, that the network resembles the data better, e.g.,

R(θ) :=
1

J

J∑
j=1

|h(xj)− pθ(xj)|2 ;

4. Find weights θ that minimize this loss via, e.g., Gradient Descent.
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The last step is often called training or learning. Notice that we have to choose L and Nl,
l = 1, . . . , L in the second step. So naturally, questions arise like ’How do we know which
depth and width to choose, such that the model performs good on the given data and also
generalizes well to unseen inputs?’ or ’What consequences arise when the width or depth
becomes very large?’, to which there are still no satisfactory, general answers.

In 2016, He et al. gave some insights to these questions in [HZRS16]. They describe that
the deeper a neural network becomes the more the accuracy of the network during training
might degrade. This means that ”better training” is not necessarily as simple as increasing
the depth of the network in the case of (1.2); in the literature this is sometimes called the
”degradation problem”.1 The problem was partially addressed by making use of so-called
Skip Connections, meaning that an output of a layer is the sum of the previous layer output
evaluated by the activation function. Concretely, the recursion in (1.2) with skip connections
is recast into

x 7→ y1 := x+ σ(C1 · x+ d1) (1.3)

7→ y2 := y1 + σ(C2 · y1 + d2)

7→ . . .

7→ yL := yL−1 + σ(CL · yL−1 + dL).

Such a network is then called a Residual Neural Network or ResNet2.
We are not going to be concerned with the degradation problem in this thesis. However, as

mathematicians, naturally, we are interested in the infinite layer limit. Namely, heuristically
speaking, (1.3) resembles a Euler-Discretization of an Ordinary Differential Equation, i.e.,
taking the limit L → ∞ of the recursion in (1.3) formally yields an initial value problem of
the form

ẏ(t) = σ(C(t) · y(t) + d(t)), y(0) = x, (1.4)

where t stems from a finite time horizon, say t ∈ [0, 1], and the weights are now functions of
time namely C : [0, 1] → Rd×d and d : [0, 1] → Rd. We might ask ’Can we create a network
architecture with continuous depth that comes from such an ODE?’, hoping that it would
give more insight to the roles, that depth and width play.

Precisely this was done by Chen et al.([CRBD18]) in 2018. In their paper, a model was
formulated in terms of an ODE, where a loss function is optimized w.r.t. the collection of
weights Θ, so that the flow of the ODE evaluated at t = 1 as a function of the initial datum
x, approximates some target function h. Put differently, in the setting of (1.4), functions C
and d are found, such that y(1) is close to h(x). Note that here, we have a constant ”width”
equal to the dimension of the space, from which the initial value stems. This architecture
was given the name Neural Ordinary Differential Equation.

1This passage on the degradation problem is merely here to motivate the model in (1.3). For more details
on the matter see [HZRS16].

2We need to be careful here, so that the addition in each step is well-defined. For instance we can enforce
constant width throughout the layers.
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As Neural ODEs seem to have interesting properties that may be advantageous for certain
objectives, it is worthwile addressing the fundamental question:

Is there a universal approximator theorem for the model class of

Neural Ordinary Differential Equations?3

Or put differently: ”Can we prove that Neural ODEs can approximate any continuous
function on compact set w.r.t. the sup-norm?”. The goal of this thesis is to shine some
light on the answers to this question. We are going to see that the width of a Neural ODE
plays a crucial role in this. In particular, we give an overview of the complications that arise
for this model, in the context of approximation, when the width is too small. Additionally,
we show how artificially enlarging width can address these issues.

Contributions

The main contributions of this thesis to the theory of Neural Ordinary Differential Equations
can be summarized as follows:

1. Inspired by [DDT19, Section 4], we define a certain class of scalar-valued functions
that can not be represented by a Neural ODE composed with a linear transformation.
We show in Cor.3.6 that approximation is impossible as well.

2. We show that universal approximation becomes impossible for Neural ODEs in Prop.3.9.

3. We extend a universal approximator theorem for artificially enlarged Neural ODEs
proven in [AK20, Section 2] to the case of the output dimension being larger than the
input dimension in Thm.3.21.

4. Addressing the problem from the first point above, we prove a general theorem on
linear separation via Neural ODEs in Thm.3.23.

5. In Section 5, we argue for properties that a suitable quantifier for the richness of the
hypothesis space of Neural ODEs should have. Moreover, we show that a certain
Sobolev norm of the parameter function satisfies these desired properties.

3In [TTI+20, Section 3], it was proven that composing several Neural ODEs with one another, represented
by autonomous ODEs allows for universal approximation of C2-Diffeomorphisms. In contrast, here, we
are concerned with the approximation capabilities of only one Neural ODE that may stem from a non-
autonomous ODE.
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2 Notations and Definitions

We will now establish notations, definitions and some well-known results that are going to
be used in this thesis. Throughout we consider the vector space Rd, d ∈ N, endowed with the
standard scalar product ⟨·, ·⟩ which induces the euclidean norm, denoted by |·|. The topology
that is inherited from this norm yields the usual notion of compact sets; for a subset M of a

normed space, its closure w.r.t. to a norm ||·|| is denoted by M
||·||

, its boundary by ∂M and
its interior is Mo. If the closure is taken w.r.t. the euclidean norm, then we simply write M .
Derivatives of a function, say f , at a point x are denoted f ′(x) or sometimes dfx; when we
derive w.r.t. a time variable we write ḟ . Integrals in question are always given by the usual
Lebesgue-integral. We are also going to make use of the accustomed Landau-symbols o and
O whose definitions can be found in [For04].

As mentioned in the introduction, the layers of a neural network depend on so-called
weights. We symbolize the space of such weights by W . Depending on the type of neural
network used, elements of this space might be matrices, vectors, scalars or tuples of such.
However, eventually the space of weights is isomorphic to Rk for some k ∈ N, and that is
what we will work with in this thesis. For a network with L layers (this excludes the input
layer but includes the output layer), where L ∈ N, we need weights for each layer. The space

of these weights will be WL :=×L−1

l=0
W (one weight for each layer). Note that this definition

implies that the network has constant width equal to the dimension of W . On the spaces
W and WL, we also employ the standard topology.

We now turn to our spaces of activation functions. Define F(Rd,W) ⊂ C(Rd ×W ;Rd)
to be the set of continuous functions f : Rd ×W → Rd for which there exists an increasing
function γf : [0,∞[→ [0,∞[, such that for all x, x̃ ∈ Rd and θ ∈ W we have

|f(x, θ)− f(x̃, θ)| ≤ γf (|θ|) · |x− x̃|.

Note that this is essentially a Lipschitz-estimate in the first argument of f . Moreover, we
impose that γf (s) = 0 is a sufficient condition for s = 0. Next, we define the subclass of
linearly bounded activation functions via

Fa(Rd,W) := {f ∈ F(Rd,W) | ∃ka, ca>0∀x∈Rd∀θ∈W : |f(x, θ)| ≤ ka · |θ|+ ca}.

Lastly, we define

Fb(Rd,W) := {f ∈ F(Rd,W) | ∃cb>0∀x∈Rd∀θ∈W : |f(x, θ)| ≤ cb},

as the subclass of bounded activation functions. As a result, the following inclusions Fb(Rd,W) ⊂
Fa(Rd,W) ⊂ F(Rd,W) hold.

2.1 Example. Consider the function

σ : R → R, s 7→ σ(s) :=
1

1 + e−s
,
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known as the logistic activation function. Note that the derivative of σ is globally bounded
by 1/4, which, by the mean value theorem, implies that

|σ(s)− σ(s̃)| ≤ 1

4
· |s− s̃|,

for any s, s̃ ∈ R. We extend this function to Rd, i.e., σ : Rd → Rd, by letting it act
component-wise.

1. Let W = Rd × Rd×d × Rd ∋ θ = (s, w, b). Define the function

f1 : Rd ×W → Rd, (x, s, w, b) 7→ f1(x, s, w, b) := s⊙ σ(w · x+ b),

where ’·’ denotes the usual matrix product and ’⊙’ denotes the Hadamard product of
two vectors, i.e.,

s⊙ y := (s1y1, . . . , sdyd)

for s, y ∈ Rd. Then, f1 ∈ Fa(Rd,W).4 Indeed, it is clear that f1 ∈ C(Rd × W ;Rd)
since σ is continuous (the rest is clear from sequential continuity). Furthermore, since
all norms are equivalent on Rd ×W , there exists a c > 0 such that for any x, x̃ ∈ Rd

and any (s, w, b) ∈ W the estimate

|f1(x, s, w, b)− f1(x̃, s, w, b)| = |s⊙ (σ(w · x+ b)− σ(w · x̃+ b))|
≤ c · max

k=1,...,d
|sk(σ(⟨wk, x⟩+ bk)− σ(⟨wk, x̃⟩+ bk)|

holds, where wk ∈ Rd denotes the k-th row of w ∈ Rd×d. Using the Lipschitz-estimate
for σ and the Cauchy-Schwarz-Inequality, this implies

|f1(x, s, w, b)− f1(x̃, s, w, b)| ≤
c

4
max

k=1,...,d
|sk| · |⟨wk, x− x̃⟩|

≤ c

4

(
max

k=1,...,d
|sk| · |wk|

)
|x− x̃|.

Lastly, since |sk| and |wk| are both less or equal than |θ|, we get

|f1(x, s, w, b)− f1(x̃, s, w, b)| ≤
c

4
|θ|2 · |x− x̃|.

Thus, choosing γf1(s) := c
4
s2 yields f1 ∈ F(Rd,W). To see that f1 ∈ Fa(Rd,W),

choose ka := c and ca := 1. Then, using similar estimates and the fact that σ is
globally bounded by 1, it follows that

|f1(x, s, w, b| ≤ c · max
k=1,...,d

|skσ(⟨wk, x⟩+ bk)|

≤ c · max
k=1,...,d

|sk|

≤ c|θ|
< ka|θ|+ ca.

4In this thesis, when we talk about activation functions, we mostly talk about elements of F(Rd,W).
However, sometimes, like in the present case, the crucial non-linear component is given by some function σ.
With an abuse of terminology, we also call this σ an activation function.
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2. Let W = Rd×d × Rd, which means that, here, θ = (w, b) ∈ W . Define

f2 : Rd ×W → Rd, (x,w, b) 7→ f2(x,w, b) := σ(w · x+ b).

Then, f2 ∈ F(Rd,W) follows from analogous estimates as in the prior example.
Namely, we can choose γf2(s) :=

c
4
s and then

|f2(x, θ)− f2(x̃, θ)| ≤
c

4
|θ| · |x− x̃|

holds for any (x, θ) ∈ Rd × W . Moreover, again since σ is bounded by 1, choosing
cb := c, gives

|f(x, θ)| ≤ c · max
k=1,...,d

|σ(⟨wk, x⟩+ bk)| ≤ c = cb.

Hence, f2 ∈ Fb(Rd,W) holds true.

Note that the choice of σ was somewhat arbitrary, as it just needed to be bounded and have
a global Lipschitz-estimate. Many other popular activation functions, such as the Hyperbolic
Tangent or the Gaussian (see Fig.1), satisfy these properties, too.

Figure 1: Activation Functions Some examples of popular activation functions σ : R → R, which
are bounded and satisfy a global Lipschitz-estimate, are shown here in blue. However, for an unbounded
activation such as the Rectified Linear Unit or ReLU, shown here in orange, f1 and f2 might only belong to
F(Rd,W) and not necessarily to one of the other subclasses.
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In particular, in Section 3, we will talk a lot about convergence of sequences of functions
on compact sets w.r.t. to the p-norm and sup-norm (see [LL01] for more information on
Lp-spaces). For a compact set K ⊂ Rd and a function h : K → Rm, m ∈ N, we define the
p-norm of h on K as

||h||p,K :=

(∫
K

|h(x)|pdx
) 1

p

and we define the sup-norm of h on K as

||h||∞,K := sup
x∈K

|h(x)|.

We note that due to the compactness of K (implying that it has finite Lebesgue-measure),
for any 1 ≤ p < p′ < ∞ there exist constants C,C ′ > 0 depending on K such that for all h
with finite sup-norm, we have

||h||p,K ≤ C · ||h||p′,K ≤ C ′ · ||h||∞,K . (2.1)

The inequalities in the other direction do not hold in general (see [For12]). The inequality
(2.1) tells us that on a compact set K, the convergence w.r.t. ||·||p,K gets stronger as p gets
larger with p = ∞ being the strongest.

Furthermore we will make use of sequences of standard mollifiers, denoted by (ϕη)η>0.
For a definition and a collection of properties see [LL01].
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2.1 Neural ODEs and ResNets

We are now ready to introduce Neural ODEs. As illustrated in the introduction, a Neural
ODE resembles the flow of an Ordinary Differential Equation, that depends on some weight
function Θ : [0, 1] → W . For such a function Θ and f ∈ F(Rd,W) we can define the ODE

Ż(t) = f(Z(t),Θ(t)), t ∈ ]0, 1[, (2.2)

where Ż denotes the derivative w.r.t. t. However, for this ODE to be well-defined we need
an additional assumption on Θ, namely it needs to be weakly differentiable (see Lem.2.2 for
details). Thus, our space of weights for the continuous model will be W∞ := H1([0, 1];W)5,
the well-known Sobolev Space (see e.g. [LL01]), which is endowed with the norm ||·||H1 ,
defined by

||Θ||H1,[0,1] := ||Θ||2,[0,1] + ||Θ̇||2,[0,1].

Here, Θ̇ denotes the weak derivative w.r.t. t.

2.2 Lemma (Well-Posedness of the ODE). Let f ∈ F(Rd,W), Θ ∈ W∞ and x ∈ Rd.
Adding the condition Z(0) = x, turns (2.2) into an initial value problem (IVP). This IVP
is well-posed, i.e., a solution Z ∈ C1([0, 1];Rd) (meaning it is continuously differentiable
on ]0, 1[ with a unique continuous extension on [0, 1]) exists. Moreover, as a solution in
C1([0, 1];Rd), it is unique.

The proof makes use of the well-known theorem due to Picard and Lindelöf and a lemma
on the Sobolev norm:

2.3 Theorem (Picard-Lindelöf). Consider the initial value problem

Ż(t) = F (t, Z(t)), t ∈ ]0, 1[

Z(0) = x,

where F : R×Rd → Rd is globally uniform Lipschitz in the second argument and continuous
in the first. Then, there exists a unique solution Z ∈ C1([0, 1];Rd) to the above ODE that
can be extended to the whole of R.

Proof. See [Aul04]. Note that the statement about the extension comes from the fact that
the Lipschitz constant is global.

2.4 Lemma (Sobolev Norm bounds Evaluation). Let Θ ∈ W∞. Then, for any t ∈ [0, 1], it
holds that

|Θ(t)| ≤ ||Θ||H1 .

Proof. See Appendix A.1.

5There are further reasons for this choice, which are explained in the Sections 4 and 5.
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Proof of Lem.2.2. Aiming to use Picard-Lindelöf’s theorem, we define for a given f ∈
F(Rd,W) and Θ ∈ W∞ the function

F : [0, 1]× Rd → Rd, (t, z) 7→ F (t, z) := f(z,Θ(t)).

We now show that this function is globally uniform Lipschitz in the second argument and
continuous in the first one. The latter is straightforward, as f is continuous and Θ ∈ W∞ =
H1([0, 1];W) ⊂ C([0, 1];Rd) thanks to Sobolev Embeddings (see [LL01]). We now turn to the
desired Lipschitz-estimate. Let z, z̃ ∈ Rd. Then, using the Lipschitz-property of f , the fact
that γf is increasing and Lem.2.4, we find for any t ∈ [0, 1]

|F (t, z)− F (t, z̃)| = |f(z,Θ(t))− f(z̃,Θ(t))|
≤ γf (|Θ(t)|) · |z − z̃|
≤ γf (||Θ||H1) · |z − z̃|,

which is precisely the global Lipschitz-property. Applying Thm.2.3 yields the proof.

We can now properly define what a Neural ODE is:

2.5 Definition (Continuous Flow, Neural ODE). Let f ∈ F(Rd,W). We define the
continuous flow as the map

Z•(·, ⋆) : [0, 1]× Rd ×W∞ → Rd (2.3)

(t, x,Θ) 7→ Zt(x,Θ),

where the output is the solution to (2.2) with initial value x ∈ Rd and weight function
Θ ∈ W∞ at time t ∈ [0, 1]. By Lem.2.2 this map is well-defined. A Neural ODE is a
function like the one in (2.3), but with fixed weight function Θ and time t = 1, i.e.,

Z1(·,Θ) : Rd → Rd, x 7→ Z1(x,Θ).

Furthermore, we denote the set of Neural ODEs w.r.t. f by

Nf (Rd) := {Z1(·,Θ) | Θ ∈ W∞}.

The dimension of the space from which the initial value for the IVP described in Lem.2.2
stems, is called width of the Neural ODE.6 The length of the time interval on which (2.2) is
defined, we call depth of the Neural ODE.7

Note that for fixed x ∈ Rd and Θ ∈ W∞, the map Z•(x,Θ) is a C1-curve in Rd. We
define the length of such a curve as follows:

6Note that in this case, the width is equal to the input dimension of the Neural ODE, namely d.
7Throughout the thesis we work with depth equal to 1.
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2.6 Definition (Length of a Curve). Let φ ∈ C1([0, 1];Rd). We define the length of φ as

l(φ) :=

∫ 1

0

|φ̇(t)|dt.

We will also make use of Grönwall’s lemma:

2.7 Lemma (Grönwall’s Inequality). Let u : [0, 1] → R be continuous and non-negative.
Suppose there exist constants cu, du ≥ 0 such that for any t ∈ [0, 1]:

u(t) ≤ cu + du

∫ t

0

u(s)ds.

Then, the following estimates hold for all t ∈ [0, 1]

0 ≤ u(t) ≤ cu · edut.

Proof. See [Aul04]. Note that in [Aul04] this result only allows for t ∈ [0, 1[ in the assumed
inequality and in the implied estimate. However, our version then follows immediately from
sequential continuity of u.

Now, we collect some important and well-known properties of the flow of an ODE that
we will use throughout the thesis:

2.8 Theorem (Properties of ODE Flows). Let f ∈ F(Rd,W), Θ ∈ W∞ and x, x′ ∈ Rd.
Then, the following statements hold:

1. Z0(x,Θ) = x

2. Z•(x,Θ) ∈ C1([0, 1];Rd) and l(Z•(x,Θ)) =
∫ 1

0
|f(Zt(x,Θ),Θ(t))|dt

3. Trajectories do not intersect: If x ̸= x′ then for any t ∈ [0, 1] we has Zt(x,Θ) ̸=
Zt(x

′,Θ).

4. Lipschitz-continuity in initial data: There exists a constant Cf,Θ > 0, such that for any
t ∈ [0, 1] on has

|Zt(x,Θ)− Zt(x
′,Θ)| ≤ Cf,Θ · |x− x′|.

5. Homeomorphism in initial data: For any t ∈ [0, 1] the map Zt(·,Θ) is a homeomorphism
on Rd.

Proof. See Appendix A.2.

So far, we have only seen Neural ODEs as vector fields. However, we will also talk about
representing and approximating scalar fields:

2.9 Definition (Scalar Neural ODE). Let f ∈ F(Rd,W). Define the set of Scalar Neural
ODEs as

Nf,lin(Rd) := {L ◦ Z1(·,Θ) | L : Rd → R linear, Θ ∈ W∞}.
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A notion form geometry of great importance to machine learning is linear separability of
sets. In this thesis, we are going to make statements about a property that is more general:

2.10 Definition ((Homeomorphic) Linear Separability). Let A,B ⊂ Rd. We say that A
and B are linearly separable if there exists y ∈ Rd and ω ∈ R such that for all x ∈ A and
x′ ∈ B we have

⟨y, x⟩ < ω < ⟨y, x′⟩.

We say that A and B are homeomorphically linear separable if there exists a homeomorphism
h : Rd → Rd, such that h(A) and h(B) are linearly separable.

Notice that linear separability implies homeomorphic linear separability, since the identity
is a homeomorphism. The converse is not true in general (see Fig.2).

In this thesis, we are mostly concerned with Neural ODEs. However, sometimes taking
the discrete perspective of ResNets is helpful. The following lemma, which is a standard
result from the theory of numerical approximation of ODEs, makes the relation between the
two machine learning architectures clear:

Figure 2: Homeomorphic Linear Separability The sets A and B here are clearly not linearly separable,
meaning that it is impossible to find a hyperplane (in this case a straight line) such that A lies entirely on
one side of this hyperplane and B on the other side. However, in some cases it might be possible to find a
homeomorphism h so that h(A) and h(B) become linearly separable. This can be seen figuratively on the
right hand side here. The sets h(A) and h(B) are morphed versions of A and B that can be separated by a
hyperplane H.
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2.11 Lemma (Convergence of Euler-Discretization). Let f ∈ F(Rd,W) ∩ C2(Rd ×W ;Rd),
Θ ∈ C2([0, 1];W) ⊊ W∞ and K ⊂ Rd be compact. For any x ∈ K and L ∈ N define the
Euler-Discretization of (f,Θ) recursively as follows:

zl+1[x, θ
L] := zl[x, θ

L] +
1

L
· f(zl[x, θL], θLl ), l = 0, . . . , L− 1 (2.4)

z0[x, θ
L] := x,

where θL = (θLl )l=0,...,L−1 := (Θ( l
L
))l=0,...,L−1 ∈ WL. Then, the Euler-Discretization converges

to the respective Neural ODE w.r.t. the sup-norm on K, i.e.,

||zL[·, θL]− Z1(·,Θ)||∞,K → 0 as L→ ∞.

Proof. Firstly, we consider the special case of d = 1. Since f ∈ C2(R × W ;R) and Θ ∈
C2([0, 1];W), we get Z•(x,Θ) ∈ C2([0, 1];R) for every x ∈ R (see [Aul04]). Using Taylor’s
theorem and the defining ODE yields

Zt(x,Θ) = Zs(x,Θ) + (t− s) · Żs(x,Θ) + o(|t− s|2)
= Zs(x,Θ) + (t− s) · f(Zs(x,Θ),Θ(s)) + o(|t− s|2), (2.5)

for any s, t,∈ [0, 1]. Choosing t = l+1
L

and s = l
L
implies

Z l+1
L
(x,Θ) = Z l

L
(x,Θ) +

1

L
· f(Z l

L
(x,Θ), θLl ) + o(L−2).

For every l = 0, . . . , L and x ∈ K, define el(x) := Z l
L
(x,Θ) − zl[x, θ

L]. By the triangle

inequality, equation (2.5) and the Lipschitz-estimate for f , we get

|el+1(x)| ≤ |el(x)|+
1

L
γf (|θLl |) · |el(x)|+ o(L−2).

We find a constant Cx > 0 that depends continuously on x (see [For17] for the mean-value
form of the remainder of Taylor-series), such that

|el+1(x)| ≤ |el(x)| ·
(
1 +

1

L
γf (|θLl |)

)
+
Cx

L2
.

Using the fact that γf is increasing, θLl = Θ( l
L
) and Lem.2.4 we obtain

|el+1(x)| ≤ |el(x)| ·
(
1 +

1

L
γf (||Θ||H1)

)
+
Cx

L2
.

Iterating this inequality yields

|eL(x)| ≤
Cx

L
·
(
1
L
· γf (||Θ||H1) + 1

)L − 1

γf (||Θ||H1)
.

13



Moreover, by well-known properties of Bernoulli’s representation for Euler’s number, we get

|eL(x)| ≤
Cx

L
· e

γf (||Θ||H1 ) − 1

γf (||Θ||H1)
.

Lastly, as mentioned before, Cx depends continuously on x and since continuous functions
on a compact set attain their maximum it follows that

||zL[·, θL]− Z1(·,Θ)||∞,K = sup
x∈K

|eL(x)| ≤
1

L
·
(
max
x∈K

Cx

)
· e

γf (||Θ||H1 ) − 1

γf (||Θ||H1)
,

which vanishes as L→ ∞. This proves the claim.

Inspired by (2.4), we now define Residual Neural Networks :

2.12 Definition/Lemma (Discrete Flow, Residual Neural Network). Let f ∈ F(Rd,W)
and L ∈ N. Define the discrete flow as the map

z•[·, ⋆] : {0, . . . , L} × Rd ×WL → Rd

(l, x, θL) 7→ zl[x, θ
L],

via the recursion

zl+1[x, θ
L] := zl[x, θ

L] + f(zl[x, θ
L], θLl ), l = 0, . . . , L− 1 (2.6)

z0[x, θ
L] := x.

This function is well-defined and continuous for all l = 0, . . . , L. Moreover, an L-layer
Residual Neural Network / ResNet is a function given through the above recursion with
fixed θL ∈ WL and l = L, i.e.,

zL[·, θL] : Rd → Rd, x 7→ zL[x, θ
L].

The dimension of the space from which the initial value for the (2.6) stems, is called width
of the ResNet.8 The number L is called depth of the ResNet.

Proof. See Appendix A.3.

This ends the section on notations, definitions and well-known results. We continue with
a discussion on properties capabilities of Neural ODEs.

8Note that in this case, the width is equal to the input dimension of the ResNet, namely d.
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3 Approximation Properties

In this section we will examine the approximation properties of Neural ODEs. First, as we
will need it later on, we state the original universal approximator theorem for a network
with one hidden layer and arbitrarily large width here without proof:

3.1 Theorem (’Vanilla’ Neural Networks with 1 Hidden Layer are universal Approximators).
Let σ : R → R be continuous with

lim
s→+∞

σ(s) = 1 and lim
s→−∞

σ(s) = 0.9 (3.1)

Moreover, let K ⊂ Rd be a compact subset and h : K → R a continuous function. Then, for
every ϵ > 0 there exists an N ∈ N and sn, dn ∈ R, cn ∈ Rd, for every n = 1, . . . , N , such
that the function

v : K → R, x 7→
N∑

n=1

snσ(cn · x+ dn)

satisfies ||h− v||∞,K < ϵ.

Proof. See [Cyb89].

A straight-forward corollary generalizes this result to functions that have an output space
of higher dimension. The proof uses simple Linear Algebra and is retained in the appendix.

3.2 Corollary. Let m ≤ d and σ : R → R be continuous with the properties in (.2).
Furthermore, let K ⊂ Rd be a compact subset, and h : K → Rm a continuous function.
Then, for every ϵ > 0, there exists an N ∈ N and sn, dn ∈ Rm, Cn ∈ Rm×d, for n = 1, . . . , N ,
such that the function

v : K → Rm, x 7→
N∑

n=1

sn ⊙ σ(Cn · x+ dn)

satisfies ||g − v||∞,K < ϵ.

Proof. See Appendix B.1.

Notice that here, the approximation happens in the width parameter N , i.e., we allow
this single hidden layer to be arbitrarily wide. In Subsection 3.1, we will see, that, Neural
ODEs cannot approximate w.r.t. the sup-norm. To tackle this problem, we need to ”augment
the width”, which is made precise in Subsection 3.2.

9In the literature, this property is often called ’being a sigmoidal ’.
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3.1 Limitations to Approximation

Next, we inspect limitations of (Scalar) Neural ODEs when it comes to approximation. In
particular, we will see that universal approximation is impossible. We start with an example
of a continuous scalar-valued function, that can not be represented by a Scalar Neural ODE.
Ex.3.3 and the presented reasoning therein can be found in [DDT19, Section 4]

3.3 Example (Nested Sets with non-zero distance can not be seperated by a Scalar Neural
ODE). Consider a continuous function g : R2 → R with

g
∣∣
A
= −1 and g

∣∣
B
= +1, (3.2)

where A := B1(0) and B := B3(0) \ B2(0). We will see shortly that g /∈ Nf,lin(R2) for any
f ∈ F(R2,W).

Firstly, we show that A and B are not homeomorphically linear separable. Let h : R2 →
R2 be a homeomorphism. Put A′ := h(A), B′ := h(B) as well as C ′ := h(C), where
C := B2(0). Since h is a homeomorphism, we get

∂C ′ = h(∂C) and C ′o = h(Co)

(see [Arm13]). Moreover, as ∂C ⊂ B, we have ∂C ′ ⊂ B′. Next, we will see that no subset of
C ′o is linearly separable from ∂C ′. Let D′ ⊂ C ′o. Again, since h is a homeomorphism, and
since C is bounded and connected, so is C ′. Any point in the interior of such sets lies on a
line, that goes through two points on the boundary ∂C ′ (see Fig.3). More precisely, for any
x ∈ D′ there exist λ ∈ ]0, 1[ and y1, y2 ∈ ∂C ′, such that

x = λy1 + (1− λ)y2. (3.3)

Now, suppose that D′ and ∂C ′ are linearly separable, i.e., there exist α > 0 and z ∈ R2,
such that for all a ∈ D′ and b ∈ ∂C ′:

⟨z, a⟩ < α < ⟨z, b⟩.

Together with (3.3), this implies, for any x ∈ D′, that

α > ⟨z, x⟩ = ⟨z, λy1 + (1− λ)y2⟩
= λ⟨z, y1⟩+ (1− λ)⟨z, y2⟩
> λα+ (1− λ)α

= α,

which is a contradiction. By A′ ⊂ C ′o and ∂C ′ ⊂ B′ we thus get that A′ and B′ are not
linearly separable.

Suppose further that there exist f ∈ F(R2,W), Θ ∈ W∞, and a v ∈ R2, such that
g = ⟨v, Z1(·,Θ)⟩. Then, by (3.2), for the images of A and B, we have

⟨v, Z1(A,Θ)⟩ = {−1} and ⟨v, Z1(B,Θ)⟩ = {+1}.

This implies that the sets Z1(A,Θ) and Z1(B,Θ) are linearly separable. But this is impossible
since Z1(·,Θ) is a homeomorphism by Thm.2.8 and as we saw above no homeomorphism can
make A and B linearly separable. Hence, g /∈ Nf,lin(R2).
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Figure 3: Morphed Nested Sets An exemplary representation of the sets mentioned in 3.3. The sets
A and B are not homeomorphically linear separable, since a homeomorphism cannot ”tear the outer ring
apart”.

Inspired by Ex.3.3, we can define a class of scalar functions, that can not be represented
by a Scalar Neural ODE, i.e., they do not belong to Nf,lin(Rd).

3.4 Theorem (Class of unrepresentable Scalar Functions). Let g : Rd → R. Suppose there
exist subsets A,B ⊂ Rd with

1. A and B are not homeomorphically linear seperable and

2. there exist α, β ∈ R with α < β, such that g(A) ⊂]−∞, α] and g(B) ⊂ [β,+∞[.

Then, g /∈ Nf,lin(Rd) holds true for any f ∈ F(Rd,W).

Proof. We give a proof by contradiction. Let f ∈ F(Rd,W) and suppose g ∈ Nf,lin(Rd), i.e.,
there exist a weight map Θ ∈ W∞ and a vector v ∈ Rd, such that g = ⟨v, Z1(·,Θ)⟩. By 2.
we have

⟨v, Z1(A,Θ)⟩ ⊂ ]−∞, α] and ⟨v, Z1(B,Θ)⟩ ⊂ [β,+∞[.

This means that for any z ∈ Z1(A,Θ) and any z̃ ∈ Z1(B,Θ) we have that

⟨v, z⟩ ≤ α < α +
β − α

2
< β ≤ ⟨v, z̃⟩,

which defines a linear separation of the two sets Z1(A,Θ) and Z1(B,Θ). However, by 1. and
the fact that the map Z1(·,Θ) is a homeomorphism (see Thm.2.8), there cannot be such a
separation. We arrive at a contradiction.

3.5 Example. (Interlocked Double Torus) To give a further example of two sets that are
not homeomorphically linear separable, consider the Interlocked Double Torus in R3 which
consists of two disjoint sets A and B (see Fig.4). Then, a function g : R3 → R with say,
g(A) = {+1} and g(B) = {−1}, can not be represented by any Scalar Neural ODE.
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Figure 4: Interlocked Double Torus An example of two sets in R3 (blue and orange), which are not
linearly separable even after applying a homeomorphism, since such cannot ”detangle” the two rings.

At this point it is worth noting that, in the literature, the terms representation and
approximation are often used synonymously even though their respective meanings are very
much distinct. The first one quantifies which elements belong to Nf (Rd) or Nf,lin(Rd), for
some given f ∈ F(Rd,W), while the second does so for the closure of Nf (Rd) or Nf,lin(Rd)
w.r.t. some given norm (for us, this is the sup-norm on a compact set). In particular, the
latter does not imply the former.

So naturally, a follow-up question is, whether approximation of the scalar functions
defined in Thm.3.4 is possible. The next corollary tells us that also this is not feasable.

3.6 Corollary (Class of Scalar Fields that Neural ODEs cannot approximate universally).
Let g ∈ C(Rd,R). Suppose, there exist bounded subsets A,B ⊂ Rd with

1. A and B are not homeomorphically linearly seperable and

2. there exist α, β ∈ R with α < β, such that g(A) ⊂ ]−∞, α] and g(B) ⊂ [β,+∞[.

Then, g /∈ Nf,lin(Rd)
||·||∞,K

for any compact K ⊃ A ∪B.

Proof. Suppose otherwise, i.e., for any ϵ > 0, there exists Θ ∈ W∞(Rd) and v ∈ Rd, such
that

||g − ⟨v, Z1(·,Θ)⟩||∞,K < ϵ. (3.4)

Choose ϵ := (β − α)/3 and a corresponding Θ and v so that (3.4) holds. For any x ∈ A

|g(x)− ⟨v, Z1(x,Θ)⟩| < ϵ

holds true. As g(A) ⊂ ] − ∞, α], by 2., we get ⟨v, Z1(A,Θ)⟩ ⊂ ] − ∞, α + ϵ]. Similarly
⟨v, Z1(B,Θ)⟩ ⊂ [β − ϵ,+∞[. However, α + ϵ < β − ϵ holds and thus,,

]−∞, α+ ϵ] ∩ [β − ϵ,+∞[= ∅.

Now, we can apply the same argument as in the proof of Thm.3.4 to infer that Z1(A,Θ)
and Z1(B,Θ) must be linearly separable sets in Rd, which contradicts 1.. This concludes the
proof.
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3.7 Remark. Cor.3.6, also implies:

”For any compact and connected K ⊂ Rd, there exists a continuous function
g : K → R, that is not in the closure of Nf,lin(Rd) w.r.t. ||·||∞,K.”.

This is due to the fact that, for any compact and connected K, we can find r > 0 small
enough, such that the sets

A := {x ∈ K | dist(x, ∂K) ≤ r} and B := {x ∈ K | dist(x, ∂K) ≥ 2r}

are non-empty. Then, we choose a continuous real-valued function g with for example g(A) =
{+1} and g(B) = {−1} and executes the proof as it was demonstrated above.

3.8 Example (Functions with Rotational Symmetry). We give an example of class of
functions for which Cor.3.6 applies. Let g : Rd → R such that there exists a continuous
and strictly monotone (without loss of generality increasing) function ψ : [0,∞[→ R so that
for all x ∈ Rd we have

g(x) = ψ(|x|).

We check the assumptions of Cor.3.6. Choose

A := B2(0) \B1(0) and B := B4(0) \B3(0).

To see that these two sets are not homeomorphically linearly separable we can apply the
same argument as in Ex.3.3. For the second condition of Cor.3.6 note that for any x ∈ A we
have |x| ∈ [1, 2] and thus, by the strict monotonicity of ψ, we have

g(x) = ψ(|x|) ∈ [ψ(1), ψ(2)],

where the interval on the right is non-empty. Similarly, g(x) ∈ [ψ(3), ψ(4)] for x ∈ B. Now,
by choosing α = ψ(2) and β = ψ(3) we get

g(A) ⊂ [ψ(1), ψ(2)] ⊂ ]−∞, α] and g(B) ⊂ [ψ(3), ψ(4)] ⊂ [β,∞[.

Furthermore, by the strict monotonicity of we get α < β and thus, Cor.3.6 can be applied.

Hence, g /∈ Nlin(Rd)
||·||∞,K

for any K ⊃ A ∪B. A more specific example of such a function
is for instance

g : Rd → R, x 7→ |x|2.

So far we have only been talking about scalar-valued functions. We now turn our attention
to the topic of vector fields. By lifting up the result from Cor.3.6 we see that universal
approximation is impossible for Neural ODEs:
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3.9 Proposition (Universal Approximation Fails for Neural ODEs). Let f ∈ F(Rd,W)
and d ≥ 1. Then, for any compact and connected set K ⊂ Rd, there exists a function
g ∈ C(K,Rd), such that

g /∈ Nf (Rd)
||·||∞,K

.

Proof. Let K ⊂ Rd be compact and connected. As explained in Rem.3.7, we find real-valued
functions g1, . . . , gd ∈ C(K,R), such that for any i = 1, . . . , d we have

gi /∈ Nf,lin(Rd)
||·||∞,K

. (3.5)

Put g := (g1, . . . , gd) : K → Rd. This function is continuous, since all of its components are.
Our goal is to show that g can not be approximated by a Neural ODE. Suppose this was the
case, i.e., for any ϵ > 0 there exists Θϵ ∈ W∞, such that

||g − Z1(·,Θϵ)||∞,K < ϵ.

Note that by (3.5) for any i = 1, . . . , d there exists ηi > 0, such that for any Θ ∈ W∞ and
v ∈ Rd it holds that

||gi − ⟨v, Z1(·,Θϵ)⟩||∞,K ≥ ηi.

Put η := min(η1, . . . , ηd). Then, by our assumption and the equivalence of norms on finite
dimensional vector spaces, for ϵ := η√

d+1
, we must have the inequalities

η√
d+ 1

= ϵ > ||g − Z1(·,Θϵ)||∞,K

= sup
x∈K

|g(x)− Z1(x,Θϵ)|

≥ 1√
d
· sup
x∈K

d∑
i=1

|gi(x)− ⟨ei, Z1(x,Θϵ)⟩|

≥ 1√
d
· sup
x∈K

|gd(x)− ⟨ed, Z1(x,Θϵ)⟩|

=
1√
d
· ||gd − ⟨ed, Z1(·,Θϵ)⟩||∞,K

≥ η√
d
.

Hence, we arrive at d + 1 < d, which is a contradiction. Thus, our assumption cannot hold

and we get g /∈ Nf (Rd)
||·||∞,K

.

3.10 Remark (The case d = 1). The case of d = 1 in Prop.3.9 already follows from
Thm.3.6. However, in this special case, we can also take a different perspective. We already
know that any Neural ODE is a homeomorphism and such have to be strictly monotone for
d = 1 (otherwise we can yield a contradiction to injectivity together with continuity). Thus,
choosing a target function g, that is not injective on some compact set, e.g.,

g : R → R, x 7→ −x2 + 1,
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is going to lead to problems, when it comes to approximation w.r.t. the sup-norm on this
compactum. More precisely, for ϵ > 0 small enough, approximating g on the compact
set [−1, 1] with a Neural ODE yields a contradiction since this Neural ODE would not be
injective and hence, not strictly monotone.

It is worth noting shortly that, there is a result by Li et al. ([LLS22]) stating that Neural
ODEs are Lp-approximators, i.e., it is possible to approximate any continuous function on
a compact set w.r.t. the Lp-norm for p ≥ 1. However, in this paper Θ ∈ L∞([0, 1];W) is
allowed. We are not concerned more with this matter in this thesis, but it would certainly
be interesting to find out why approximation for p ≥ 1 is achievable, but for p = ∞ it is not
(see Prop.3.9).

Summarising, we saw that (Scalar) Neural ODEs face an insurmountable geometric
obstacle of not being able to make any two sets linearly separable (as pointed out in Ex.3.3).
This is due to the fact that a Neural ODE is always going to be a homeomorphism, and such
can only translate between homotopy equivalent sets. As we saw in Cor.3.6 and Prop.3.9, this
circumstance leads to classes of functions that can not be approximated by a (Scalar) Neural
ODE, which is a severe problem for a machine learning model. Nonetheless, this complication
is one of dimensionality, meaning that if we allow our Neural ODEs to act on, say, Rd′ for
some d′ > d, we can hope to make any two disjoint sets from Rd homeomorphically linearly
separable in Rd′ (with a suitable embedding Rd ↪→ Rd′). In this new scenario, we would have
extra dimensions to escape to so that the homeomorphism constraint is still fulfilled. As we
are going to see in the next subsection, this in fact works out.

However, before that, we wind up this subsection with another difficulty that Neural
ODEs have to face. A Neural ODE is defined via

Ż(t) = f(Z(t),Θ(t)), t ∈ ]0, 1[,

where f ∈ F(Rd,W) and Θ ∈ W∞. Here, the derivative on the left-hand side can be
viewed as the velocity in Rd. If we feed an initial value to this ODE, say x ∈ Rd, the map
[0, 1] ∋ t 7→ Zt(x,Θ) ∈ Rd is the continuous path that is traveled from x to Z1(x,Θ) with
velocity at time t given by the right-hand side of the equation. However, if we now put a cap
on this velocity, say f ∈ Fb(Rd,W), and simultaneously increase the size of the compactum
on which we want to approximate, the velocity won’t necessarily be enough to reach, say,
g(x) within the time window [0,1]. Making this idea more precise is the task of the next
theorem.

3.11 Theorem (Universal Approximation fails for bounded Activations). Let f ∈ Fb(Rd,W)
and d ≥ 1. Then, there exists a compact set K ⊂ Rd and a function g ∈ C(K;Rd), such that

g /∈ Nf (Rd)
||·||∞,K

.
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Proof. Since f ∈ Fb(Rd,W), there exists a constant cb > 0 such that for all x ∈ Rd and
θ ∈ W we have |f(x, θ)| ≤ cb. We put K := [−N,N ]d with N ∈ N, where the choice of
N will be specified later. Moreover, choose g ∈ C(K,Rd) as the function that flips on the
hyperplane Rd−1 (in the case d = 1, flip around the set {0}). More specifically, for any
x = (x1, . . . , xd−1, xd) ∈ K we have

g(x) = (x1, . . . , xd−1,−xd).

Note that for x∗ := (0, . . . , 0, N), we easily compute the length of the straight line from x∗

to g(x∗) to be
|x∗ − g(x∗)| = 2N.

Our goal is to show that there exists an ϵ > 0, such that for arbitrary Θ ∈ W∞, we have
||g − Z1(·,Θ)||∞,K ≥ ϵ. Choose N large and ϵ > 0 small enough, such that cb < 2N − ϵ.
Suppose there exists a Θ ∈ W∞ such that

||g − Z1(·,Θ)||∞,K < ϵ.

This implies |g(x∗)−Z1(x
∗,Θ)| < ϵ. The shortest path from x∗ to g(x∗) in Rd is the straight

line. The map [0, 1] ∋ t 7→ Zt(x
∗,Θ) ∈ Rd is a continuous path starting in x∗ and getting

ϵ-close to g(x∗). Combining these facts gives rise to the inequalities

cb < 2N − ϵ

≤ l(Z•(x
∗,Θ))

=

∫ 1

0

|f(Zt(x
∗,Θ),Θ(t))|dt

≤ cb,

which is a contradiction. Thus, no such Θ exists, which is what we had to show.

An apparent takeaway from Thm.3.11 is that, if we want to pick f ∈ Fb(Rd,W) as an
activation function, we should carefully check, whether cb > diam(K) holds, where K is
the compact set over which the approximation is supposed to happen. Because otherwise,
universal approximation becomes impossible on said compactum. Since the size of K is often
not known specifically in practice, most of the times we are probably better off picking an
element of F(Rd,W) \ Fb(Rd,W) as an activation function.
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3.2 Universal Approximation after Augmenting Width

The previous subsection illustrated the problems that arise for (Scalar) Neural ODEs, when
representing/approximating scalar functions and vector fields. Namely, in each case we
find functions that cannot be represented/approximated. In this subsection, we see the
how augmenting the input dimension for Neural ODEs solves this problem. Def./Lem.3.7,
Thm.3.15, Lemmas 3.16 - 3.19 and their respective proofs are all taken from [AK20].

Throughout this subsection, we let σ : R → R as in Thm.3.1, i.e., continuous with
lims→+∞ σ(s) = 1 and lims→−∞ σ(s) = 0. Moreover, we assume σ to be Lipschitz-continuous
with constant Lσ > 0. As before, when we write σ : Rk → Rk, k ∈ N, we mean the
component-wise extension of σ to Rk. To be able to augment and shrink dimensions we need
helping functions:

3.12 Definition (Lift and Projection Function). Let m ≤ d. Define the lift function

l : Rd → Rd+m, x 7→ l(x) := (x, 0),

where 0 ∈ Rm. Furthermore, we define the projection function

p : Rd+m ≃ Rd × Rm → Rm, (x, y) 7→ p(x, y) := y.

Note that these functions depend on the choice of m, however, in the contexts where
they are used in, it is usually clear which m was chosen. Moreover, we will make use of the
m× d-matrix

M :=


1 0 0 . . . . . . . . . 0
0 1 0 . . . . . . . . . 0
...

. . . . . .
...

0 . . . 0 1 0 . . . 0

 ,

which essentially discards the last d−m components of a vector in Rd.
We are going to show a universal approximation theorem for a certain type of Neural

ODE, which we call Augmented Neural ODE. It was defined in [AK20], the term however,
stems form [DDT19].

3.13 Definition/Lemma (Augmented Neural ODE). Letm ≤ d andW := Rd×d×Rd×Rm.
For any Θ = (w, b, s) ∈ W∞ and x ∈ Rd the following system of ODEs

Ż(t) = w(t)Z(t) + b(t), t ∈ ]0, 1[

Ż(t) = s(t)⊙ σ(MZ(t)), t ∈ ]0, 1[

(Z(0), Z(0)) = (x, 0)

(3.6)

is a well-posed initial value problem. Thus, the flow map

Z•(·, ⋆) : [0, 1]× Rd+m ×W∞ → Rd+m
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as well as
p ◦ Z1(·,Θ) ◦ l : Rd → Rm, for Θ ∈ W∞, (3.7)

are both well-defined. The latter we call Augmented Neural ODE. The dimension of the
space from which the initial value for the IVP described in (3.6) stems, is called width of the
Augmented Neural ODE.10 The length of the time interval on which (3.6) is defined, we call
depth of the Augmented Neural ODE.1112

Proof. Define the function

f : Rd+m ×W → Rd+m, (z, θ) 7→
(

Az + v
u⊙ σ(Mz)

)
,

where z = (z, z) ∈ Rd × Rm ≃ Rd+m and θ = (A, v, u) ∈ W = Rd×d × Rd × Rm. The only
thing left to show is f ∈ F(Rd,W); Lem.2.2 then yields the desired well-definedness. Let
z, z̃ ∈ Rd+m and θ ∈ W . Since all norms on finite dimensional vector spaces are equivalent,
there exists a constant c > 0, such that

|f(z, θ)− f(z̃, θ)| =
∣∣∣∣( A(z − z̃)
s⊙ (σ(Mz)− σ(Mz̃))

)∣∣∣∣
≤ c · (|A|+ Lσ · |M| · |s|) · |z − z̃|
≤ c(1 + Lσ · |M|) · |θ| · |z − z̃|.

Here, we used the Lipschitz-continuity of σ. Now, choosing γf (s) := c(1 + Lσ · |M|) · s for
s ∈ [0,∞[ gives f ∈ F(Rd,W).

3.14 Remark (Solution to the System). The system of ODEs given in (3.6) is straight-
forward to solve. Firstly, note that the right side of the second ODE does not depend on Z,
meaning we can simply integrate it to obtain

Z(t) =

∫ t

0

s(r)⊙ σ(MZ(r))dr, t ∈ [0, 1].

The first equation belongs to a well-known class of ODEs, which can be solved by a method
called Variation of Constants ; see e.g. [For17]. Applying this method yields

Z(t) = eW (t)

[∫ t

0

e−W (s)b(s)ds+ x

]
, t ∈ [0, 1],

where W (t) :=
∫ t

0
w(s)ds and we used the well-known matrix exponential. Combining

everything yields for input x the following output of an Augmented Neural ODE

Z(1) =

∫ 1

0

s(r)⊙ σ

(
MeW (r)

[∫ r

0

e−W (s)b(s)ds+ x

])
dr.

10In contrast to the width of the Neural ODE, here, the width is not equal to the input dimension of the
Augmented Neural ODE, namely it is d+m.

11To describe the notation a bit more, notice that for x ∈ Rd we have p(Z1(l(x),Θ)) = Z(1).
12In [AK20], the matrix M is replaced by a matrix A ∈ Rm×d with full rank. For simplicity we stick with

M.
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With this new setup for Neural ODEs we are now able to prove universal approximation:

3.15 Theorem (Augmented Neural ODEs are Universal Approximators - output dimension
small). Let h ∈ C(K;Rm) with m ≤ d and K ⊂ Rd compact. Then, for any ϵ > 0 there exist
Θ = (w, b, s) ∈ W∞, such that for any x ∈ K the Augmented Neural ODE given by (3.6)
satisfies

|h(x)− p(Z1(l(x),Θ))| < ϵ.

The proof requires four technical lemmas, whose verifications we deposit in Appendix
B.2:

3.16 Lemma. Let m ≤ d, s, d ∈ Rm and C ∈ Rm×d with no zero rows. Then, there exist
s̃l, d̃l ∈ Rm and C̃l ∈ Rm×d, l = 1, . . . ,m, such that

s⊙ σ(Cx+ d) =
m∑
l=1

s̃l ⊙ σ(C̃lx+ d̃l), (3.8)

for any x ∈ Rd, with rank(C̃l) = m, for l = 1, . . . ,m. If m = d we can choose the matrices
C̃l, such that det(C̃l) > 0.

3.17 Lemma. Let m ≤ d, L ∈ N, and sl, dl ∈ Rm and Cl ∈ Rm×d for l = 1, . . . , L (each
Cl having no zero rows). Then, there exists an L̃ ∈ N and s̃k, d̃k ∈ Rm, C̃k ∈ Rm×d for
k = 1, . . . , L̃, such that

L∑
l=1

sl ⊙ σ(Clx+ dl) =
L̃∑

k=1

s̃k ⊙ σ(C̃kx+ d̃k), (3.9)

for any x ∈ Rd, with rank(C̃k) = m, for k = 0, . . . , L̃ − 1. If m = d we can choose the
matrices C̃k, such that det(C̃k) > 0.

3.18 Lemma. Let m ≤ d. Let C ∈ Rm×d with rank(C) = m. If m = d assume additionally
det(C) > 0. Then, there exists a P ∈ Rd×d, such that

C = MP and det(P ) > 0.

3.19 Lemma. Let p ∈ [0,∞[ and L ∈ N. For Pl ∈ Rd×d, l = 1, . . . , L with det(Pl) > 0 and
0 = t0 < t1 < · · · < tL = 1 define the piecewise constant function

P : [0, 1] → Rd×d, t 7→ P (t) := PL1{1}(t) +
L∑
l=1

Pl1[tl−1,tl[(t).

Then, there exists a c > 0, such that for any η > 0, there exists a Pη ∈ C∞([0, 1];Rd×d) with

||Pη − P ||p,[0,1] < η, det(Pη(t)) > 0, |Pη(t)| ≤ c

for all t ∈ [0, 1].
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With these tools we are now prepared to prove universal approximation for Augmented
Neural ODEs:

Proof of Thm.3.15. Our strategy is using Cor.3.1 to approximate h with a function v. We
then use the above lemmas, to see that we can approximate v with an Augemented Neural
ODE. Finally we are going to conclude with the triangle inequality.

For now, suppose m < d. Let h ∈ C(K;Rm) and ϵ > 0. By Cor.3.1 we find N ∈ N and
sn, dn ∈ Rm, Cn ∈ Rm×d, for n = 1, . . . , N , such that the function

v : K → Rm, x 7→
N∑

n=1

sn ⊙ σ(Cn · x+ dn)

satisfies ||h − v||∞,K < ϵ
2
. By Lem.3.17 we can assume without loss of generality, that

rank(Cn) = m, for all n = 1, . . . , N . Furthermore, by Lem.3.18 there exist matrices Pn ∈
Rd×d, such that Cn = MPn and det(Pn) > 0. Putting qn := MTdn, gives dn = Mqn, since
MMT = 1. Moreover, define functions on [0, 1] via

s(t) := sn, P (t) := Pn, q(t) := qn,

for n−1
N

≤ t < n
N

and n = 1, . . . , N . From this we obtain

v(x) =

∫ 1

0

s(t)⊙ σ (M(P (t)x+ q(t))) dt (3.10)

for all x ∈ K. Looking at Rem.3.14, this looks similar to the solution of the second equation
in (3.6). So our goal now is to approximate the functions s, P and q by smooth functions,
whose corresponding integral in the form of (3.10) will be not far off of v(x). Let (ϕη)η>0

be a sequence of standard mollifiers and put sη := s ∗ ϕη, qη := q ∗ ϕη, which are smooth
functions by well-known results on mollifications (see [LL01]). Additionally, by Lem.3.19,
there is a C > 0, such that for any η > 0 there exist smooth functions Pη : [0, 1] → Rd×d,
such that

||Pη − P ||1,[0,1] < η, det(Pη) > 0 and |Pη(t)| ≤ C

for any t ∈ [0, 1]. Combining this with facts on mollifications (see [LL01]) we get

sη −→ s, qη −→ q and Pη −→ P,

as η → 0 all w.r.t. the norm ||·||1,[0,1]. We define our candidate for an Augmented Neural
ODE with initial value (x, 0) ∈ Rd×m to be

Z(t) := Pη(t)x+ qη(t),

Z(t) :=

∫ t

0

sη(r)⊙ σ(MZ(r))dr.
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Two things are left to show now. Firstly, we need Z(1) to be ϵ
2
-close to v(x) given in (3.10).

Secondly, we need to verify, that it can in fact be written in the form an ODE. For the first
part observe with the triangle inequality, that

|Z(1)− v(x)| ≤
∫ 1

0

|sη(t)⊙ σ(M(Pη(t)x+ qη(t)))− s(t)⊙ σ (M(P (t)x+ q(t)))|dt.

Adding and subtracting the function sη ⊙ σ (M(Px+ q)) and using the triangle inequality
again yields

|Z(1)− v(x)| ≤ I1 + I2,

where

I1 :=

∫ 1

0

|sη(t)− s(t)| · |σ (M(P (t)x+ q(t)))|dt,

I2 :=

∫ 1

0

|sη(t)| · |σ(M(Pη(t)x+ qη(t)))− σ (M(P (t)x+ q(t)))|dt.

Since σ is bounded, by say M > 0, we get

I1 ≤M · ||sη − s||1,[0,1].

With properties of the usual standard mollifiers we have

|sη(t)| ≤
∫
R
ϕη(t− r)|s(r)|dr

≤ ||s||∞,[0,1] ·
∫
R
ϕη(t− r)dr

= ||s||∞,[0,1].

Using this together with the Lipschitz continuity of σ we get

I2 ≤ ||s||∞,[0,1] · Lσ · |M| ·
∫ 1

0

|(Pη(t)− P (t))x+ (qη(t)− q(t))|dt

≤ ||s||∞,[0,1] · Lσ · |M| ·
(
||Pη − P ||1,[0,1] ·max

x∈K
|x|+ ||qη − q||1,[0,1]

)
.

Combining everything we get

|Z(1)− v(x)| ≤M · ||sη − s||1,[0,1] (3.11)

+ ||s||∞,[0,1] · Lσ · |M| ·
(
||Pη − P ||1,[0,1] ·max

x∈K
|x|+ ||qη − q||1,[0,1]

)
,
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which (independently of x) gets small as η does. Hence, choosing η small enough, such that
|Z(1)− v(x)| < ϵ

2
, gives

|Z(1)− h(x)| ≤ |Z(1)− v(x)|+ |v(x)− h(x)|
< ϵ,

for arbitrary x ∈ K. So we are left with showing that our choice of an Augmented Neural
ODE actually comes from an ODE. Note that from Lem.3.19 we have that det(Pη(t)) > 0
for all t ∈ [0, 1], and thus,, the functions

w(t) :=
(
Ṗη(t)

)
Pη(t)

−1 and b(t) := q̇η(t)− w(t)qη(t)

are well-defined on [0, 1]. Finally, we find the ODE to be

Ż(t) = Ṗη(t)x+ q̇η(t)

= w(t)Pη(t)x+ w(t)qη(t) + b(t)

= w(t)Z(t) + b(t)

Ż(t) = sη(t)⊙ σ(MZ(t)),

where t ∈ ]0, 1[. We have seen that, Z(1) approximates v and that it is given via an
Augmented Neural ODE.

For the case m = d the procedure is analogous. However, to be able to apply Lem.3.18
and Lem.3.19, we require det(Cl) > 0. But this is already ensured by Lem.3.16 and Lem.3.17,
so the proof is finished.

3.20 Remark (Approximation Speed). From the proof of Thm.3.15 it is clear that the
approximation speed of the Augmented Neural ODE can not be better, than the speed of
the 1-hidden-layer model. However, we can ask the question, whether it gets worse. Taking a
look at (3.11) reveals that the convergence speed of the mollifications towards the functions
P, q and s gives an additional restriction on this matter. Namely, we can show that there
exists a constant c > 0, such that

||sη − s||1,[0,1] ≤ c · η

and similarly for P and q (see Appendix B.3 for a precise proof of this statement). Combining,
this gives, that the speed of convergence of the Augmented Neural ODE is O(ϵ) or it’s the
same as for the 1-hidden-layer model (we have to choose the slower one).
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We extend Thm.3.15 to the case of the output dimension being larger than the input
dimension:

3.21 Theorem (Augmented Neural ODEs are Universal Approximators - output dimension
large). Let h ∈ C(K;Rm) with m > d and K ⊂ Rd compact. Then, for any ϵ > 0 there exist
Θ = (w, b, s) ∈ W∞(Rm×m × Rm × Rm), such that for any x ∈ K, the Augmented Neural
ODE given by (3.7) satisfies

|h(x)− p(Z1(l(x, 0),Θ))| < ϵ,

where 0 ∈ Rm−d.

Proof. Let ϵ > 0. For h ∈ C(K;Rm), consider the function h̃ : K × {0} → Rm defined by
h̃(x, 0) := h(x), where 0 ∈ Rm−d. Since all of its components are continuous, we also get
continuity for h̃, i.e., h̃ ∈ C(K × {0};Rm). Moreover, K × {0} is a compact subset of Rm.
Thus, we can apply Thm.3.15 on h̃, meaning there exists Θ = (w, b, s) ∈ W∞(Rm×m×Rm×
Rm), such that for any (x, 0) ∈ K × {0} we have

|h̃(x, 0)− p(Z1(l(x, 0),Θ))| < ϵ.

By our choice of h̃, this is equivalent to

|h(x)− p(Z1(l(x, 0),Θ))| < ϵ

and the proof is finished.

We conclude this subsection with a result on linear separability. Previously in Cor.3.6,
we had the problem of not being able to make certain sets linearly separable with a Neural
ODE, due to the fact that such a function is a homeomorphism. Again, augmenting the
dimension helps here. To illustrate this, let us look at the following example:

3.22 Example. (Sets that are linearly separable after application of Neural ODE in a higher
dimension) We give an example of two sets in R that are not homeomorphically linearly
separable, but become so, after being lifted to R2. Consider

A := [−3,−2] ∪ [2, 3] and B := [−1, 1].

In R a hyperplane corresponds to a single point. However, there is no point in R that
separates the two sets A and B (see Fig.5). Even after applying a homeomorphism h : R → R
no such point can be found. This is due to the fact that, as it was mentioned before,
homeomorphisms on R are necessarily strictly monotone and thus,, we get

h(A) = [a1, b1] ∪ [a3, b3] and B := [a2, b2],

with a1 < b1 < a2 < b2 < a3 < b3, which still cannot be separated by a single point. Hence,
we know that a Neural ODE is not able to make A and B linearly separable.
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To fix this we augment the dimension. Take the lift function l : R → R2, x 7→ (x, 0) and
put A0 := l(A); B0 analogously. Moreover, we examine the following system of ODEs:{

ż1(t) = −z1(t)
ż2(t) = z1(t)

2 + z2(t),

for t ∈ ]0, 1[ with some initial value (z1(0), z2(0)) = (x1, x2) ∈ R2. It is not hard to see, that
this ODE is well-defined and that the corresponding flow is given by

Zt(x1, x2) =

(
x1e

−t,

(
x21
3

+ x2

)
et − x21

3
e−2t

)
, t ∈ [0, 1], (x1, x2) ∈ R2.

Then, from Fig.5 it is clear to see, that A0 and B0 are not linearly separable, but Z1(A0)
and Z1(B0) are.

Figure 5: Homeomorphic Linear Separability in higher Dimension Graph on the left: The sets A
and B are shown in blue and orange respectively. They are not linearly separable. Neither as sets in R,
nor as sets in R2 (i.e., A0 and B0). Graph on the right: The sets Z1(A0) and Z1(B0), blue and orange
respectively, can be separated by a hyperplane H.
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By using Thm.3.15, we can turn the idea of Ex.3.22 into a general result:

3.23 Theorem (Homeomorphic Linear Separability via Neural ODEs after augmenting
Dimension). Let A,B ⊂ Rd be bounded and disjoint with

inf
a∈A, b∈B

|a− b| > 0. (3.12)

Put
A0 := A× {0} := {(a, 0) ∈ Rd+1 | a ∈ A},

and B0 analogously. Then, there exist f ∈ F(Rd+1,W) and Θ ∈ W∞, such that the subsets
of Rd+1, Z1(A0,Θ) and Z1(B0,Θ), are linearly separable.

Proof. Consider the function h : Rd → R given by h(x) := (1A − 1B)(x) for x ∈ Rd. Note
that h(A) = {+1} and h(B) = {−1}. By well-known density properties of smooth functions
with compact support, and the fact that A and B have non-zero distance by (3.12), we can
find ϕ ∈ C∞

c (Rd;R) with
||h− ϕ||∞, A∪B <

1

4
.

Note that

ϕ(A) ⊂
]
3

4
,
5

4

[
and ϕ(B) ⊂

]
−5

4
,−3

4

[
. (3.13)

Let

l : Rd → Rd+1 and p : Rd+1 → Rd

be the lift and projection function as in Def.3.12. By Thm.3.15 we find f ∈ F(Rd+1,W) and
Θ ∈ W∞, such that for any x ∈ A ∪B

|ϕ(x)− p (Z1 (l (x) ,Θ))| < 1

4
. (3.14)

Note that A0 = l(A) and B0 = l(B). By (3.13) and (3.14) we get for x ∈ A

p(Z1(l(x),Θ)) ∈
]
1

2
,
3

2

[
and thus,, p(Z1(A0,Θ)) ⊂ ]1

2
, 3
2
[. Similarly, we get p(Z1(B0,Θ)) ⊂ ]− 3

2
,−1

2
[. These two open

intervals are disjoint and since p is linear we have found a linear separation of the two sets
Z1(A0,Θ) and Z1(B0,Θ). This finishes the proof.

3.24 Remark. The case infa∈A, b∈B|a − b| = 0 results in the boundaries intersecting, i.e.,
∂A ∩ ∂B ̸= ∅. This yields problems with choosing a suitable C∞

c -function in the proof of
Thm.3.23, namely, the sup-norm of h−ϕ is then going have a lower bound of 1 which is not
sufficient to yield the statement. We do not claim that a similar statement in this case is
impossible. However, the above proof will not work.
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4 Gradient Descent for Neural ODEs

In this thesis, we will not be concerned with the optimization/training aspect of Neural ODEs
too much. However, it is still worthwile mentioning, that we can in fact perform a procedure
like gradient descent (for an introduction, see e.g. [JS04]) for learning a function Θ ∈ W∞,
which is the goal of this section. We give a setting, where this optimization procedure is
well-defined. It will now also become clearer as to why we chose W∞ = H1([0, 1],W) as our
space of weight functions.

For a given f ∈ F(Rd,W), a loss function for a Neural ODE, is a function

Rf : W∞ → [0,∞[,

so that, if Rf (Θ), the evaluation at some Θ ∈ W∞, is small we expect the the corresponding
Neural ODE Z1(·,Θ) to perform well on some given data D = {(xj, h(xj))}j=1,...;J , J ∈ N,
meaning that we have

Z1(xj,Θ) ≈ h(xj).

A popular choice for a loss function, given D and f ∈ F(Rd,W), is

Rf (Θ) :=
1

J

J∑
j=1

|h(xj)− Z1(xj,Θ)|2 , (4.1)

where it is clear, that the closer Rf (Θ) gets to 0 the better Z1(·,Θ) performs on D. As
mentioned in the introduction, we would now like to perform a gradient descent procedure
on such a loss function. However, this is a function on an infinite dimensional Banach space.
This means that the ”gradient” now has to be be a more general form of derivative, namely
a Fréchet derivative. For a precise definition of this term see Appendix C.1.

The following theorem gives a condition on Rf , under which a method of steepest descent
is well-defined:

4.1 Theorem (Gradient Descent on W∞). Let R : W∞ → R be Fréchet-differentiable.
Then, for any initial Θ(0) ∈ W∞, the recursive sequence

Θ(k+1) := Θ(k) + ηk ·∆(k), k ∈ N0,

with

∆(k) := argmin||∆||H1=1 dRΘ(k)(∆) and ηk := argminη≥0R
(
Θ(k) + η ·∆(k)

)
,

is well-defined.

Note that the theorem does not tell us anything about convergence. For that we might
need additional restrictions on R.

Proof. We have to show the existence of ∆(k) and ηk. This follows from the fact, that W∞

is a strictly convex Hilbert space. A detailed proof can be found in [KA16, p. 461ff].
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For Thm.4.1 to be applicable to a loss function like Rf in (4.1), we need Fréchet-
differentiability of the Neural ODE. The differentiability of Rf then follows from the chain
rule.

4.2 Lemma (Fréchet-Differentiability of Neural ODEs). Suppose f ∈ F(Rd,W) is contin-
uously differentiable (in both variables) with bounded derivative, i.e., there exists an M > 0,
such that for all (z, θ) ∈ Rd×W we have ||df(z,θ)|| ≤M .13Then, for any t ∈ [0, 1] and x ∈ Rd,
the map

W∞ → Rd, Θ 7→ Zt(x,Θ),

is Frèchet-differentiable.

Proof. Let x ∈ Rd and t ∈ ]0, 1[ (the case t ∈ {0, 1} is discussed at the end of the proof).
We have to show that for any Θ ∈ W∞, there exists a bounded linear operator

d(Zt(x, ⋆))Θ : W∞ → Rd,

such that the map

W∞ ∋ ∆ 7→ |Zt(x,Θ+∆)− Zt(x,Θ)− d(Zt(x, ⋆))Θ(∆)| ∈ R

is in o(||∆||H1). We start by displaying an educated guess for the choice of this bounded
operator. In terms of directional derivatives we should have

d(Zt(x, ⋆))Θ(∆) =
d

dα
Zt(x,Θ+ α ·∆)

∣∣
α=0

=: ϕ(∆, t).

Taking the derivative with respect to t yields another IVP, namely

ϕ̇(∆, t) = df(Zt(x,Θ),Θ(t)) · (ϕ(∆, t),∆(t)), t ∈ ]0, 1[ (4.2)

ϕ(∆, 0) = 0.

So our candidate for the Fréchet-derivative at some Θ is going to be

d(Zt(x, ⋆))Θ : W∞ → Rd, ∆ 7→ ϕ(∆, t),

where ϕ(∆, •) is the solution to (4.2). Note that this calculation may be flawed, as it requires
an argument for interchanging the derivatives w.r.t. α and t, which was not given. Keep in
mind that this is just an educated guess; we are going to see later that this candidate is in
fact what we are looking for.

There are now 3 things left to prove. Firstly, well-definedness of this operator. Secondly,
we need to verify, that it is in fact linear and bounded. And lastly, we have to show, that

u(∆, t) := |Zt(x,Θ+∆)− Zt(x,Θ)− ϕ(∆, t)| ∈ o(||∆||H1). (4.3)

We check these properties in order.

13Here df(z,θ) : Rd ×W → Rd is a homomorphism and the well-known operator-norm is used. Notice that
for a Neural ODE to be well-defined, only continuity was required. For Fréchet differentiability, and in turn
the ’training’ via gradient descent, we need to impose more on the activation function.
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Well-Definedness:

Here we have to show, that the IVP in (4.2) is well-posed for any ∆ ∈ W∞. We are going
to use Picard-Lindelöf’s theorem. Fix Θ and ∆ in W∞. Define

F : R× Rd → Rd, (t, y) 7→ F (t, y) := df(Zt(x,Θ),Θ(t)) · (y,∆(t)).

Proving, that F is globally uniform Lipschitz in the second argument and continuous in the
first, let’s us apply Thm.2.3. This yields the desired well-posedness. The latter is clear, since
f is continuously differentiable and ∆ is continuous by Sobolev-embeddings. For the former,
let y, ỹ ∈ Rd and observe that

|F (t, y)− F (t, ỹ)| ≤ ||df(Zt(x,Θ),Θ(t))|| · |y − ỹ|
≤M · |y − ỹ|,

where we used the assumption that the derivative of f is bounded, by some M > 0. With
this, well-posedness of (4.2) is shown.

Linearity and Boundedness:

We focus on linearity first. Let ∆, ∆̃ ∈ W∞ and s ∈ R. Our goal is to show

ϕ(s ·∆+ ∆̃, t) = s · ϕ(∆, t) + ϕ(∆̃, t). (4.4)

Since we now know, that a solution to (4.2) exists and is unique, we can prove the inequality
above, by showing, that both sides satisfy the same well-posed ODE. Firstly, note that W∞

is a vector space, so s ·∆+ ∆̃ ∈ W∞. Thus, ϕ(s ·∆+ ∆̃, •) is well-defined by (4.2). Taking
the derivative w.r.t. t of the right-hand side of (4.4) gives

d

dt
(s · ϕ(∆, t) + ϕ(∆̃, t)) = s · ϕ̇(∆, t) + ϕ̇(∆̃, t)

= s · df(Zt(x,Θ),Θ(t)) · (ϕ(∆, t),∆(t)) + df(Zt(x,Θ),Θ(t)) · (ϕ(∆̃, t), ∆̃(t))

= df(Zt(x,Θ),Θ(t)) · (s · ϕ(∆, t) + ϕ(∆̃, t), s ·∆(t) + ∆̃(t)).

Thus, s · ϕ(∆, •) + ϕ(∆̃, •) and ϕ(s · ∆ + ∆̃, •) satisfy the same well-posed IVP. So by
uniqueness, they must be the same. Regarding boundedness, we can use the fundamental
theorem of calculus, the triangle-inequality and (4.2) to get

|ϕ(∆, t)| ≤
∫ t

0

|ϕ̇(∆, s)|ds

=

∫ t

0

|df(Zt(x,Θ),Θ(t)) · (ϕ(∆, s),∆(s))|ds.
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Using the bound on the derivative of f , equivalence of norms on finite-dimensional vector
spaces and Lem.2.4 we get that there exists a constant M̃ > 0, depending only on f and d,
such that

|ϕ(∆, t)| ≤ M̃ ·
∫ t

0

|∆(s)|ds+ M̃ ·
∫ t

0

|ϕ(∆, s)|ds

≤ M̃ · ||∆||H1 + M̃ ·
∫ t

0

|ϕ(∆, s)|ds.

We can now apply Grönwall’s Inequality to obtain

|ϕ(∆, t)| ≤ M̃eM̃ · ||∆||H1 ,

which is the desired boundedness.

Verification of (4.3):

We have to prove that for any ϵ > 0, there exists a δ > 0, such that if ||∆||H1 ≤ δ we have

u(∆, t) ≤ ϵ · ||∆||H1 .

So let ϵ > 0. Using the fundamental theorem of calculus, the triangle inequality and the
defining ODEs, we obtain

u(∆, t) ≤
∫ t

0

|Żs(x,Θ+∆)− Żs(x,Θ)− ϕ̇(∆, s)|ds

=

∫ t

0

|f(Zs(x,Θ+∆),Θ(s) + ∆(s))− f(Zs(x,Θ),Θ(s))

− df(Zs(x,Θ),Θ(s)) · (ϕ(∆, s),∆(s))|ds.

Notice that

ϕ(∆, s) = Zs(x,Θ+∆)− Zs(x,Θ)− (Zs(x,Θ+∆)− Zs(x,Θ)− ϕ(∆, s)).

By using linearity of df(Zt(x,Θ),Θ(t)) and the triangle inequality we get

u(∆, t) ≤
∫ t

0

∣∣f(Zs(x,Θ+∆),Θ(s) + ∆(s))− f(Zs(x,Θ),Θ(s))

− df(Zs(x,Θ),Θ(s)) · (Zs(x,Θ+∆)− Zs(x,Θ),∆(s))
∣∣ds

+

∫ t

0

∣∣df(Zs(x,Θ),Θ(s)) · (Zs(x,Θ+∆)− Zs(x,Θ)− ϕ(∆, s), 0)
∣∣ds.

The last two integrals we define to be I1(t) and I2(t) respectively. We will estimate them
separately. For the first one, notice that by properties of the derivative of f , it holds that

v(∆, s) :=
∣∣f(Zs(x,Θ+∆),Θ(s) + ∆(s))− f(Zs(x,Θ),Θ(s))

− df(Zs(x,Θ),Θ(s)) · (Zs(x,Θ+∆)− Zs(x,Θ),∆(s))
∣∣
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is an element of o(|(Zs(x,Θ +∆) − Zs(x,Θ),∆(s))|). So for the given ϵ > 0, there exists a
δ′ > 0, such that

v(∆, s) ≤ ϵ · |(Zs(x,Θ+∆)− Zs(x,Θ),∆(s))|,
whenever |(Zs(x,Θ + ∆) − Zs(x,Θ),∆(s))| ≤ δ′. We further know, that there exists a
constant c > 0, such that

|(Zs(x,Θ+∆)− Zs(x,Θ),∆(s))| ≤ c · ||∆||H1 .

A proof for this inequality can be found in Appendix C.2 (it is yet another application of
Grönwall’s Inequality). We now choose δ := δ′/c. Supposing ||∆||H1 ≤ δ then yields

|(Zs(x,Θ+∆)− Zs(x,Θ),∆(s))| ≤ δ′

and hence,

I1(t) ≤ ϵ ·
∫ t

0

|(Zs(x,Θ+∆)− Zs(x,Θ),∆(s))|ds

≤ ϵ · t · ||∆||H1

≤ ϵ · ||∆||H1 .

For the second integral we use the fact that, the derivative of f is bounded by M > 0 to
obtain

I2(t) ≤M ·
∫ t

0

u(∆, s)ds.

Combining these two estimates yields

u(∆, t) ≤ ϵ · ||∆||H1 +M ·
∫ t

0

u(∆, s)ds.

Applying Grönwall’s Inequality one more time, finally yields

u(∆, t) ≤ ϵ · ||∆||H1 · eM ,

which is what we had to prove.

We are now left with the case t ∈ {0, 1}. For t = 0 we immediately get

d(Z0(x, ⋆))Θ(∆) =
d

dα
x
∣∣
α=0

= 0,

which is in line with ϕ(∆, 0) = 0. For t = 1, we can still apply the fundamental theorem of
calculus to ϕ(∆, 1). Thus, the arguments above still work the same, and we get

d(Z1(x, ⋆))Θ(∆) = ϕ(∆, 1).

This finishes the proof.
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From Thm.4.1 and Lem.4.2 it is now clear, that for the loss function given in (4.1) a
Gradient-Descent-Procedure is well-defined. We wrap up this section with a remark on how
Neural ODEs are often trained in practice.

4.3 Remark (Adjoint State Method). The way Neural ODEs are used in practice differs
from the way they are described mathematically in this thesis. Often the weights are chosen
to be independent of t. In paritcular, commonly the right-hand side of (2.2) is a neural
network with a set of parameters θ and no time-dependence, making the ODE autonomous.

In this setup we would now like to find ”optimal” parameters θ, such that the corresponding
flow evaluated at time t = 1 is close to some desired target function. Differentiating a flow
w.r.t. these parameters is done via the so-called Adjoint State Method. A description on how
to apply this method can be found in [CLPS03] and [CRBD18].
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5 Quantifying Complexity for Neural ODEs

An unwanted trait for models in machine learning or statistics in general is the one of
being overfitted. Formally, this means that the model relies too much on the given data
and hence, performs poorly on unseen inputs. More precisely, for our case, given a dataset
D = {(xj, yj)}j=1,...,J , J ∈ N, a Neural ODE Z1(·,Θ) is overfitted to D if, although the
empirical average of

|y − Z1(x,Θ)|

for (x, y) ∈ D might be small, the expected value for admissible (x, y) /∈ D, is still large. We
also say that an overfitted model inherits an ”unnecessarily large amount of complexity”.

To avoid overfitting during training, via e.g., a gradient descent procedure, we commonly
add a so-called regularization term, µ : W∞ → [0,∞[, to the loss function. The regularization
term is chosen in a way, such that, during training, models that stem from a needlessly large
subset of the set of all possible models get punished. More specifically, for the case of
Neural ODEs, µ specifies an increasing sequence of subsets SR ↑ Nf (Rd), i.e., SR ⊂ SR′ ,
for 0 ≤ R < R′, and

⋃
R≥0 SR = Nf (Rd). Now, choosing a model in SR, with R rather

large, should correspond to being able to approximate a larger class of target functions h,
while having the risk of ending up with a model that used the extra approximative power to
overfit to the given data. We call the evaluation of µ at some weight, the complexity of the
respective model.

Typical choices for µ are suitable norms on the weight space. That way, weights with
large magnitude get punished during training. This results in a simpler model, which is
expected to generalize better. In the following we make an argument for the Sobolev norm
to be a sensible choice of a regularization term for the Neural ODE model.

5.1 Regularizing Neural ODEs with Sobolev-Norm

Heuristically, we demand three properties from a regularization term / complexity measure
µ for our Neural ODEs:

1. Technical Requirement:
The function Θ 7→ µ(Θ) should be Fréchet-differentiable, so that a Gradient Descent
procedure can still be applied (see Thm.4.1).

2. Restricting Capacity:
Allowing only for Θ with µ(Θ) ≤ M , for fixed M ∈ ]0,∞[, limits the approximation
capacity of the corresponding Neural ODEs.

3. Computational Complexity:
The depth L of a ResNet that stems from the Neural ODE (in the sense of Lem.2.4)
should correspond to µ(Θ), in the sense that, µ(Θ) determines how large L should be,
so that the ResNet, can still achieve a certain accuracy, when approximating a target
function h.
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In the upcoming three subsections, we shall demonstrate that the following choice of µ lives
up to these demnands:

µ : W∞ → R, Θ 7→ µ(Θ) := ||Θ||H1 ,

This µ happens to be a norm on the weight space W∞. The increasing sequence of subsets
will be

SR := NR
f (Rd) := {Z1(·,Θ) ∈ Nf (Rd) | Θ ∈ µ−1([0, R])},

for R ≥ 0.

5.1.1 Technical Requirement

Our choice of µ is Fréchet differentiable. This stems from the fact, that W∞ = H1([0, 1],W)
is a Hilbert space. More precisely, it is a well-known result, that norms on Hilbert spaces,
which are induced by a scalar product, are Fréchet differentiable everywhere except in 0.

5.1 Lemma (Fréchet-differentiability of ||·||H1). The function

µ : W∞ → R, Θ 7→ µ(Θ) := ||Θ||H1 ,

is Fréchet differentiable on W∞ \ {0}.

Proof. See [Wer06].

5.1.2 Restricting Capacity

Next, we would like to see that limiting the complexity of the model should result in
restricting the approximation capacity, as explained in the beginning of this section. More
specifically, if we fix R ∈ [0,∞[ and only allow Neural ODEs with weight functions in
µ−1([0, R]), then, universal approximation should fail. This is shown for activation functions
f ∈ Fa(Rd,W) in the following theorem:

5.2 Theorem (Universal Approximation fails for capped Weight Functions). Let
f ∈ Fa(Rd,W), d ≥ 1 and R ∈ ]0,∞[. Then, there exists a compact set K ⊂ Rd and a
function g ∈ C(K;Rd), such that

g /∈ NR
f (Rd)

||·||∞,K
.

Proof. Since f ∈ Fa(Rd,W), we have for any Θ ∈ µ−1(]0, R]), t ∈ [0, 1] and z ∈ Rd

|f(z,Θ(t))| ≤ ka · |Θ(t)|+ ca

≤ ka · ||Θ||H1 + ca

≤ ka ·R + ca.

Here, we used Lem.2.4 in the second estimate. Notice that this essentially means that f is
bounded. Recalling the proof of Thm.3.11, we are in the same situation, where both the
velocity f(Z•(x,Θ),Θ(·)), x ∈ Rd, and the time-window [0, 1] are bounded. From here on
out, the proof is completely analogous to the one in Thm.3.11.
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5.3 Remark (Other feasible Bounds on Activation Functions). Notice that we restricted
ourselves to activation functions f ∈ Fa(Rd,W) here. However, we could have also allowed
any f ∈ F(Rd,W) with an estimate of the form

|f(z, θ)| ≤ g(|θ|),

where g : R → [0,∞[ is continuous. Since any continuous functions attain their maximum
on a compact set we then gets

|f(z, θ)| ≤ max
|θ|≤R

g(|θ|),

which also results in boundedness of f . Hence, the proof of Thm.3.11 can be replicated.

5.1.3 Computational Complexity

Lastly, we have the requirement that the complexity µ of a Neural ODE should correspond
to the depth L of a corresponding ResNet. This heuristic essentially comes from the triangle
inequality:

”If a ResNet zL[·, θ] can approximate a Neural ODE Z1(·,Θ), and Z1(·,Θ) can
approximate a target function h, then zL[·, θ] should be able to approximate h.”

To see this, we merely have to take a look at the inequality (5.1) from Lem.2.11. Namely
for any and f ∈ F(Rd,W) ∩ C2(Rd × W ;Rd) and any compact set K ⊂ Rd there exists a
constant C > 0, such that

||zL[·, θL]− Z1(·,Θ)||∞,K ≤ C

L
· e

γf (µ(Θ)) − 1

γf (µ(Θ))
. (5.1)

From this inequality it is already clear that the right-hand side increases, when µ(Θ) does
(since γf is increasing), and it vanishes, when L becomes sufficiently large. Hence, our third
requirement is also fulfilled.

5.4 Remark (L2 does not quantify Complexity). It is a fair question to ask whether we
could have also picked the L2-norm instead of the H1-norm as a measure for complexity.
The answer is no. This is because Lem.2.4 fails for the L2-norm, and hence, our requirement
on Computational Complexity would fail, as we can not obtain an inequality similar to (5.1).
More precisely, there exist functions q ∈ L2([0, 1],W) such that there is a subset S ⊂ [0, 1]
with non-zero Lebesgue-measure, and

||q||2,[0,1] < q(t),

for any t ∈ S. For a specific example see Appendix D.1.
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5.5 Remark. We conclude this section with a lower bound on the complexity of the
Augmented Neural ODE model presented in (3.6). As we saw in the proof of Thm.3.15,
for any continuous function h and η > 0, we can find a Θ = (w, b, s) ∈ W∞, such that the
corresponding Augmented Neural ODE approximates h η-well w.r.t. the sup-norm.

We expect µ(Θ) to get larger, as precision η gets smaller, since, heuristically speaking, to
achieve a better precision, we have to pay with a higher complexity. We will now prove an
estimate that backs this claim. So suppose we want to approximate some continuous target
function with an Augmented Neural ODE, specified by Θ = (w, b, s) ∈ W∞, up to precision
η > 0. Note that we have

||Θ||H1 ≥ ||s||H1 .

Moreover, consolidating the proof of Thm.3.15, we see that s = sη is a mollification of a step
function. Since the Sobolev norm only gets smaller when we restrict to a smaller part of the
domain, we can reduce ourselves to the case sη = ϕη ∗ 1[0,1] : R → R. We will now prove
that there exists a c > 0, such that for η > 0 small enough we have

||sη||H1 ≥ c
√
η
,

and hence, after completing the estimate,

||Θ||H1 ≥ c
√
η
.

Proof of the Complexity Bound: Note that, since sη → 1[0,1] in L
2 as η → 0, by the reverse

triangle inequality we have

||sη||2 → ||1[0,1]||2 = 1 as η → 0.

Hence, there exists c̃ > 0, s.t. for η small enough ||sη||2 ≥ c̃. Moreover a simple computation
shows that

s′η = ϕ′
η ∗ 1[0,1]

= ϕη − ϕη(· − 1).

Note that, for η small enough, the summands on the right-hand side here, have disjoint
support. Thus we obtain using the transformation formula

||s′η||22 = ||ϕη||22 + ||ϕη(· − 1)||22
= 2 · ||ϕη||22

=
2

η
· ||ϕ||22.
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Combining everything yields

||sη||H1 = ||sη||2 + ||s′η||2

= ||sη||2 +
√

2

η
· ||ϕ||2

≥ min(c̃,
√
2 · ||ϕ||2) ·

(
1 +

1
√
η

)
≥ c

√
η

for η small enough, where we chose c := min(c̃,
√
2 · ||ϕ||2).
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Conclusion

We saw that no universal approximation theorem for (Scalar) Neural ODEs can exist in
Cor.3.6 and Prop.3.6. This is due to the fact that a Neural ODE is always a homeomorphism,
and such preserve the topology of the input space. However, if a target function does not
have this property, representation as well as approximation is impossible. Nevertheless,
it is manageable to tackle this problem by augmenting the dimension of the input space.
After this modification of the Neural ODE model, there are no obsticles, and universal
approximation can be achieved (even for larger output dimensions as we saw in Thm.3.21).
Moreover, in Thm.3.23, we proved that any two bounded disjoint subset from Rd with non-
zero distance can be turned into linearly separable sets by applying an Augmented Neural
ODE.

Furthermore, we showed that choosing the Sobolev space H1 as the space of weight functions
allows us to define a Gradient Descent Procedure. Here, in Lem.4.2, we gave a condition
on activation functions f ∈ F(Rd,W) for which Neural ODEs become Fréchet differentiable
w.r.t. the weight function.

Lastly, we formulated three sensible criteria for a regularization term for Neural ODEs.
We proved that the Sobolev norm satisfies these specifications and is, hence, a reasonable
quantifier for complexity.

Outlook

The result [AK20, Theorem 2.3] shows that a width for Neural ODEs equal to input
dimension plus output dimension is sufficient to achieve universal approximation. However,
it is not clear, whether a smaller width is also sufficient for certain classes of target functions
and it would be interesting to explore this further.

Moreover, as we saw in Section 3.1, homeomorphic linear separability is a crucial attribute
of sets when it comes to modeling strengths of Neural ODEs. Characterizing this property
in a more practical sense may help to specify further for which tasks Neural ODEs are a
sensible choice for a modle.

Finally, the idea for the Neural ODE model was inspired by the Euler discretization of ODEs.
A next step could be to consider the ”Euler-Maruyama discretization” and make sense of
Neural Stochastic Differential Equations. E.g., we can again ask the question, whether
universal approximation is possible.
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Appendix

A Supplement Material to Section 2

A.1 Sobolev Norm greater than Evaluation

Lemma. Let Θ ∈ W∞. Then, for any t ∈ [0, 1], it holds that

|Θ(t)| ≤ ||Θ||H1 .

Proof of Lem.2.4. The function Θ is continuous by Sobolev embeddings (see [LL01] for
details). Since [0, 1] is compact, we thus find t∗ ∈ [0, 1], such that for any t ∈ [0, 1] we
have |Θ(t∗)| ≤ |Θ(t)|. Furthermore, we can apply the fundamental theorem of calculus for
H1 and the triangle-inequality to obtain for any t ∈ [0, 1]

|Θ(t)| =
∣∣∣∣Θ(t∗) +

∫ t

t∗
Θ̇(s)ds

∣∣∣∣
≤ |Θ(t∗)|+

∫ t

t∗
|Θ̇(s)|ds.

Augmenting the integral boundaries and using the fact that Θ(t∗) is a minimum we get

|Θ(t)| ≤
∫ 1

0

|Θ(t∗)|ds+
∫ 1

0

|Θ̇(s)|ds

≤
∫ 1

0

|Θ(s)|ds+
∫ 1

0

|Θ̇(s)|ds.

Applying Hölder’s inequality on both integrals on the right side of the last inequality we get

|Θ(t)| ≤ ||Θ||2,[0,1] + ||Θ̇||2,[0,1]
= ||Θ||H1 .
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A.2 Properties of ODE-Flows

Theorem. Let f ∈ F(Rd,W), Θ ∈ W∞ and x, x′ ∈ Rd. Then, the following statements
hold:

1. Z0(x,Θ) = x

2. Z•(x,Θ) ∈ C1([0, 1];Rd) and l(Z•(x,Θ)) =
∫ 1

0
|f(Zt(x,Θ),Θ(t))|dt

3. Trajectories do not intersect: If x ̸= x′ then for any t ∈ [0, 1] we has Zt(x,Θ) ̸=
Zt(x

′,Θ).

4. Lipschitz-continuity in initial data: There exists a constant Cf,Θ > 0, such that for any
t ∈ [0, 1] on has

|Zt(x,Θ)− Zt(x
′,Θ)| ≤ Cf,Θ · |x− x′|.

5. Homeomorphism in initial data: For any t ∈ [0, 1] the map Zt(·,Θ) is a homeomorphism
on Rd.

Proof of Thm.2.8. Properties 1. and 2. are straight-forward. Number 3. is well-known and
can be found in [Aul04]. Number 5. is [DDT19, Proposition 3]. The Lipschitz-estimate we
prove ourselves. Let t ∈ [0, 1] and x, x′ ∈ Rd. Put

u(t) := |Zt(x,Θ)− Zt(x
′,Θ)|.

Using the fundamental theorem of calculus, the triangle inequality and the fact that f ∈
F(Rd,W), we get

u(t) ≤ |x− x′|+
∫ t

0

|f(Zs(x,Θ),Θ(s))− f(Zs(x
′,Θ),Θ(s))| ds

≤ |x− x′|+
∫ t

0

γf (|Θ(s)|) · u(s)ds.

Using Lem.2.4 yields

u(t) ≤ |x− x′|+ γf (||Θ||H1) ·
∫ t

0

u(s)ds.

Lastly, with Grönwall’s inequality we can conclude

u(t) ≤ Cf,Θ · |x− x′|,

where Cf,Θ := eγf (||Θ||H1 ). This finishes the proof.
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A.3 Well-definedness of ResNets

Definition/Lemma. Let f ∈ F(Rd,W) and L ∈ N. Define the discrete flow as the map

z•[·, ⋆] : {0, . . . , L} × Rd ×WL → Rd

(l, x, θL) 7→ zl[x, θ
L],

via the recursion

zl+1[x, θ
L] = zl[x, θ

L] + f(zl[x, θ
L], θLl ), l = 0, . . . , L− 1

z0[x, θ
L] : = x.

This function is well-defined and continuous for all l = 0, . . . , L.

Proof of Def./Lem.2.12: We need to show well-definedness and continuity, which we will do
via induction. So firstly, let L = 1. Then, for any x ∈ Rd and θ1 ∈ W by definition we have

z1[x, θ
1] = x+ f(x, θ1),

which is clearly well-defined and continuous in the first and second argument, since f ∈
F(Rd,W). Now, suppose the claim holds for L ∈ N arbitrary but fixed. Then, by definition

zL+1[x, θ
L+1] = zl[x, θ

L+1] + f(zl[x, θ
L+1], θL+1

L )

for any x ∈ Rd and θL+1 ∈ WL+1. This is is again continuous and well-defined in both
arguments by the induction hypothesis and the given properties of f .
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B Supplement Material to Section 3

B.1 Extension of Original Universal Approximation Theorem

Corollary. Let σ : R → R be continuous with

lim
s→+∞

σ(s) = 1 and lim
s→−∞

σ(s) = 0.14 (.2)

Moreover, let K ⊂ Rd be a compact subset and h : K → R a continuous function. Then, for
every ϵ > 0 there exists an N ∈ N and sn, dn ∈ R, cn ∈ Rd, for every n = 1, . . . , N , such
that the function

v : K → R, x 7→
N∑

n=1

snσ(cn · x+ dn)

satisfies ||h− v||∞,K < ϵ.

Proof of Cor.3.2. Since h is continuous, we know that every component hi : K → R is
continuous for i = 1, . . . ,m. By Thm.3.1 we find for every such i a positive integer Ni ∈ N
and sn,i, dn,i ∈ R, cn,i ∈ Rd, for every n = 1, . . . , Ni, such that the funciton defined by

vi : K → R, x 7→
Ni∑
n=1

sl,iσ(cn,i · x+ dn,i)

satisfies ||hi−vi||∞,K < ϵ. Note that we can define N := maxi=1,...,mNi and consider without
loss of generality functions vi, where we sum from n = 1 up to n = N , by simply adding
zeroes to the sum given in the definition of vi above. Next define the vectors

sn := (sn,1, . . . , sn,m), dn := (dn,1, . . . , dn,m) ∈ Rm

and the matrices Cn ∈ Rm×d, that have the vectors cn,1, . . . , cn,m ∈ Rd as rows. With this
we put the function v = (v1, . . . , vm) : K → Rm to be

v(x) =
N∑

n=1

sn ⊙ σ(Cn · x+ dn)

for all x ∈ K. It is now left to show, that v approximates h ϵ-well w.r.t. the sup-norm. This
follows swiftly from the fact that all norms on Rm are equivalent and the definition of the
sup-norm. Indeed, by the equivalence of norms in finite dimensional vector spaces, there
exists a constant c > 0, such that for any x ∈ K we have

|h(x)− v(x)| ≤ c · max
i=1,...,m

|hi(x)− vi(x)| ≤ c · max
i=1,...,m

||hi − vi||∞,K .

Hence,
||h− v||∞,K ≤ c · max

i=1,...,m
||hi − vi||∞,K < c · ϵ,

which becomes small, when ϵ gets small. This finishes the proof.

14In the literature, this property is often called ’being a sigmoidal ’.
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B.2 Technical Lemmas

Again, all the proofs for this part of the Appendix are taken from [AK20].

Lemma. Let m ≤ d, s, d ∈ Rm and C ∈ Rm×d with no zero rows. Then, there exist
s̃l, d̃l ∈ Rm and C̃l ∈ Rm×d, l = 1, . . . ,m, such that

s⊙ σ(Cx+ d) =
m∑
l=1

s̃l ⊙ σ(C̃lx+ d̃l),

for any x ∈ Rd, with rank(C̃l) = m, for l = 1, . . . ,m. If m = d we can choose the matrices
C̃l, such that det(C̃l) > 0.

Proof of Lem.3.16. Let m ≤ d. For any 1 ≤ l ≤ m we can find a matrix C̃l ∈ Rm×d with
full rank, such that the l-th row of C̃l and C concur. We can find such a matrix by putting
the l-th row to be the l-th row of C. By a well-known result form Linear Algebra, we can
then choose m − 1 row vectors in Rd, such that the collection of rows in C̃l are linearly
independent and hence, rank(C̃l) = m. Moreover, we define the k-th component of s̃l and
d̃l, k = 1, . . . , d as

(s̃l)k =

{
sk, l = k

0, l ̸= k
, (d̃l)k =

{
dk, l = k

0, l ̸= k
.

Then, by construction and the fact that σ acts componentwise, we get for the k-th component
of the right hand side of (3.8)( m∑

l=1

s̃l ⊙ σ(C̃lx+ d̃l)

)
k

=
m∑
l=1

(s̃l ⊙ σ(C̃lx+ d̃l))k

=
m∑
l=1

(s̃l)k · (σ(C̃lx+ d̃l))k

=
m∑
l=1

(s̃l)k · σ((C̃lx)k + (d̃l)k)

= sk · σ((Cx)k + dk)

= (s⊙ σ(Cx+ d))k.

Thus, the equality is shown. Additionally, if m = d, we know, since rank(C̃l) = m, that
det(C̃l) ̸= 0. Assuming det(C̃l) < 0, we can, without loss of generality, multiply a row of C̃l

(other than the l-th one) by −1 to get det(C̃l) > 0. This finishes the proof.
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Lemma. Let m ≤ d, L ∈ N, and sl, dl ∈ Rm and Cl ∈ Rm×d for l = 1, . . . , L (each Cl having
no zero rows). Then, there exists an L̃ ∈ N and s̃k, d̃k ∈ Rm, C̃k ∈ Rm×d for k = 1, . . . , L̃,
such that

L∑
l=1

sl ⊙ σ(Clx+ dl) =
L̃∑

k=1

s̃k ⊙ σ(C̃kx+ d̃k),

for any x ∈ Rd, with rank(C̃k) = m, for k = 0, . . . , L̃ − 1. If m = d we can choose the
matrices C̃k, such that det(C̃k) > 0.

Proof of Lem.3.17. This follows immediately by applying Lem.3.16 to the summands on the
right hand side of (3.9).

Lemma. Let m ≤ d. Let C ∈ Rm×d with rank(C) = m. If m = d assume additionally
det(C) > 0. Then, there exists a P ∈ Rd×d, such that

C = MP and det(P ) > 0.

Proof of Lem.3.18. For the case m = d with the restriction det(C) > 0, M is by definition
the identity matrix and after choosing P = C there is nothing to prove. So let m < d. Since
C has full rank, with a similar argument as in the proof of Lem.3.16, there exist d−m row
vectors in Rd, such that if we put P ∈ Rn×n to be the matrix, whose first m rows are the
ones from C and the last d−m rows are the chosen row vectors, we get det(P ) ̸= 0. Again,
without loss of generality, we may choose det(P ) > 0. Furthermore, multiplying with M
corresponds to cancelling out everything of a matrix besides the first m rows. this gives
MP = C, which is the claim.

Lemma. Let p ∈ [0,∞[ and L ∈ N. For Pl ∈ Rd×d, l = 1, . . . , L with det(Pl) > 0 and
0 = t0 < t1 < · · · < tL = 1 define the piecewise constant function

P : [0, 1] → Rd×d, t 7→ P (t) := PL1{1}(t) +
L∑
l=1

Pl1[tl−1,tl[(t).

Then, there exists a c > 0, such that for any η > 0, there exists a Pη ∈ C∞([0, 1];Rd×d) with

||Pη − P ||p,[0,1] < η, det(Pη(t)) > 0, |Pη(t)| ≤ c

for all t ∈ [0, 1].
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Proof of Lem.3.19. Let η > 0. We define the space of invertible d× d-matrices with strictly
positive determinant as GL+

d (R). Note that this space is path-connected (see [Bak03,
Chapter 9, p. 239]), so for any l = 1, . . . , L we can find a continuous map Q(l) : [0, 1] →
GL+

d (R), such that
Q(l)(0) = P (l) and Q(l)(1) = P (l+1).

We now connect all these paths and define a new path on R. For δ > 0 put

Qδ(t) :=


P (1), −∞ < t < t1,

Q(l)
(
t−tl
δ

)
, tl ≤ t < tl + δ, for l = 1, . . . , L− 1

P (l), tl−1 + δ ≤ t < tl, for l = 2, . . . , L− 2

P (L), tL−1 + δ ≤ t <∞.

Note that Qδ ∈ C(R,GL+
d (R)). For ϵ > 0 let ϕϵ : R → GL+

d (R) be a standard mollifier and
put

Pϵ := ϕϵ ∗Qδ.

Notice that Qδ is continuous on [0, 1] and on such compact sets the mollifications Pϵ converge
uniformly. Since Qδ maps to GL+

d (R), choosing ϵ small enough gives det(Pϵ(t)) > 0 for any
t ∈ [0, 1]. By the triangle inequality we get

||Pϵ − P ||p,[0,1] ≤ ||Pϵ −Qδ||p,[0,1] + ||Qδ − P ||p,[0,1],

and the rest of the proof now consists of showing, that the right hand side of this inequality
gets small with δ and ϵ. By properties of the mollification we choose ϵ small enough, such
that

||Pϵ −Qδ||p,[0,1] <
η

2
,

For the second term consider the following equations, where we used the definition of Qδ

and the transformation formula:

||Qδ − P ||pp,[0,1] =
∫ 1

0

|Qδ(t)− P (t)|pdt

=
L−1∑
l=1

∫ tl+δ

tl

∣∣∣∣Q(l)

(
t− tl
δ

)
− P (l+1)

∣∣∣∣pdt
= δ

L−1∑
l=1

∫ 1

0

|Q(l)(s)− P (l+1)|pds.

Since |Q(l)(s)−P (l+1)| is bounded (uniformly in s and l), this quantity also vanishes as δ → 0.
So choosing δ and small enough and putting Pη := Pϵ gives the claim that

||Pη − P ||p,[0,1] < η.

Note that Pη is continuous, since it is smooth, so, by compactness of [0, 1], there exists a
C > 0, such that |Pη(t)| ≤ C for any t ∈ [0, 1]. Thus, the proof is finished.

55



B.3 Approximation Speed of Augmented Neural ODE

To prove the claims made in Rem.3.20 about the approximation speed/ complexity bound
of the model we reduce the claim without loss of generality to the case of approximating the
function h : R → R, t 7→ 1[0,1](t) with mollifications w.r.t. ||·||1,[0,1] (see (3.11)). In general
the approximation speed of such mollifications can be arbitrarily slow/fast. However, the
functions s and q chosen in the proof of Thm.3.15 are sums of indicator functions, so, by the
triangle inequality, this choice of h is reasonable. For the following proof we let (ϕη)η>0 be a
sequence of standard mollifiers. We will show that for hη := h ∗ ϕη there exists a c > 0, such
that

||hη − h|| ≤ c · η.

Proof of the Approximation Bound. Note that h(t) = 1[0,∞[(t) − 1[0,∞[(t − 1) for all t ∈ R.
Put r := 1[0,∞[. Using the transformation formula, we then have

rη(t) = (ϕη ∗ r)(t)

=
1

η

∫
R
r(s)ϕ

(
t− s

η

)
ds

=

∫ ∞

0

ϕ

(
t

η
− s

)
ds

= r1

(
t

η

)
.

Notice that for any α > 0 we have r(t) = r(αt) for any t ∈ R. For α = 1
η
we thus get using

the transformation formula again

||rη − r||1 =
∫
R
|rη(t)− r(t)|dt

=

∫
R

∣∣∣∣r1( tη
)
− r

(
t

η

)∣∣∣∣ dt
= η · ||r1 − r||1.

Observe that ||r1 − r||1 is finite, since

r1(t)− r(t) =

(∫ t

−∞
ϕ(s̃)ds̃

)
− 1[0,∞[(t),

which is bounded and compactly supported. Moreover, ||r1 − r||1 independent of η. Hence,
we found c > 0, such that

||rη − r||1,[0,1] ≤ ||rη − r||1
= c · η.

Using h = r−r(·−1) and the linearity of the convolution yields the same estimate for h.
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C Supplement Material to Section 4

C.1 Definition of Fréchet differentiability

The following definition is taken from [Wer06].

Definition. Let (X, ||·||X), (Y, ||·||Y ) be two normed vector spaces and U ⊂ X be open. A
function F : U → Y is called Fréchet differentiable at x ∈ U , if there exists a bounded linear
operator P : X → Y , such that

lim
||h||X→0

||F (x+ h)− F (x)− Ph||Y
||h||X

= 0.

Put differently this means that

||F (x+ h)− F (x)− Ph||Y ∈ o(||h||X).

We also write dFx := P .

C.2 Continuity w.r.t. Weight Function

Lemma. Let f ∈ F(Rd,W) be continuously differentiable (in both variables) with bounded
derivative. Let Θ,∆ ∈ W∞ and s ∈ ]0, 1[. Then, there exists c > 0, such that

|(Zs(x,Θ+∆)− Zs(x,Θ),∆(s))| ≤ c · ||∆||H1 .

Proof. We use Lem.2.4 and equivalence of norms on finite dimensional vector spaces, to find
c′ > 0, such that

|(Zs(x,Θ+∆)− Zs(x,Θ),∆(s))| ≤ c′ · (|Zs(x,Θ+∆)− Zs(x,Θ)|+ |∆(s)|)
≤ c′ · |Zs(x,Θ+∆)− Zs(x,Θ)|+ c′||∆||H1 .

Hence, proving the statement reduces itself to proving continuity of Zs(x, ⋆). Put

w(∆, s) := |Zs(x,Θ+∆)− Zs(x,Θ)|.

Using the fundamental theorem of calculus, the triangle inequality, the mean value inequality
and the fact that the derivative of f is bounded by M > 0, we get

w(∆, s) ≤
∫ s

0

|f(Zr(x,Θ+∆),Θ(r) + ∆(r))− f(Zr(x,Θ),Θ(r))|dr

≤M ·
∫ s

0

|(Zr(x,Θ+∆)− Zr(x,Θ),∆(r))|dr.

Again, norms are equivalent in finite dimensions, and thus,, after applying Lem.2.4, it follows
that

w(∆, s) ≤ c′M ·
∫ s

0

|∆(r)|dr + c′M ·
∫ s

0

w(∆, r)dr

≤ c′M · ||∆||H1 + c′M ·
∫ s

0

w(∆, r)dr.
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Finally we apply Grönwall’s inequality to obtain

w(∆, s) ≤ c′Mec
′M · ||∆||H1 .

Combining everything yields

|(Zs(x,Θ+∆)− Zs(x,Θ),∆(s))| ≤
(
(c′)2Mec

′M + c′
)
· ||∆||H1 =: c · ||∆||H1 ,

which is what we had to prove.
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D Supplement Material to Section 5

D.1 Lem.2.4 fails for Lebesgue Norm

We give an example of a function q ∈ L2([0, 1],R), such that there exists a set S ⊂ [0, 1]
with non-zero Lebesgue measure, so that for any t ∈ S we have

||q||L2 < q(t).

For n ∈ N we put

qn(t) :=


4n, t ∈ [0, 1

4n
[

1, t ∈ [ 1
4n
, 3
4n
[

4n
4n−3

· (t− 1
n
), t ∈ [ 3

4n
, 1
n
].

An easy calculation shows

||qn||2,[0,1] =
√

2

3n
.

Choose m ∈ N large enough, such that ||qm||2,[0,1] < 1. Furthermore, for S := [ 1
4m
, 3
4m

[, which
has non-zero Lebesgue measure, we have qm

∣∣
S
= 1. Hence,

||qm||2,[0,1] < qm(t),

for any t ∈ S and we have found a counterexample.
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