
The Radiation Field Tensor in

Classical Electrodynamics

Jose Antonio Lucero Contreras

A Master’s Thesis Completed in the Light and Matter Group at the
Department of Mathematics, LMU Munich

Faculty of Physics
Ludwig-Maximilians-Universität

28.01.2025
Munich

Supervisors:
-
- Priv.-Doz. Dr. Dirk-André Deckert
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Abstract

This master thesis is devoted to the study of the electromagnetic field associated with radiation.
The primary objective is to present a rigorous proof of the validity of the well known radiation
term. Specifically, we demonstrate that for a sequence of points (xn)n∈N in space-time converging
to a point q(τ∗) on the world-line of a charged particle, the tensor components of the radiation field
converge to:

lim
n→∞

F µν
Rad(xn) = 4e

3

( ...
q µ

(τ∗)q̇
ν
(τ∗) −

...
q ν

(τ∗)q̇
µ
(τ∗)

)
, (1)

where F µν
Rad = F µν− − F µν+ is the difference between the retarded, F µν−, and advanced, F µν+,

Lienard-Wiechert fields of the trajectory q(τ). These fields are known to be divergent at the
particle’s position, see equations (4.1) and (4.2). Therefore, the limit can only be achieved by a
delicate cancellation between the divergent terms in both fields. To achieve this result, the thesis
is structured into four chapters:

1. Chapter One provides a motivation for the topic, revisiting key concepts from electrody-
namics. It offers a refresher on general principles of the theory, defines the radiation field,
and addresses aspects of Dirac’s theory of radiation in classical electrodynamics which are
relevant to this work.

2. Chapter Two marks the beginning of the main body of this work which is presented in
a mathematical rigorous manner. Here, the foundational concepts of space-time, world-
lines, and retarded/advanced positions are introduced and defined. Specifically, this chapter
establishes the existence and uniqueness of the advanced and retarded positions (Lemma
2.9), demonstrates the continuity of the advanced and retarded times across all of space-time
(Lemma 2.12), and proves their differentiability outside the world-line (Lemma 2.13).

3. Chapter Three develops a physical intuition for the radiation fields. In this chapter, the
mechanism of the divergence cancellation between F µν− and F µν+ are analyzed by shifting
the spatial position by an infinitesimal amount in an arbitrary direction. In this chapter, we
work rather with the electromagnetic fields instead of the tensors to also study the role of
Coulomb fields in radiation. For this, we investigate the electromagnetic Lienard-Wiechert
fields (equations (3.3) and (3.4)) in different scenarios.
It is shown, through explicit computation, that the radiation fields vanish for a particle
moving with constant velocity (Results 3.1 and 3.2). Expansions of the advanced and retarded
times near the particle are derived (Results 3.4 and 3.5), as well as for the normal vectors
(Results 3.6 and 3.7). These results came as an interesting surprise, as these quantities are
not differentiable at the trajectory, which means that a conventional Taylor expansion is not
available. A particularly interesting observation presented at the end of this chapter is that
for the case of motion with constant acceleration, it is shown that the Coulomb fields diverge
in such a way that they cancel a divergence of the far fields, making the entire expression
convergent in the end (Result 3.11 and equations (3.32) and (3.33)). Hence, any study of
equation (1) for general trajectories must include both the near and the far fields.

4. Chapter Four is the final chapter of this thesis and is again presented in a mathematical
rigorous manner. In this chapter, the announced proof of the convergence of Dirac’s radiation
term (1) is provided, where the main difficulty is to control the cancellation mechanism
between F µν− and F µν+. In order to achieve this, the existence of a special point on the
world-line (referred to as ”Dirac’s choice”) is shown. This point is evaluated at parameter
τn at which q̇µ

(τn)(xµ − qµ(τn)) = 0 holds (Lemma 4.3). Due to this property, it serves as
a convenient expansion point because it simplifies the computations of the field tensors.
It is then demonstrated that the parameter τn at this point must converge, along with the
advanced and retarded parameters τ±

n , to the same parameter τ∗ on the world-line (Corollary
4.4).
From this point, an expansion of the retarded and advanced field tensors is performed around
τn, and their divergence at the trajectory is studied (Lemma 4.7). In the final section, the
limit of the radiation field and the error term are computed explicitly, which constitutes the
main result of the chapter (Theorem 4.2).

5. Chapter Five concludes with short outlook in this topic.
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Chapter 1

Radiation in Classical
Electrodynamics

The goal of this chapter is to provide a self-contained introduction to the topic of radiation reaction.
In the first section, we present a brief overview of Maxwell’s equations, the Lorentz force and the
interplay between them. In the second section, we discuss the radiation phenomena, where we
briefly introduce the historical methods used to tackle this problem. Here, we will focus on the
developments in the model of a point particle. We also present a discussion about the validity of
P.A.M. Dirac’s assumption introduced in his famous paper ”Classical theory of radiating electrons”
[Dir38], where he motivated that the radiation field tensor is the difference of the retarded and the
advanced Lienard-Wiechert fields.

1.1 Electrodynamics
Today, the electromagnetic theory remains as one of the most successful frameworks of physics.
From Maxwell´s original work [Max10] in 1873, we have seen the theory to evolve into a well
established and robust field with the help of which a wide spectrum of phenomena can be grouped.

The classical theory of electrodynamics, as understood today, is described in terms of the
electromagnetic fields and charge distributions. A charged body moving in space-time is modeled
with the charge density ρ : R×R3 → R, which tell us about the spatial distribution of the charge in
space, and the current density −→J : R×R3 → R3, which provides information about the movement
of the charge. Given these two quantities, it is possible to solve the Maxwell´s equations1

[Gri11, p. 417]

∇ ·
−→
E (t,−→x ) =

ρ(t,−→x )

ϵ0
,

∇ ·
−→
B (t,−→x ) = 0,

∇×
−→
E (t,−→x ) = −

∂
−→
B (t,−→x )

∂t
,

∇×
−→
B (t,−→x ) = µ0

−→
J (t,−→x ) + µ0ϵ0

∂
−→
E (t,−→x )

∂t
,

for the electric −→E : R × R3 → R3 and magnetic fields −→B : R × R3 → R3. If, on the other hand,
we are given the electromagnetic fields, then we can compute the Lorentz Force that acts on a
charged body. For point particles with charge q at position −→r (t) it reads [Gri11, p. 272, 446]

−→
F (t,−→r (t)) = q

(−→
E (t,−→r (t)) +−→v (t) ×

−→
B (t,−→r (t))

)
,

and for extended charge models one would integrate over the charge density, which is normally
assumed to be supported on a compact subset V of R3. For our case of interest, we would like
to mix the Lorentz force with the Maxwell’s equations. This is so because we would like to
model a charged particle which is moving in space-time and therefore is producing time varying

1Here we use SI units, such that ϵ0 ≈ 8.8 ∗ 10−12 F
m

is the vacuum permittivity and µ0 ≈ 1.2 ∗ 10−6 N
A2 is the

vacuum permeability.
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electromagnetic fields, which, at the same time, produce a force that acts on the particle, changing
in this way its trajectory.

To understand better why this procedure is problematic, we discuss now how to solve the
Maxwell’s equations and provide as an example the fields of a point particle. It is of common
practice to rewrite the Maxwell’s equations in terms of the electromagnetic potentials, which
are defined as [Gri11, p. 526]

−→
E (t,−→x ) = −∇ϕ(t,−→x ) −

∂
−→
A (t,−→x )

∂t
,

and −→
B (t,−→x ) = ∇×−→A (t,−→x ),

where ϕ is called the scalar potential and −→A is the vector potential. These four new functions
are not uniquely defined, one can perform what is called a gauge transformation and obtain equally
valid expressions2.

It can be shown [Gri11, p. 531], that under the Lorentz gauge (∇ · −→A (t,−→x ) = −µ0ϵ0
∂ϕ(t,−→x )

∂t
),

the Maxwell’s equations can be given in the form

□ϕ(t,−→x ) = −
ρ(t,−→x )

ϵ0
,

□
−→
A (t,−→x ) = −µ0

−→
J (t,−→x ).

The theory of special relativity provides us with a comfortable framework in which the last equa-
tions are melted into one, using the so called four potential [Gri11, p. 671]

Aµ
(t,−→x ) :=

(
ϕ(t,−→x )/c
−→
A (t,−→x )

)
,

where we introduce the index µ ∈ {0, ..., 3} and Aµ gives us the vector components. The same can
be done for the quantities associated with the charge distribution. We define the four current as
[Gri11, p. 668]

Jµ
(t,−→x ) :=

(
cρ(t,−→x )−→
J (t,−→x )

)
.

In this way, one can rewrite the original Maxwell’s equations as

□Aµ
(t,−→x ) = −µ0Jµ

(t,−→x ). (1.1)

One of the main focus in the theory of electrodynamics is to study how to solve equation (1.1).
In this section we follow [Jac14, p. 708]. We begin by calculating the Green’s functions of the
D’Alembertian, i.e. we look for a function G(xµ,x′µ) that solves

□G(xµ,x′µ) = δ4
(xµ−x′µ), (1.2)

where δ4
(xµ−x′µ) is the four dimensional Dirac delta function. Because the D’Alembert operator is

invariant under translations, we look functions of the form G(xµ−x′µ). Performing a four dimen-
sional Fourier transformation on equation (1.2) we obtain

−kµkµG̃ = 1⇒ G̃ = − 1
kµkµ

,

and get (using the shorthand notation zµ = xµ − x′µ)

G(zµ) = − 1
(2π)4

∫
e−ikαzα

kµkµ
d4k.

2The Gauge transformations are given by −→
A ′

(t,−→x ) = −→
A (t,−→x ) + ∇λ(t,−→x ) and ϕ′

(t,−→x ) = ϕ(t,−→x ) −
∂λ(t,−→x )

∂t
, with a

scalar, differentiable function λ(t,−→x ) [Gri11, p. 530]. Inserting these expressions in the equations for the electromag-
netic fields show that the choice of λ does not change the fields −→

E and −→
B .
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Figure 1.1: Possible paths of integration

Since the integral diverges for kµkµ = 0, we use complex analysis to evaluate it at the poles. We
write then

G(zµ) = − 1
(2π)4

∫
d3kei

−→
k ·−→z

∫
dk0 e−ik0z0

(k0)2 −
−→
k 2

,

where the last integral over k0 can be evaluated using one of two possible paths, as shown in figure
1.1. Using the residue theorem, we obtain

G(xµ−x′µ) =
Θ(x0−x′0)

(2π)3

∫
d3k

sin
(
∥
−→
k ∥R3(x0 − x′0)

)
ei

−→
k ·(−→x −−→x ′)

∥
−→
k ∥R3

,

where Θ(x0−x′0) is the Heaviside step function and ∥ · ∥R3 denotes the euclidean norm in R3. The
last integral can be solved using spherical coordinates. We use the relation between the Dirac’s
delta function and the integral of the exponential function and finally arrive at

G− := G−
(xµ−x′µ) =

Θ(x0−x′0)

4π

1
∥−→x −−→x ′∥R3

δ(x0 − x′0 − ∥−→x −−→x ′∥R3).

This result is know as the retarded or causal Green’s function of the D’Alembert operator.
If, on the contrary, one selects the second path to perform the integration (figure 1.1 right), the
result obtained is the so called advanced Green’s function of the D’Alembert operator

G+ := G+
(xµ−x′µ) =

Θ(x′0−x0)

4π

1
∥−→x −−→x ′∥R3

δ(x0 − x′0 + ∥−→x −−→x ′∥R3).

Notice that there is no mathematical motivation to choose one result over the other. But the
physical implications of the last result is that one must know the particle’s position in the future
in order to calculate the actual electromagnetic fields, as shown below.

The Green’s functions are of great use when solving equation (1.1) because it holds that

Aµ±
(t,−→x ) =

∫
d4x′G±Jµ

(t′,−→x ′). (1.3)

Example 1.1: The Lienard-Wiechert Potentials

In order to study the motion of a point particle, we set

Jµ
(t,−→x ) = eδ3(−→x −−→q (t))

(
c
−→v (t),

)
where e is the electric charge and −→q (t) denoted the position of the particle at a given time
t. If we put this expression in the last integral, we obtain two different outcomes. For G−

the result is the retarded four potential

3



Aµ−
(t,−→x ) = µ0e

4π

1
∥−→x −−→q −∥R3

(
1− −→v −·−→n −

c

) ( c
−→v −

)
,

where all quantities with a subscript ”minus” must be evaluated at the retarded time t−,
which shall fulfill

t−
(t,−→x ) = t− 1

c
∥−→x −−→q −∥R3 .

Using G+ we obtain the advanced four potential instead

Aµ+
(t,−→x ) = µ0e

4π

1
∥−→x −−→q +∥R3

(
1 + −→v +·−→n +

c

) ( c
−→v +

)
,

where now the quantities with the subscript ”plus” must be evaluated at the advanced
time t+ which shall fulfill

t+
(t,−→x ) = t + 1

c
∥−→x −−→q +∥R3 .

From this last example we can see the appearance of a factor

1
∥−→x −−→q ±∥R3

(1.4)

in both the advanced and retarded four-potentials. It will be shown later (Corollary 2.10 in chapter
two) that if −→x = −→q (t), then −→q (t±

(x)) = −→q (t) and therefore the equation (1.4) is divergent at the
particle’s position. This problem is also transported to the electromagnetic fields. This is better
seen from the electromagnetic field tensor, which is defined as [Gri11, p. 666]

F µν
(t,−→x ) := ∂µAν

(t,−→x ) − ∂νAµ
(t,−→x ),

where µ, ν ∈ {0, ..., 3}. Comparing this equation with the definition of the electromagnetic poten-
tials allows us to check that the components of F µν are the components of the electromagnetic
fields. From Aµ±

(t,−→x ) we can compute the advanced and retarded field tensors. The calculation is
given in Appendix E and here we will only show the final result. Lets assume that we are given
the trajectory of a particle in space-time, denoted as q(τ), where τ may be the proper time of the
particle. Then, at a point x = (t,−→x ) in space-time, the Lienard-Wiechert fields are given by

F µν±
(x) = ∓e

q̇(τ±) · (x− q(τ±))

[
d
dτ

q̇ν
(τ)(xµ − qµ

(τ))− q̇µ
(τ)(xν − qν

(τ))
q̇(τ) · (x− q(τ))

]∣∣∣∣∣
τ=τ±

, (1.5)

where in this equation τ± denotes the proper times at which the equations

t±
(t,−→x ) = t± 1

c
∥−→x −−→q +∥R3

hold. τ± and their properties will be discussed in detail in the next chapter. For now, we only
need these formulas to state the problem we are facing. As the four-potentials, the field tensors
also diverge at the particle’s position. So there is no clear way to compute the Lorentz force using
just the retarded or the advanced fields.

In the next section we provide an overview of what the people have done in order to model
radiation and its influence in the movement of the particle.

1.2 Models of the Radiation Phenomena
One of the main results of the theory of electrodynamics is the fact that the Maxwell’s equations
obey also the wave equation. The speed at which the wave propagates in vacuum is (in SI units)
the constant c = 1√

ϵ0µ0
= 299792458 m/s, i.e. the speed of light. This let Maxwell propose that

light was in fact ”made of” electromagnetic fields. The process in which charged objects emit light
is called radiation. In other words, it refers to the way electromagnetic fields carry energy away
from their source, [Zan13, p. 730]. For this reason, the emission and absorption of radiation is a
subject of high interest in many fields of study. One of the core formulas in this topic was derived
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by Larmor in the paper ”LXIII. On the theory of the magnetic influence on spectra; and on the
radiation from moving ions ”, 1897, [Lar97] and reads

P(t−) = 1
4πϵ0

2e2∥−→a (t−)∥2
R3

3c3 . (1.6)

A derivation of this formula can be found in Appendix F.
Unfortunately, this formula provides us only with information about the power radiated at

spatial infinity. Other people attempted to derive models in which one gets more information
about the movement of the particle pursuing the following line of reasoning. If we think about
our understanding of how nature operates, we assume the principle of energy conservation to be
valid, then the electromagnetic fields that are carrying energy away from a particle must also
posses information about its change of movement. In other words, the particle must lose energy
through some mechanism which one wishes to model as a force acting back on the particle, in that
way changing its movement until there is no more energy to be radiated and therefore achieving
a state of constant motion. As mentioned before, it is not possible to work directly with the
Lienard-Wiechert fields as these are divergent at the particle’s trajectory.

One approach to avoiding this problem is discussed in [Spo04], where, instead of studying a
point particle, an extended charge model is considered. However, two unavoidable issues arise:
if one works with a rigid body, first introduced by Max Abraham in 1902 [Abr02], then one will
violate the theory of special relativity and will end up with an effective mass which depends on
minus the inverse of the radius of the charged body. So, for example, in the case of an electron if the
radius is smaller than the classical radius, the bare mass is be negative [Spo04, p. 77]. On the other
hand, if the model adheres to the theory of special relativity, as in the Lorentz model introduced
by Hendrik Lorentz in 1903 [Lor03], one encounters another problem of ”mass renormalization.”
Here, the effective mass of the electron have an extra term due to the angular momentum and to
control this term, the bare mass of the electron must tend to zero. In this case it also happens
that the equator of the electron rotates with the speed of light (see [Spo04, p. 51]).

Another path was proposed by Paul Dirac in 1938 in [Dir38]. In this paper he split the retarded
field tensor as

F µν−
(x) = 1

2(F µν−
(x) + F µν+

(x) ) + 1
2(F µν−

(x) − F µν+
(x) ), (1.7)

and use it to calculate new equations of motion. We see the appearance of the difference

F µν
Rad(t,−→x ) = F µν−

(t,−→x ) − F µν+
Rad(t,−→x ), (1.8)

which was identified by Dirac as the radiation field produced by the particle [Dir38, p. 151]. In
order to illustrate his idea, we study a simple experiment, see Figure 1.2. Here we assume that
a charged particle moves with constant velocity before entering a zone where it interacts with an
external force. In this zone (colored cyan), the particle may absorb and emit light and in turn
accelerate. At the end of the interaction, the particle comes again to a state of constant motion
where no radiation is emitted or absorbed. Let us explain in detail what we are supposing:

1. The blue line represents the particle’s trajectory q(R). (A full definition of world-line is given
in the next chapter, see Definition 2.6).

2. As asymptotic behavior, the particle shall move with some constant velocities v1 before and v2
after the interaction. In space-time, the asymptotics are straight-lines and here, the particle
fulfills the second Newton’s law with external force equal zero.

3. In the cyan colored zone, the particle accelerates due to the interaction with fext. Here,
radiation may occur.

The advantage of this scattering picture is that, before and after the interaction, we can separate
in a physical meaningful manner the field that belongs to the particle and external fields. So, at
some time T − before the interaction occurs, the total field in space-time can be written as

Ftotal,T − = Fin,T − + F v1
Coulomb,T − ,

where we write the sum of Fin,T − called the incoming field (radiation that may interact later with
the particle, which is a homogeneous solution of the Maxwell’s equations) and the Coulomb field
of the particle moving at constant speed v1. The same can be done after the interaction occurs,
such that we write at some other time T + the total field as

Ftotal,T + = Fout,T + + F v2
Coulomb,T + ,

5



Figure 1.2: Motivation of the Radiation Field

where in this case we do not have an incoming field but rather another homogeneous solution of
the Maxwell’s equations, called the outgoing field Fout,T + (we think of it as radiation moving away
from the particle).

In this scattering picture, we can intuitively define the radiation field. Before the interaction
occurred, the particle had not radiated, such that the incoming field corresponds to radiation
external to the particle. But after the interaction, because the particle radiated and then it
moves again with constant velocity, the outgoing field must contain all external radiation plus the
time-evolved radiated field by the particle during the interaction. In other words, advancing the
incoming field forwards in time until T +, we define

FRad,T + := Fout,T + − F evolved
in,T + .

In this last equation, F evolved
in,T + represents the solution of the homogeneous Maxwell’s equations

evaluated at time T +3. In the region where the interaction happens, at some time t, we can do
the same procedure and evolve Ftotal,T − forward and Ftotal,T + backward in time. Here both fields
must result in the same field, obtaining in this way

Ft = F evolved
in,t + F −

t = F evolved
out,t + F +

t .

We define again the radiation field as the difference between the evolved outgoing and incoming
fields, namely

FRad,t := F evolved
out,t − F evolved

in,t ,

or, if we use the equation for Ft to substitute them, we obtain

FRad,t = F −
t − F +

t . (1.9)

This physical motivation is used here to define the radiation field. With the help of this term,
Dirac derived the following formula for the radiation field

F µν
Rad(q(τ)) = 4e

3

( ...
q µ

(τ)q̇
ν
(τ) −

...
q ν

(τ)q̇
µ
(τ)

)
(1.10)

and he also derived equations of motion, which allowed him to study some solutions. This term is
interesting because of three aspects:

3See for example [Dec10, p. 62], Corollary 4.13.
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1. It is an homogeneous solution of the Maxwell’s equations.

2. As the difference of two divergent terms, it has a chance of being divergence free.

3. Dirac’s result is compatible with Larmor’s formula, see [Bar80, p. 189].

The mathematical rigorous study of the term F µν−
(t,−→x ) − F µν+

(t,−→x ) and how it leads to equation (1.10)
is the main topic of this thesis. In chapter four, we demonstrate that this term can be expanded,
providing an explicit calculation of the remainder. Dirac’s approach also presents two significant
issues, which remain unsolved: First, because of the splitting in equation (1.7), one also has to
deal with the divergent expression

1
2(F µν−

(x) + F µν+
(x) )

which, to be controlled, one needs to let the ”bare mass” of the particle to diverge. Second,
the solutions of the differential equation derived by Dirac are not of physical nature, where for
example, a particle radiating would approach the speed of light exponentially fast, phenomena
which is known as the ”runaway solutions”. In Appendix G we provide some examples of the
solutions obtained by this approach.

It is important to mention that there were some works done in this topic after Dirac’s paper
was published. For example, in 1945, R. Feynman and J. Wheeler published a paper in which
they introduced the ”absorber theory” [WF45]. In this theory, it is not the accelerated motion
of a particle that causes radiation, but rather the interaction with other particles, referred to
as the absorber medium. There is no self-force and no divergences, as the force acting on a
charged particle always stems from other particles. The motivation for this paper was Wheeler
and Feynman’s criticism ([WF45, p. 159]) of the works of Lorentz and Dirac: Lorentz “provided
an incomplete expression of the self-force,” while Dirac “offered no explanation for the origin of
radiative damping.” The two authors derived an expression for the radiation reaction which is in
accordance with Dirac’s result (1.10).

Since equation (1.10) appears quite often in the literature of radiation reaction and its mathe-
matical status is not clear, we provide a theorem studying under which conditions equation (1.10)
holds and give the convergence rate in chapter Four, Theorem 4.2. We will make use of the Dirac’s
ideas which simplify the calculations.
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Chapter 2

Mathematical Structure of
Minkowski Space-Time

In contrast to chapter one, in this second chapter we aim to construct and define the basic objects
needed for the rest of the work in a mathematical rigorous way. We want to show the existence of
the advanced and retarded times and study some of their basic properties. Explicitly, we will show
that the advanced and retarded times are continuous everywhere in the Minkowski space-time.

Summary of this Chapter

In this chapter, we present a collection of essential results required for the convergence of
the radiation field. Specifically, we demonstrate

1. the existence and uniqueness of the retarded and advanced positions (Lemma 2.9).

2. the continuity of the retarded and advanced times (Lemma 2.12) and their differentia-
bility outside the world-line (Lemma 2.13).

2.1 Definition of Minkowski Space-Time
Here we present a rigorous definition of all elements needed in classical electrodynamics. We
establish a solid mathematical foundation and demonstrate that a sequence of points in Minkowski
spacetime, which converges to the world-line of a particle, gives rise to two distinct sequences of
points along the world-line, namely the advanced and retarded positions.

Definition 2.1. (Pseudo-scalar Product) Given two vectors x, y ∈ R4, which in Cartesian
coordinates are denoted by x = (x0, x1, x2, x3)T and y = (y0, y1, y2, y3)T , we call the map{

R4 × R4 → R
(x, y) 7→ x · y := x0y0 − x1y1 − x2y2 − x3y3

the pseudo-scalar product of x and y. For the special case x · x we also may write x2.

Definition 2.2. (Metric Tensor) Given two vectors x, y ∈ R4, which in Cartesian coordinates are
denoted by x = (x0, x1, x2, x3)T and y = (y0, y1, y2, y3)T , we call the matrix←→η whose components
satisfy the equation

x · y = xT←→η y

the metric tensor. Its components can be read off from the defining equation of the pseudo-scalar
product, i.e.

←→η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Definition 2.3. (Einstein’s Summation Convention) When working in the framework of
special relativity we may also denote the vectors x ∈ R4 by their components xµ, where µ is an
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index going from zero to three. Then, it is possible to write the pseudo-scalar product of two
vectors as

x · y = xµyµ = xµηµνyν , (2.1)

where the repeated indices above and below are summed over. In this context, (ηµν)(µ,ν)∈{0,...,3}2

denote the components of metric tensor. We also note the implicit definition in the way of writing,
namely yµ = ηµνyν . We may say that the metric tensor can be used to ”lower indices”.

Definition 2.4. (Minkowski-Spacetime) We define the set of vectors in R4 doted with the
pseudo-scalar product x · y for all x,y ∈ R4 as the Minkowski-Spacetime M.

Remark. The name of nµν as a tensor is well supported by its behavior under coordinate trans-
formations. That is, when choosing two different coordinate systems xµ and xµ′ , we find the
transformation relation

ηµ′ν′ = ∂xµ

∂xµ′

∂xν

∂xν′ ηµν ,

whenever these coordinates are either rotations or Lorentz-boosts in some direction.
The last set of definitions give us the vocabulary needed to talk about moving particles and

fields in space-time. As always in the case of special relativity, we embed the zeroth component
of a vector x with the meaning of the time component. We will also refer to the vectors in M as
four-vectors.

Additionally, we need a meaning for convergence and we will use this word in the normal
mathematical sense using the euclidean norm rather than the Minkowski-metric. Whenever we
write ∥x∥Rn for x ∈ Rn, we actually mean

∥x∥Rn =
[

n∑
i=1

x2
i

]1/2

and as ee will always refer explicitly to the dimension in which the norm has to be taken, there
should be no confusion between the pseudo-scalar product of M and the conventional scalar product
of R.

Definition 2.5. (Converge of Sequences in M) A sequence of four-vectors (xn)n∈N with
xn ∈M for all n ∈ N is called convergent with limiting vector q ∈M if it holds true that

∀ϵ > 0 ∃N ∈ N ∀n ≥ N : xn ∈ Bϵ(q) := {y ∈ R4 : ∥y − q∥R4 < ϵ}.

2.2 Physical Objects in Space-Time
We now aim to define precisely what is meant by a particle moving through spacetime and introduce
the concept of the light-cone.

Definition 2.6. (World-Line of a Particle) We call the maps

q :


R −→M

τ 7−→ q(τ) :=
(

t̃(τ)−→q (t̃(τ))

)
,

(2.2)

world-lines, with t̃(τ) the time coordinate at world-line parameter τ ∈ R, −→q (t̃(τ)) the position at

time t̃(τ) ∈ R and −→v (t̃) := d−→q
dt̃

the velocity of the particle, if the following properties are satisfied:

1. q ∈ C∞
(R,M)

2. t̃ : R→ R is bijective

3. The four-velocity is time-like and positive oriented, i.e1

∀τ ∈ R : ˙̃t(τ) >
∥∥∥−̇→q (t̃(τ))

∥∥∥
R3
≥ 0. (2.3)

1Here the dot is the derivative with respect to τ .

9



Figure 2.1: Illustration of a light cone centered at a general point x.

4. There exist a maximal velocity smaller than the speed of light, i.e

∀t̃ ∈ R :
∥∥−→v (t̃)

∥∥
R3 =

∥∥∥∥∥d−→q (t̃)

dt̃

∥∥∥∥∥
R3

≤ vmax < 1. (2.4)

for some vmax ∈ [0, 1).

Sometimes we also refer to the set q(R) as the world-line of the particle. From the context should
be clear when we talk about the set and when we talk about the map as a function of the parameter
τ .

Remark. Normally one would use τ as the proper time of the particle. But as this definition is of
general character, we leave open the choice of the meaning of the parameter τ .

Definition 2.7. (Light Cone) For any point x ∈M, we call the set

Lx := {y ∈M : (y − x)2 = 0} (2.5)

the light cone centered at x.

From a physical point of view, this set contains all points that can ”communicate” with x using
a beam of light. This definition allows us to introduce the important concept of advanced and
retarded positions.

Definition 2.8. (Advanced/Retarded Positions) Given a world-line q(R) as in Definition 2.6
and a point x ∈M we construct the set

Lx ∩ q(R) = {y ∈M : (y − x)2 = 0 ∧ ∃τ ∈ R : q(τ) = y}. (2.6)

Its elements are called the retarded positions with respect to x if for y = (ty,−→y ) and for
x = (tx,−→x ) it holds that ty < tx. We call the elements of this set the advanced positions with
respect to x if, on the contrary, it holds that ty > tx.

Using a physical perspective, this positions denote the points of the world-line that can interact
with the point x by radiating or absorbing light (see figure 2.1.) It might seems clear that there
is only one retarded and one advanced position, but instead of leaving a vague argument, we will
proof the correctness of this statement.

Lemma 2.9. (Existence and Uniqueness of the Retarded and Advanced Positions) Let
q be a world-line as given in Definition 2.6 and let x be any point in M \ q(R). Then, the set
Lx ∩ q(R) has exactly two elements, one retarded and one advanced position with respect to x.
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Proof. 1. Existence:
Let x ∈M\ q(R) have the components (t,−→x ) and since t̃ is bijective, there exists one τx such
that q(τx) = (t,−→q (t)). We define the set

Cv(q(τx)) := {y ∈M
∣∣ ∀s ∈ R, v ∈ [−vmax, vmax],−→e ∈ R3

with ∥−→e ∥R3 = 1 : y = (t + s,−→q (t) + sv−→e )T }

with the following properties

(a) q(R) ⊂ Cv(q(τx)).
We study the non trivial case s ̸= 0 since for s = 0 we get q(τx) ∈ Cv(q(τx)) by definition.
Let τ ∈ R be a real number and −→e be any unit vector in R3, then we look for solutions
(s, v′) of the following set of equations

q(τ) =
(

t̃(τ)−→q (t̃(τ))

)
=
(

t + s
−→q (t) + sv′−→e

)
.

The first equation has a unique solution s = t̃(τ) − t ̸= 0 for all τ and t For the second
equation we have

v′ =
(−→q (t̃(τ)) −−→q (t)

t̃(τ) − t

)
· −→e ,

for all τ and t. This expression is also well defined since the denominator is not equal
to zero. From the mean value theorem we see, that there exist at least one time w ∈
(min{t̃(τ), t}, max{t̃(τ), t}) such that

v′ = −→v (w) · −→e

(because q is differentiable) and therefore

|v′| ≤ ∥−→v (w)∥R3 ≤ vmax.

So for all τ ∈ R it is possible to choose the pair (s, v′) such that for all unit vectors
−→e ∈ R3 holds q(τ) ∈ Cv(q(τx)).

(b) Cv(q(τx)) ∩ Lx ̸= ∅.
Here we follow a similar strategy. Let y = (t + s,−→q (t) + sv−→e )T be a four-vector in
Cv(q(τx)). Then

y − x =
(

s
−→q (t) −−→x + sv−→e

)
,

and when we look for solutions of the equation (y − x)2 = 0 we obtain

(y − x)2 = s2 − (−→q (t) −−→x + sv−→e )2

= (1− v2)s2 − 2v−→e · (−→q (t) −−→x )s− (−→q (t) −−→x )2 = 0

⇒ s =
2v−→e · (−→q (t) −−→x )±

√
v2[−→e · (−→q (t) −−→x )]2 + (1− v2)(−→q (t) −−→x )2

1− v2 ,

which is always defined for all x ∈ M. That is, for a given four-vector x, we can freely
choose −→e and |v| ≤ vmax such that s ∈ R can always be calculated from the last
equation and we obtain y ∈ Cv(q(τx)) ∩ Lx.

(c) q(R) \ (Cv(q(τx)) ∩ Lx) is split into three disjoint sets.
Let y ∈ Cv(q(τx)) \ (Cv(q(τx)) ∩ Lx) and let (s, v) be chosen such that y = q(τ) for some
τ ∈ R. Then we know that (q(τ) − x)2 ̸= 0 and therefore

|t̃(τ) − t| ≠ ±∥−→q (t̃(τ)) −−→x ∥R3 .

Here we have four mutually excluding possibilities:
1) t̃(τ) > t with t̃(τ) > t+∥−→q (t̃(τ))−−→x ∥R3 , 2) t̃(τ) > t with t̃(τ) < t+∥−→q (t̃(τ))−−→x ∥R3 , 3)
t̃(τ) < t with t̃(τ) > t−∥−→q (t̃(τ))−−→x ∥R3 , and 4) t̃(τ) < t with t̃(τ) < t−∥−→q (t̃(τ))−−→x ∥R3 .
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And so we can build the following disjoint sets

q(R)up = {q(τ) ∈ q(R) : t̃(τ) > t + ∥−→q (t̃(τ)) −−→x ∥R3},

q(R)middle = {q(τ) ∈ q(R) : t + ∥−→q (t̃(τ)) −−→x ∥R3 > t̃(τ) > t− ∥−→q (t̃(τ)) −−→x ∥R3},

q(R)down = {q(τ) ∈ q(R) : t̃(τ) < t− ∥−→q (t̃(τ)) −−→x ∥R3},

which are not empty since t̃ is bijective.
(d) From the continuity of q and the intermediate value theorem it follows that q(R) must

intersect Cv(q(τx))∩Lx. Just by choosing two parameters τ1 such that q(τ1) ∈ q(R)down

and τ2 such that q(τ2) ∈ q(R)up, we notice that qµ
(τ) has to take all values in the interval

[qµ
(τ1), qµ

(τ2)]. In other words, there exist a τ ∈ (τ1, τ2) such that q(τ) ∈ Cv(q(τx)) ∩ Lx.

⇒ q(R) ∩ (Cv(q(τx)) ∩ Lx) = q(R) ∩ Lx ̸= ∅. (2.7)

2. Uniqueness
In order to show that q(R)∩Lx = {q(τ−), q(τ+)} for two unique proper times τ−, τ+ with the
property t̃(τ−) ≤ t ≤ t̃(τ+), we use a proof by contradiction. First we show the uniqueness of
τ−.
Suppose that there exist two different proper times τ− and λ− and without loss of generality
we can assume τ− < λ− such that t̃(τ−) < t̃(λ−) < t. Then, because q(τ) is a differentiable
function in R, we can use the mean value theorem and state that there exists another proper
time ω− ∈ (τ−, λ−) such that

q̇(ω−) =
q(λ−) − q(τ−)

λ− − τ− = 1
λ− − τ−

(
t̃(λ−) − t̃(τ−)−→q (t̃(λ−)) −−→q (t̃(τ−))

)
.

Using the third property of the world-line in Definition 2.6, we see that a time like four-
velocity must have the time component greater than the spatial component, i.e.

∣∣t̃(λ−) − t̃(τ−)
∣∣ >

∥∥∥−→q (t̃(λ−)) −−→q (t̃(τ−))

∥∥∥
R3

.

If we use the fact that t̃(λ−) > t̃(τ−) and the condition of the retarded time t̃ = t−∥−→q (t̃)−−→x ∥R3

we can rewrite

t̃(λ−) − t + t− t̃(τ−) =
∥∥∥−→x −−→q (t̃(τ−))

∥∥∥
R3
−
∥∥∥−→x −−→q (t̃(λ−))

∥∥∥
R3

and get ∥∥∥−→x −−→q (t̃(τ−))

∥∥∥
R3
−
∥∥∥−→x −−→q (t̃(λ−))

∥∥∥
R3

>
∥∥∥−→q (t̃(λ−)) −−→q (t̃(τ−))

∥∥∥
R3

,

which leads to the contradiction∥∥∥−→x −−→q (t̃(τ−))

∥∥∥
R3

>
∥∥∥−→x −−→q (t̃(τ−))

∥∥∥
R3

.

This means that our assumption was incorrect, therefore there can not exist two different
parameters τ− and λ− under which q(τ−) and q(λ−) are both retarded positions with respect
to the four-vector x.
The proof of the uniqueness of the advanced position follows the same steps as we showed,
just using the condition t̃ = t + ∥−→q (t̃) −−→x ∥R3 .

Corollary 2.10. For the situation given in Lemma 2.9, if x ∈ q(R), then the set Lx ∩ q(R) has
only one element.

Proof. Let x ∈ q(R). So there exists a τ∗ ∈ R such that x = q(τ∗). Then we look for elements of
the set

Lq(τ∗) ∩ q(R) = {q(τ) ∈ q(R) : (q(τ) − q(τ∗))2 = 0}.
Clearly q(τ) = q(τ∗) solves the equation, so we have q(τ∗) ∈ Lq(τ∗) ∩ q(R). Now suppose that there
exists other τ∗∗ with q(τ∗∗) ∈ Lq(τ∗) ∩ q(R). We then have

(q(τ∗∗) − q(τ∗))2 = 0

12



⇒
(

q(τ∗∗) − q(τ∗)

τ∗∗ − τ∗

)2
= 0.

Now, because of the mean value theorem, there exist a ω ∈ (min{τ∗, τ∗∗}, max{τ∗, τ∗∗}) such that

q̇(ω) =
q(τ∗∗) − q(τ∗)

τ∗∗ − τ∗

⇒ q̇2
(ω) = 0

which is a contradiction to the definition of a world-line 2.6 in which the four-velocity must be
time-like. Therefore there can not exist another parameter τ∗∗ such that the four-position belongs
to Lx ∩ q(R) and it follows

Lq(τ∗) ∩ q(R) = {q(τ∗)}.

The existence and uniqueness of the retarded and advanced positions allows us to examine the
time components in more detail. As the following definition shows, we interpret these components
also as a function of a point in space-time.

Definition 2.11. (Retarded and Advanced Times) The zeroth component of the retard-
ed/advanced positions are called the retarded/advanced times.

Remark. Because of the Light-cone equation, we can also study the retarded and advanced times
as a function of the position, namely

t± :
{
M→ R
x 7→ t±

(x) := t± ∥−→x −−→q (t±
(x))∥R3

(2.8)

One can notice the difficulty of this expression. The retarded and advanced times are implicitly
defined where the expression of the position can be very complicated. We will calculate explicit
formulas for t± in the next chapter when we study a particle that moves with constant velocity.

Lemma 2.12. (Continuity of the Advanced and Retarded Times) Let (xn)n∈N be a se-
quence with xn ∈ M \ q(R) for all n ∈ N and q be a world-line as in Definition 2.6. Let this
sequence converge to a point y ∈M. Then, the retarded and advanced times are continuous, i.e.

∀y ∈M : lim
n→∞

t±
(xn) = t±

(limn→∞ xn) = t±
(y). (2.9)

Proof. We divide the proof in two steps:

1. (t±
(xn))n∈N is a Cauchy sequence:

Let m, n ∈ N and let xn, xm be two elements of the sequence (xn)n∈N with components
(tn,−→x n) and (tm,−→x m). Let t±

(xn) be given as in Definition 2.11. Then∣∣∣t±
(xn) − t±

(xm)

∣∣∣ =
∣∣∣tn − tm ±

(
∥−→x n −−→q (t±

(xn))∥R3 − ∥−→x m −−→q (t±
(xm))∥R3

)∣∣∣ .
Using the triangle inequality we obtain∣∣∣t±

(xn) − t±
(xm)

∣∣∣ ≤ |tn − tm|+
∣∣∣∥−→x n −−→q (t±

(xn))∥R3 − ∥−→x m −−→q (t±
(xm))∥R3

∣∣∣
and if we notice that

∣∣∥a∥−∥b∥∣∣ ≤ ∥a−b∥ for all vectors 2 in R3, we can rewrite the inequality
as ∣∣∣t±

(xn) − t±
(xm)

∣∣∣ ≤ |tn − tm|+ ∥−→x n −−→x m −−→q (t±
(xn)) +−→q (t±

(xm))∥R3 ,

and the triangle inequality yields again∣∣∣t±
(xn) − t±

(xm)

∣∣∣ ≤ |tn − tm|+ ∥−→x n −−→x m∥R3 + ∥−→q (t±
(xn)) −

−→q (t±
(xm))∥R3 .

2This is valid since we have the following case distinction

(a) ∥a∥ ≥ ∥b∥: In this case we have
∣∣∥a∥ − ∥b∥

∣∣ = ∥a∥ − ∥b∥ ≤ ∥a − b∥.

(b) ∥a∥ < ∥b∥: In this case we have
∣∣∥a∥ − ∥b∥

∣∣ = ∥b∥ − ∥a∥ ≤ ∥b − a∥ = ∥a − b∥.
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Now we use the fact that the trajectory is per definition differentiable with respect to t±.
We apply the mean value theorem, rewrite the last term as

∥−→q (t±
(xn)) −

−→q (t±
(xm))∥R3 =

∣∣∣t±
(xn) − t±

(xm)

∣∣∣∣∣∣t±
(xn) − t±

(xm)

∣∣∣∥−→q (t±
(xn)) −

−→q (t±
(xm))∥R3

=
∣∣∣t±

(xn) − t±
(xm)

∣∣∣
∥∥∥∥∥∥
−→q (t±

(xn)) −
−→q (t±

(xm))

t±
(xn) − t±

(xm)

∥∥∥∥∥∥
R3

=
∣∣∣t±

(xn) − t±
(xm)

∣∣∣ ∥−→v (t′ )∥R3

for some t
′ between t±

(xn) and t±
(xm) and because the velocity is assumed to have an overall

maximum, we obtain

∥−→q (t±
(xn)) −

−→q (t±
(xm))∥R3 ≤ vmax

∣∣∣t±
(xn) − t±

(xm)

∣∣∣ . (2.10)

Inserting this result in equation (1), we get∣∣∣t±
(xn) − t±

(xm)

∣∣∣ ≤ |tn − tm|+ ∥−→x n −−→x m∥R3

1− vmax
(2.11)

and since the sequence (xn)n∈N converges, it is always possible to find a N ∈ N for all ϵ > 0
such that |tn − tm| < ϵ and ∥−→x n −−→x m∥R3 < ϵ for all n, m > N . Therefore,∣∣∣t±

(xn) − t±
(xm)

∣∣∣ ≤ 2
1− vmax

ϵ =: ϵ̃.

In summary,
∀ϵ̃ > 0 ∃N ∈ N :

∣∣∣t±
(xn) − t±

(xm)

∣∣∣ ≤ ϵ̃ ∀m, n ≥ N

as a Cauchy sequence (t±
(xn))n∈N always converges to a real limit in R.

2. Now we know that the limit
lim

n→∞
t±
(xn)

exists and we want to determine its value. For xn → y as n → ∞ with y = (ty,−→y ) we
calculate the following difference∣∣∣ lim

n→∞
t±
(xn) − t±

(limn→∞ xn)

∣∣∣ =
∣∣∣ lim
n→∞

t±
(xn) − t±

(y)

∣∣∣
=
∣∣∣ lim
n→∞

tn ± lim
n→∞

∥−→x n −−→q (t±
(xn))∥R3 − ty ∓ ∥−→y −−→q (t±

(y))∥R3

∣∣∣ ,
and, when using the continuity of the norm and the trajectory, we obtain∣∣∣ lim

n→∞
t±
(xn) − t±

(limn→∞ xn)

∣∣∣ =
∣∣∣∥−→y −−→q (limn→∞ t±

(xn))∥R3 − ∥−→y −−→q (t±
(y))∥R3

∣∣∣
≤ ∥−→q (limn→∞ t±

(xn)) −
−→q (t±

(y))∥R3 ≤ vmax

∣∣∣ lim
n→∞

t±
(xn) − t±

(limn→∞ xn)

∣∣∣ ,
where we have implemented again the equation (2.10) and the inequality

∣∣∥a∥−∥b∥∣∣ ≤ ∥a−b∥
for vectors in R3. We can then conclude, since vmax < 1, that∣∣∣ lim

n→∞
t±
(xn) − t±

(limn→∞ xn)

∣∣∣ ≤ 0,

which, in other words, implies that the retarded and advanced times are continuous.

Unfortunately, in our theory, these times are not differentiable at the world-line of a particle.
However, the following lemma demonstrates that if we remain outside the world-line, we can
compute the partial derivatives of t±.
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Lemma 2.13. (Differentiability of t±) Let t± be the retarded and advanced times as given in
Definition 2.11 for all four-vectors x ∈ M with components (t,−→x ). Then, if the point x is chosen
outside of the world-line, the retarded and advanced times are differentiable. In fact, their partial
derivatives are given by

∂t±
(x)

∂t
= 1

1±−→v (t±
(x)) ·

−→n (t±
(x),−→x )

(2.12)

and
∂t±

(x)

∂xi
=

±ni
(t±

(x),−→x )

1±−→v (t±
(x)) ·

−→n (t±
(x),−→x )

, (2.13)

where −→n denotes the normal vector

−→n (t±
(x),−→x ) =

−→x −−→q (t±
(x))

∥−→x −−→q (t±
(x))∥R3

. (2.14)

Proof. 1. First we compute ∂t±/∂t by definition, i.e.

∂t±
(x)

∂t
= lim

ϵ→0

t±
(t+ϵ,−→x ) − t±

(t,−→x )

ϵ
.

The numerator yields

t±
(t+ϵ,−→x ) − t±

(t,−→x ) = t + ϵ± ∥−→x −−→q (t±
(t+ϵ,−→x ))∥R3 − t∓ ∥−→x −−→q (t±

(t,−→x ))∥R3

= ϵ±
(
∥−→x −−→q (t±

(t+ϵ,−→x ))∥R3 − ∥−→x −−→q (t±
(t,−→x ))∥R3

)
.

Now, because we assume −→x ̸= −→q (t±
(t,−→x )), we can interpret the norm as a function of t± and

expand it around t±
(t,−→x ). This results in

∥−→x −−→q (t±
(t+ϵ,−→x ))∥R3 =∥−→x −−→q (t±

(t,−→x ))∥R3+(
t±
(t+ϵ,−→x ) − t±

(t,−→x )

)( d

ds
∥−→x −−→q (s)∥R3

) ∣∣∣∣
s=t±

(t,−→x )

+R,

where R is the remainder term of the Taylor expansion3, and it is of second order. Performing
the derivative we obtain

∥−→x −−→q (t±
(t+ϵ,−→x ))∥R3 =∥−→x −−→q (t±

(t,−→x ))∥R3−(
t±
(t+ϵ,−→x ) − t±

(t,−→x )

)−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x ) + R.

From here it follows

t±
(t+ϵ,−→x ) − t±

(t,−→x ) = ϵ±
(
−
(

t±
(t+ϵ,−→x ) − t±

(t,−→x )

)−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x ) + R

)
.

or, after a quick rearrange of the terms

t±
(t+ϵ,−→x ) − t±

(t,−→x ) = ϵ±R

1±−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x )

,

where we can see that, in order to perform the limit of the partial derivative, we must know
the behavior of R/ϵ. For this purpose we use the remainder form given by Lagrange and
write

R =

(
t±
(t+ϵ,−→x ) − t±

(t,−→x )

)2

2

(
d2

ds2 ∥
−→x −−→q (s)∥R3

) ∣∣∣∣
s=λ

,

3As an abuse of notation, here and later we omit the point at which R is evaluated. It should be understood
that, e.g. in this case, the remainder is evaluated at some time between (t, −→x ) and (t + ϵ, −→x ).
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with a λ between t±
(t+ϵ,−→x ) and t±

(t,−→x ). Let us call this last derivative Cϵ to spare some writing4.
Then, we obtain

R

ϵ
=

(t±
(t+ϵ,−→x ) − t±

(t,−→x ))
2

2ϵ
Cϵ =

Cϵ(t±
(t+ϵ,−→x ) − t±

(t,−→x ))
2 ·

t±
(t+ϵ,−→x ) − t±

(t,−→x )

ϵ
.

We can insert this last equation in the limit we want to calculate and get

t±
(t+ϵ,−→x ) − t±

(t,−→x )

ϵ
= 1

1±−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x )

± R

ϵ

1
1±−→v (t±

(t,−→x )) ·
−→n (t±

(t,−→x ),−→x )

= 1
1±−→v (t±

(t,−→x )) ·
−→n (t±

(t,−→x ),−→x )
×

(
1±

Cϵ(t±
(t+ϵ,−→x ) − t±

(t,−→x ))
2 ·

t±
(t+ϵ,−→x ) − t±

(t,−→x )

ϵ

)
,

which can again be rearranged into

t±
(t+ϵ,−→x ) − t±

(t,−→x )

ϵ
= 1

1±−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x )

· 1

1∓
Cϵ(t±

(t+ϵ,−→x )−t±
(t,−→x ))

2

.

Now we can perform the limit of the last equation and obtain

lim
ϵ→0

t±
(t+ϵ,−→x ) − t±

(t,−→x )

ϵ
= lim

ϵ→0

 1
1±−→v (t±

(t,−→x )) ·
−→n (t±

(t,−→x ),−→x )
· 1

1∓
Cϵ(t±

(t+ϵ,−→x )−t±
(t,−→x ))

2


= 1

1±−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x )

· lim
ϵ→0

1

1∓
Cϵ(t±

(t+ϵ,−→x )−t±
(t,−→x ))

2

= 1
1±−→v (t±

(t,−→x )) ·
−→n (t±

(t,−→x ),−→x )
,

which is the desired result.

2. For the partial derivatives ∂t±/∂xi we can do all calculations in a similar manner. We
consider, for example, the partial derivative with respect to x, i.e.

∂t±

∂x
= lim

ϵ→0

t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

ϵ
.

Here the steps are little bit trickier than in the previous calculation because the numerator
is equal to

t±
(t,x+ϵ,y,z) − t±

(t,x,y,z) = t±

∥∥∥∥∥∥
x + ϵ

y
z

+−→q (t±
(t,x+ϵ,y,z))

∥∥∥∥∥∥
R3

− t∓

∥∥∥∥∥∥
x

y
z

+−→q (t±
(t,x,y,z))

∥∥∥∥∥∥
R3

.

In order to perform the Taylor expansion of the first norm in the right way, we have to
consider it as a function of the four variables (t±

(t,x+ϵ,y,z), x + ϵ, y, z) and expand it around

4Explicitly we have Cϵ = −−→a (λ) · −→n (λ,−→x ) +
−→v 2

(λ)−(−→v (λ)·−→n (λ,−→x ))2

∥−→x −−→q (λ)∥R3
for some λ between t±

(t,−→x ) and t±
(t+ϵ,−→x ). In

the limit ϵ → 0, the velocity, acceleration and normal vector are well defined and finite since we are always outside
the world-line. Moreover, assuming the existence of a maximal acceleration, we have

|Cϵ| ≤ amax +
2v2

max

min
s∈
(

t±
(t,−→x )

,t±
(t+ϵ,−→x )

) ∥−→x − −→q (s)∥R3
.
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the four-dimensional vector (t±
(t,x,y,z), x, y, z)T . This Taylor expansion is given by∥∥∥∥∥∥

x + ϵ
y
z

+−→q (t±
(t,x+ϵ,y,z))

∥∥∥∥∥∥
R3

=∥−→x −−→q (t±
(t,x,y,z))∥R3 +

(
t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)
×

 ∂

∂s

∥∥∥∥∥∥
x

y
z

+−→q (s)

∥∥∥∥∥∥
R3

∣∣∣∣∣
s=t±

(t,x,y,z)

+

(x + ϵ− x)

 ∂

∂s′

∥∥∥∥∥∥
s′

y
z

+−→q (t±
(t,s′,y,z))

∥∥∥∥∥∥
R3

∣∣∣∣∣
s′=x

+R,

where again we have a remainder term R. After doing the partial derivatives we obtain∥∥∥∥∥∥
x + ϵ

y
z

+−→q (t±
(t,x+ϵ,y,z))

∥∥∥∥∥∥
R3

=∥−→x −−→q (t±
(t,x,y,z))∥R3−

(
t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x )+

ϵn1
(t±

(t,−→x ),−→x ) + R,

where we have written n1 for the x-component of the normal vector. Inserting this result in
the numerator yields

t±
(t,x+ϵ,y,z) − t±

(t,x,y,z) =∓
(

t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x )±

ϵn1
(t±

(t,−→x ),−→x ) ±R,

or, if re rearrange the terms in the last equation, we acquire

t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

ϵ
=

±n1
(t±

(t,−→x ),−→x ) ±R/ϵ

1±−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x )

. (2.15)

So we see again, that is necessary to check the behavior of the remainder term with respect
to epsilon. Because this is rather a tedious computation, we provide a full calculation in
Appendix D, where it is shown that the remainder term vanishes in the limit ϵ→ 0. Therefore,
we obtain

∂t±

∂x
= lim

ϵ→0

t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

ϵ
=

±n1
(t±

(t,−→x ),−→x )

1±−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x )

, (2.16)

which is the desired result. We can see, that the partial derivatives with respect to y and z
are computed in the same way as it was shown here.

Definition 2.14. (Advanced and Retarded Proper Parameters) For the situation given in
the Definition 2.11, we call the maps

τ± :

M→ R
x 7→ τ±

(x) = t̃−1
(t±∥−→x −−→q (t̃(x))∥R3 )

(2.17)

the advanced (with plus sign) and retarded (with minus sign) proper parameters. Because of the
bijectivity of t̃ and Lemma 2.9 these maps are well defined.

Corollary 2.15. Let (xn)n∈N be a sequence of points outside the world-line and let it converge
to a four-position q(τ∗) ∈ q(R) with τ∗ ∈ R. Then, the advanced and retarded parameters τ± as
given in definition above, converge to τ∗.

Proof. The map

t̃ :
{
R→ R
τ 7→ t̃(τ)

(2.18)
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is per definition of the world-line 2.6 bijective and differentiable at all τ ∈ R, therefore the map
t̃−1 is also bijective and differentiable. From here it follows

lim
n→∞

τ±
(xn) = lim

n→∞
t̃−1
(t±

(xn)) = t̃−1
(limn→∞ t±

(xn))

and using the continuity of t± we obtain

lim
n→∞

τ±
(xn) = t̃−1

(t±
(limn→∞ xn)) = t̃−1

(t±
(q(τ∗))).

Because of corollary 2.10, we know that at the world-line there is only one element of Lq(τ∗) ∩ q(R)
and that element is actually q(τ∗). Therefore

t±
(qτ∗ ) = t̃(τ∗)

from which follows
lim

n→∞
τ±

(xn) = t̃−1
(t̃(τ∗)) = τ∗.

Because the times t±
(x) correspond to the time-coordinates of the advanced and retarded po-

sitions, τ±
(x) are the parameter at which the four-position is an element of Lx ∩ q(R), i.e. q(τ±

(x))

are the advanced and retarded positions. The following results provide a limit for the induced
sequence (q(τ±

(xn)))n∈N.

Corollary 2.16. In the context of the last corollary, the advanced and retarded positions q(τ±)
as given in Definition 2.7 and in Lemma 2.9 converge to q(τ∗).

Proof. Using the continuity of q and the last corollary we obtain

lim
n→∞

q(
τ±

(t̃(xn))

) = q(
limn→∞ τ±

(t̃(xn))

) = q(τ∗). (2.19)
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Chapter 3

Radiation Fields Under a Simple
Expansion

In this chapter, we explore the radiation field in a scenario where the spatial component is shifted
by a small amount in an arbitrary direction. Our primary aim is to develop a physical intuition
for the behavior of the radiation field, so the approach here is more conceptual than mathematical.
We focus on understanding the physics behind the motion of a particle in various specific scenarios.

The chapter is structured as follows: the first section introduces the notation used throughout
the discussion. In the second section, we revisit the basic case of a particle moving with constant
velocity, using this as a foundation to explore more complex scenarios in the subsequent sections.
The primary aim is to investigate the role of Coulomb fields in the radiation process.

Summary of this Chapter

A series of results is derived, here we

1. show that, with an explicit computation, for a particle moving with constant velocity,
it is possible to calculate both the retarded and advanced electromagnetic fields, and
that the radiation field vanishes (see Results 3.1, 3.2 and the equation (3.16)).

2. compute a novel expansion of the retarded and advanced times (see Results 3.4 and
3.5).

3. calculate the limit of the normal vectors at the particle’s position (see Results 3.6 and
3.7).

4. demonstrate that the difference between the retarded and advanced Coulomb fields
is, in fact, divergent. Furthermore, we show that this divergence cancels out with
a corresponding divergence in the difference of the far fields (see Results 3.11 and
equations (3.32) and (3.33)).

3.1 The Lienard-Wiechert Fields
3.1.1 Important Remarks
In this chapter, we will engage in extensive calculations where detailing every argument may
become cumbersome. To streamline this process, we introduce a concise and efficient notation that
will help distinguish between the retarded and advanced expressions.

1. The retarded and advanced times will be denoted as t±, where the proper definition was
given the second chapter and reads

t± := t±
(t,−→x ) = t±

∥∥∥∥−→x −−→q (t±
(t,−→x )

)∥∥∥∥
R3

. (3.1)

2. The retarded and advanced positions and velocities are expressed as
−→q ± := −→q (

t±
(t,−→x )

),
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and
−→v ± := −→v (

t±
(t,−→x )

).
3. The retarded and advanced normal vectors are given by

−→n ± = −→n (
t±

(t,−→x ),−→x
) :=

−→x −−→q ±

∥−→x −−→q ±∥R3
. (3.2)

4. In this chapter, we will use the Lienard-Wiechert Fields of a point particle of chage e = 1.
For an extensive study of their properties, we refer to the PhD thesis of Priv.-Doz. Dr. Dirk-
André Deckert ”Electrodynamic absorber theory” [Dec10, p. 66]. These fields are written
as

−→
E ± = −→E (

t±
(t,−→x ),−→x

) = (−→n ± ±−→v ±)(1−−→v ±2)
∥−→x −−→q ±∥2

R3(1±−→n ± · −→v ±)3 +
−→n ± × [(−→n ± ±−→v ±)×−→a ±]
∥−→x −−→q ±∥R3(1±−→n ± · −→v ±)3 (3.3)

for the electric field and −→
B ± = −→B (

t±
(t,−→x ),−→x

) = ∓−→n ± ×
−→
E ± (3.4)

for the magnetic field. Here we make a split the fields in two different components, the
Coulomb fields and the far fields. The Coulomb electric fields are defined as

−→
E ±

C := (−→n ± ±−→v ±)(1−−→v ±2)
∥−→x −−→q ±∥2

R3(1±−→n ± · −→v ±)3

and the far electric fields are given by

−→
E ±

f :=
−→n ± × [(−→n ± ±−→v ±)×−→a ±]
∥−→x −−→q ±∥R3(1±−→n ± · −→v ±)3 .

The Coulomb and far magnetic fields are then computed from equation (3.4).

Because we want to perform an expansion around −→q(t), we choose −→x = −→q(t) + ϵ−→e , with an
unitary vector −→e and a small parameter ϵ. It will be shown later that this choice allows us to
derive explicit formulas for t±, and that the normal vectors converge to some result that depends
on the direction −→e chosen to approach −→q(t).

In our notation, the radiation fields are written as
−→
E rad := −→E − −

−→
E + and −→

B rad := −→B − −
−→
B +.

Since a Taylor expansion does not exists at the particles position −→q(t), we aim to derive some
formulas to compute these quantities in a feasible manner.

3.2 The Case of Constant Velocity
If we want to calculate the radiation reaction, we need to develop some useful techniques that will
help us in the general set up. Because of this, we will first study the simple case of a particle
moving along the x-direction. In general, we dispose of two methods to get the radiation field:
we could use the machinery of special relativity or the brute force. We will see that the latter
method yields important results that are applicable in general. Therefore, both approaches will be
examined in detail.

3.2.1 Special Relativity
We suppose that a charged particle moves along the x-direction with constant velocity, i.e., the
velocity vector is of the form −→v = (v, 0, 0)T , where v is constant. In this case, we can calculate the
retarded and advanced fields of the particle in its rest frame and then transform the fields into a
coordinate frame in which the particle moves with velocity −→v . It is seen from equations (3.3) and
(3.4), setting v = 0, that in the rest frame of the particle the retarded and advanced electric fields
are equal to the static Coulomb field and that the retarded and advanced magnetic fields are zero.
Writing −→q ± = −→q 0, we get

−→
E + = −→E − =

−→x −−→q 0

∥−→x −−→q 0∥3
R3

(3.5)
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and −→
B + = −→B − = −→0 .

This means that the radiation fields are equal to zero too.
Now, we boost the fields from the rest frame of the particle using the following formulas (with

the speed of light c set equal to one) [Jac14, p. 645]

−→
E′ = γ(−→E −−→v ×−→B )− γ2

γ + 1
−→v (−→v · −→E ),

−→
B′ = γ(−→B +−→v ×−→E )− γ2

γ + 1
−→v (−→v · −→B ).

Here we denote the Lorentz factor as γ = 1/
√

1− v2. We are able to calculate the radiation field
of a particle moving at a constant speed

−→
E′

rad =
−→
E′− −

−→
E′+ = (γ−→E − − γ2

γ + 1
−→
β (−→β · −→E −))− (γ−→E + − γ2

γ + 1
−→
β (−→β · −→E +))

= γ(−→E − −
−→
E +)− γ2

γ + 1
−→
β (−→β · (−→E − −

−→
E +) Eq.(3.5)= −→0

(3.6)

and for the magnetic radiation field we obtain
−→
B′

rad =
−→
B′− −

−→
B′+ = −γ

−→
β ×

−→
E − + γ

−→
β ×

−→
E + = −γ

−→
β × (−→E − −

−→
E +) Eq.(3.5)= −→0 . (3.7)

So we see, in a very simple manner, that the radiation field and therefore the radiation reaction is
zero for a particle moving with constant velocity.

3.2.2 Explicit Calculation
In this section we want to repeat the results (3.6) and (3.7), but this time we are going to compute
the fields near the particle position −→q(t) and show that they vanish. This explicit computation is
rather tedious, but we will be rewarded with some expressions that will hold in more general setups
and will serve as guidance when we confront a general movement. First, we notice that t± can be
computed explicitly in this case. Since we impose a constant velocity, the particle’s trajectory is
given by −→q (t) = −→v t and −→q ± = −→v t±. Then we use the implicit equation that defines both t− and
t+ and get

t±
(t,−→x ) := t± = t± ∥−→x −−→q ±∥R3

⇒ (t± − t)2 = ∥−→x −−→q ±∥2
R3 =

∥∥∥∥
x− vt±

y
z

∥∥∥∥2

R3

⇒ (t± − t)2 = (x− vt±)2 + y2 + z2

(3.8)

This equation is a polynomial of second order in t± and after rearranging all the terms we get

(1− v2)t± + 2(xv − t)t± + t2 − ∥−→x ∥R3 = 0 (3.9)

with zeros at the retarded and advanced times

t±
(t,−→x ) = t− xv ±

√
(x− vt)2 + (1− v2)(y2 + z2)

1− v2 . (3.10)

For a charged particle with constant velocity we obtain exact equations. Plotting the retarded
time for some velocity as in Figure 3.1 shows in an explicit manner, why these functions are not
differentiable at the world-line. The plot reveals that t− is at y = 0 and z = 0 given by two planes
that intersect at the line −→x = −→v t, i.e. the retarded time is continuous everywhere but not
differentiable at the particle’s trajectory, a result showed in the last chapter.

Even so, t± behave well enough to perform an expansion around the particle’s position. This
expansion is dependent on the direction chosen to approach the trajectory. To illustrate this idea
we define an arbitrary unit vector

−→e =

α
β
γ


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Figure 3.1: Retarded time for constant
velocity as a function of t and x for v = 1/2

where α, β, γ ∈ R and α2 + β2 + γ2 = 1 and set for any ϵ > 0
−→x = −→q (t) + ϵ−→e . (3.11)

We can now investigate how do the different relevant functions look like near the particle’s trajec-
tory in the direction of −→e and at the end, we can use our results to compute the radiation fields.
We can also get explicit formulas for some quantities. Using (3.11), we obtain

−→x =

vt + ϵα
ϵβ
ϵγ


⇒ t−

(t,−→q (t)+ϵ−→e ) = t− ϵ

(
vα +

√
1− v2(β2 + γ2)
1− v2

)
It is interesting to note here that ϵ is an arbitrary positive number and at this point, it is not
necessary to impose ϵ to be an infinitesimal quantity. Therefore, there is no remainder associated
with this expression. Now we can calculate the retarded normal vector inserting our expression for
−→x

−→n − =

ϵ−→e +−→q (t) −−→q −(
t−

(t,−→q (t)+ϵ−→e )

)
∥∥∥∥∥ϵ−→e +−→q (t) −−→q −(

t−
(t,−→q (t)+ϵ−→e )

)∥∥∥∥∥
R3

=
−→e +

−→q −−→q −

ϵ∥∥∥−→e +
−→q −−→q −

ϵ

∥∥∥
R3

where in the last step we have introduced our abuse of notation to make the equations simpler.
Inserting everything together and remembering that −→q − = −→v t−, we are able to calculate the
retarded normal vector

−→n − = 1√
1 + 2vα

√
1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))

α + v
√

1− v2(β2 + γ2)
(1− v2)β
(1− v2)γ

 . (3.12)

This equation shows that the normal vector is independent of the parameter ϵ. In other words,
when performing the limit ϵ → 0, −→n − is a quantity that depends on the direction chosen to take
the limit.
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Example 3.1: −→n − for some directions −→e

We want to give some explicit values and see how do the normal vector looks like. We
can split any vector in components parallel and perpendicular to −→e to simplify some scalar
products. So, for example, we write −→v = v∥

−→e +−→v⊥ where v∥ and v⊥ denote the parallel and
perpendicular components of −→v with respect to −→e . We get then the following results:

if α = 1, β = 0, γ = 0 ⇒ −→n − =

1
0
0

 =
√

1− v2
⊥
−→e +−→v⊥ with v⊥ = 0

if α = 0, β = 1, γ = 0 ⇒ −→n − =

 v√
1− v2

0

 =
√

1− v2
⊥
−→e +−→v⊥ with v⊥ = v

if α = 0, β = γ = 1√
2 ⇒ −→n − =

 v√
1−v2
√

2√
1−v2
√

2

 =
√

1− v2
⊥
−→e +−→v⊥ with v⊥ = v

We see an interesting feature in these examples, the retarded normal vector seems to take
the form

√
1− v2

⊥
−→e +−→v⊥ in all cases. We will show later in the section 3.3.2, that actually

the retarded normal vector can be replaced with this equation when the limit ϵ→ 0 is taken.

We are ready to calculate the retarded electric and magnetic fields. Using the equation (3.3)
and setting the acceleration to zero we obtain the following long equation:

Result 3.1: Retarded Electric Field of a Point Particle with Constant
Velocity

−→
E − = (−→n − −−→v )(1−−→v 2)

∥−→x −−→q −∥2
R3(1−−→n − · −→v )3 =

(1− v2)3

ϵ2
(√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))− vα− v2
√

1− v2(β2 + γ2)
)3×

α + v
√

1− v2(β2 + γ2)− v
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))
(1− v2)β
(1− v2)γ


(3.13)

We can repeat these steps but using the advanced time t+. The results are just listed here since
the calculations are the same as for the retarded time

t+
(t,−→q t+ϵ−→e ) = t+ = t + ϵ

(
−αv +

√
1− v2(β2 + γ2)
1− v2

)
and

−→n + = 1√
1− 2vα

√
1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))

α− v
√

1− v2(β2 + γ2)
(1− v2)β
(1− v2)γ

 .

This time, if we look at some examples for the vector −→n +, we observe that it takes always the
form

√
1− v2

⊥
−→e − −→v⊥. Again, this will be showed to be true in section 3.3.2. We can now put

everything together and calculate the advanced electric field, where we see a similar result as for
the retarded electric field.
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Result 3.2: Advanced Electric Field of a Point Particle with Con-
stant Velocity

−→
E + = (−→n + +−→v )(1−−→v 2)

∥−→x −−→q +∥2
R3(1 +−→n + · −→v )3 =

(1− v2)3

ϵ2
(√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2)) + vα− v2
√

1− v2(β2 + γ2)
)3×

α− v
√

1− v2(β2 + γ2) + v
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))
(1− v2)β
(1− v2)γ

 (3.14)

These results illustrate that even for the simplest case, the equations of the fields are very
complicated and there is no way to read off important properties of them. For example, it is not
obvious from Results 3.1 and 3.2 that the difference between the two fields is zero. Even worse, the
factor 1/ϵ2 in both fields could let us think that the difference of these fields is actually divergent.
But actually these two fields are the same.

As the reader may see in Appendix A.1, the following equation is true

M :=
(√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2)) + vα− v2
√

1− v2(β2 + γ2)
)3

=
(√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))− vα− v2
√

1− v2(β2 + γ2)
)3

(3.15)

Therefore we can write the radiation electric field as
−→
E rad =−→E − −

−→
E + = (1− v2)3

ϵ2M
×α + v

√
1− v2(β2 + γ2)− v

√
1 + 2vα

√
1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))

(1− v2)β
(1− v2)γ


− (1− v2)3

ϵ2M

α− v
√

1− v2(β2 + γ2) + v
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))
(1− v2)β
(1− v2)γ



= (1− v2)3

ϵ2M


2v
√

1− v2(β2 + γ2)− v

(√
1 + 2vα

√
1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))

+
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))
)

0
0


which, if we use equation (A.4), reduces to

= (1− v2)3

ϵ2M

2v
√

1− v2(β2 + γ2)− 2v
√

1− v2(β2 + γ2)
0
0

 =

0
0
0

 . (3.16)

In this way, we arrived to the same conclusion as in the last section. For the calculation of the
radiation magnetic field we proceed following the same path. Using the equation (3.4) and our
Results 3.1 and 3.2 we obtain

−→
B rad = −→B − −

−→
B + = −→n − ×

−→
E − +−→n + ×

−→
E +

= (1− v2)4v

ϵ2M

 0
−γ
β

− (1− v2)4v

ϵ2M

 0
−γ
β

 =

0
0
0

 .
(3.17)
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Summarized, our results are

Main Result 3.3: The Radiation Fields are Zero if the Velocity is
Constant

−→
E rad = −→0 ,
−→
B rad = −→0 .

3.3 General Formulas for the Expansion
We are ready to explore a more general scenario. In this section we develop formulas for the
retarded and advanced times t± in the neighborhood of the particle’s position. Then, we use
these formulas to show that the normal vectors converge in a suitable sense. These results play an
important role in the study of a particle moving with constant acceleration.

3.3.1 Expansion of the Retarded and Advanced Times
Looking back on our results of the second chapter, namely the continuity of t± which was proven
in Lemma 2.12 and their differentiability, given in Lemma 2.13, we know that it is not possible
to perform a Taylor expansion of t± at the particles position. As we know, the gradient of the
retarded and advanced times is given by

−→
∇t±

(t,−→x ) = ±−→n ±

1±−→n ± · −→v ± ,

which is not defined at −→q (t). Beyond the mere continuity of t±, we would like to have an expression
for t± in the neighborhood of the particle. We begin by examining the equation of the retarded
time, which is rewritten as

t−
(t,−→q (t)+ϵ−→e ) = t−

∥∥−→q (t) + ϵ−→e −−→q (t−)
∥∥
R3 := t− ϵCϵ(−→e ,−→v (t)),

where the coefficient Cϵ(−→e ,−→v (t)) (from now on just written as Cϵ) may be dependent on parameters
like ϵ, the velocity −→v (t) or the direction −→e chosen to take the limit. From this equation we see
that

Cϵ =
∥∥∥∥−→e +

−→q (t) −−→q (t−ϵCϵ)

ϵ

∥∥∥∥
R3

.

In other words, we obtain an implicit formula whose solution provides the desired parameter Cϵ.
We can perform a Taylor expansion of the retarded position q− around t:

−→q (t−ϵCϵ) = −→q (t) − ϵCϵ
−→v (t) + ϵ2C2

ϵ

2
−→a (λ)

for some λ ∈ (t − ϵCϵ, t) (Lagrange form of the remainder). Then, we can insert this Taylor
expansion in the defining equation of Cϵ and get

Cϵ =
∥∥∥∥−→e + Cϵ

−→v (t) −
ϵC2

ϵ

2
−→a (λ)

∥∥∥∥
R3

.

To make further progress, we define an orthonormal basis {−→e ,
−→
f ,−→g } and split all vectors in parallel

and perpendicular components to −→e such that we can also rewrite the last equation as 1

Cϵ =
∥∥∥∥(1 + Cϵv|| −

ϵC2
ϵ

2 )−→e + (Cϵvf −
ϵC2

ϵ

2 af)
−→
f + (Cϵvg −

ϵC2
ϵ

2 ag)−→g
∥∥∥∥
R3

,

where v|| and a|| denote the scalar product between −→v or −→a with −→e . Note that we omitted the
times t and λ to make the expression readable. To avoid any confusion, note that the velocity is
always evaluated at time t and the acceleration at the time λ.

1we use the subscript || to refer to the parallel component of a vector with respect to −→e , and the subscripts f, g

to denote the components in the direction of
−→
f and −→g , respectively. This approach is adopted because, in the final

equation, we only require v||, a|| and the perpendicular components, e.g. v2
⊥ = v2

f + v2
g , making irrelevant the choice

of the vectors
−→
f and −→g .
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This statement can be squared and rearranged as a polynomial equation of fourth grade which
roots are the desired coefficients Cϵ. We obtain

−ϵ2

4
−→a 2C4

ϵ + ϵ−→v · −→a C3
ϵ + (1− v2 + ϵa||)C2

ϵ − 2v||Cϵ − 1 = 0

or after a small rearrange of terms

(1− v2)C2
ϵ − 2v||Cϵ − 1 + ϵ

(
a||C

2
ϵ +−→v · −→a C3

ϵ −
ϵ

4
−→a 2C4

ϵ

)
= 0. (3.18)

The formula above reveals a particularly interesting feature. It resembles the sum of two different
polynomials in the form P(Cϵ) +ϵQ(Cϵ) = 0. Since we are seeking an expansion of the retarded time
around −→q (t), we assume ϵ to be small. This suggests that the polynomial P must be corrected
by ϵQ. Consequently, we expect Cϵ to be very close to another coefficient, denoted as C0, which
corresponds to the roots of equation (3.18) when ϵ = 0. In other words, C0 solves

(1− v2)C2
0 − 2v||C0 − 1 = 0

which has two solutions
C0 = v|| ±

√
1− v2

⊥

1− v2 .

This leads us to consider that, as ϵ becomes smaller, Cϵ should converge to C0. Consequently, it
seems reasonable to expand Cϵ in powers of ϵ. Informally, this can be written as

Cϵ := C0 + ϵC1 + ϵ2C2 + ... .

Example 3.2: Numerical Comparison between Cϵ and C0

Using Phyton we can compute numerically both Cϵ and C0 for some given values of the
velocity and acceleration. For this example, we choose the following values

v|| = 1
2 v⊥ = 1

2

a|| = 0.4 a⊥ = 0.3

and we get the two square roots C0

C0 = −0.73205 C0 = 2.73205

Now we can compare these results to the numerical solution of Cϵ

ϵ First Root Second Root
0.1 -0.72770 2.31732

0.001 -0.73200 2.72623
0.0001 -0.73204 2.73146
0.00001 -0.73205 2.73199

The last example supports our idea of Cϵ being close to C0.

Because we know that the retarded time is unique, we must decide which of the two roots C0
could be used as a good approximation of Cϵ. Looking back at the equation (3.1), we observe that
the right choice is the plus sign. For this reasons, the retarded time takes the following form

t− = t− ϵC0 + R̃ϵ = t− ϵ
v|| +

√
1− v2

⊥

1− v2 + R̃ϵ,

where R̃ϵ denotes the remainder of our approximation. To show that R̃ϵ cpnverges to zero, we first
define the polynomial

P (X) := (1− v2)X2 − 2v||X − 1 + ϵ
(

a||X
2 +−→v · −→a X3 − ϵ

4
−→a 2X4

)
with P (Cϵ) = 0. Now we set

Cϵ := C0 + ϵC1 + Rϵ
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and insert this expression in P (X). If we define the coefficient

C1 := −C2
0

2

−→v · −→a C0 + a||

(1− v2)C0 − v||
, (3.19)

we obtain the following formula (see Appendix B.1)

P (C0 + ϵC1 + Rϵ) =2(1− v2)C0Rϵ + (1− v2)(ϵC1 + Rϵ)2+

ϵ

(
a||(2C0(ϵC1 + Rϵ) + (ϵC1 + Rϵ)2)+

−→v · −→a (3C2
0 (ϵC1 + Rϵ) + 3C0(ϵC1 + Rϵ)2 + (ϵC1 + Rϵ)3)−

ϵ

4a2(C4
0 + 4C3

0 (ϵC1 + Rϵ) + 6C2
0 (ϵC1 + Rϵ)2+

4C0(ϵC1 + Rϵ)3 + (ϵC1 + Rϵ)4)
)

= 0.

In order to show that Rϵ tends to zero we take the limit ϵ → 0 and use the continuity of the
polynomials to obtain

lim
ϵ→0

P (Cϵ) = 2(1− v2)C0 lim
ϵ→0

Rϵ + (1− v2)(lim
ϵ→0

Rϵ)2 != 0.

The last equation hast two solutions, namely

lim
ϵ→0

Rϵ = −2C0

and
lim
ϵ→0

Rϵ = 0.

The last one is the only possible solution, since we can also take the limit ϵ → 0 on equation
(3.18) and see that limϵ→0 Cϵ = C0. If we assume that limϵ→0 Rϵ = −2C0, this would imply
limϵ→0 Cϵ = −C0, which an incorrect result.

Inserting the expansion of Cϵ in the defining equation of the retarded time we obtain

t− = t− ϵCϵ = t− ϵC0 − ϵ2C1 − ϵRϵ.

Result 3.4: Expansion of t−

The retarded time in the neighborhood of the particle’s position can be expressed as

t−
(t,−→q (t)+ϵ−→e ) = t− ϵC0 + ϵ2 C2

0
2

−→v · −→a C0 + a||

(1− v2)C0 − v||
+ R̃ϵ, (3.20)

where C0 is given by

C0 = v|| +
√

1− v2
⊥

1− v2 .

Remark. We introduced the second-order approximation because it will be necessary when calcu-
lating the normal vectors. See, for instance, section 3.3.2.

We turn now our attention to the advanced time t+. The expressions for the advanced time are
very similar to those for the retarded time. Therefore, we have the advantage that the calculations
are made in the same way as before. We rewrite t+ as

t+
(t,−→q (t)+ϵ−→e ) = t +

∥∥−→q (t) + ϵ−→e −−→q (t+)
∥∥
R3 := t + ϵBϵ(−→e ,−→v (t)),

with a new coefficient Bϵ. Repeating all steps from the last page we are able to obtain the following
coefficients

Bϵ = B0 + ϵB1 + R∗
ϵ ,

B0 = −v|| +
√

1− v2
⊥

1− v2 ,

B1 = B2
0

2

−→v · −→a B0 − a||

(1− v2)B0 + v||
,

and
lim
ϵ→0

R∗
ϵ = 0.

Finally we get the expansion of t+.
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Result 3.5: Expansion of t+

The advanced time in the neighborhood of the particle can be expressed as

t+
(t,−→q (t)+ϵ−→e ) = t + ϵB0 + ϵ2 B2

0
2

−→v · −→a B0 − a||

(1− v2)B0 + v||
+ R̃∗

ϵ , (3.21)

where B0 is given by

B0 = −v|| +
√

1− v2
⊥

1− v2 .

3.3.2 Convergence of the Normal Vectors
Now we are equipped with enough knowledge to study how the normal vectors behave in the
neighborhood of the point particle. The defining equation of the retarded and advanced normal
vectors is given by

−→n ± =
−→x −−→q ±

∥−→x −−→q ±∥R3
.

We make the computation first for the retarded normal vector. Inserting −→x = −→q (t) + ϵ−→e in the
last formula yields

−→n − =
−→e +

−→q (t)−−→q (t−)
ϵ

Cϵ
.

If we make the replacement t− = t − ϵCϵ, we can Taylor-expand the retarded position to obtain
−→q (t−) = −→q (t) − ϵC0

−→v (t) + R. Inserting this expression in the equation of the normal vector, we
arrive at

−→n − =
−→e
Cϵ

+−→v + R

ϵCϵ
,

where the last term is well defined since the remainder is of order ϵ2. Now we set our expansion of
Cϵ and perform a Taylor-expansion on the denominator

1
Cϵ

= 1
C0 + ϵC1 + Rϵ

= 1
C0(1 + ϵC1

C0
+ Rϵ

C0
)

= 1
C0

(
1− ϵC1

C0
+O(ϵ2)

)
.

We can divide the statement by C0 since C0 = 0 implies v2 = 1, condition that is excluded in our
scenario. With this result, the normal vector takes the form

−→n − =
−→e
C0

+−→v +O(ϵ).

Result 3.6: Convergence of the retarded normal vector

The retarded normal vector converges at the particle’s position with the limit

lim
ϵ→0
−→n (t−

(t,−→q (t)+ϵ−→e ),−→q (t)+ϵ−→e ) =
−→e

C0(t)
+−→v (t). (3.22)

If we split the velocity in parallel and perpendicular components to −→e , then the limit can
be written as

lim
ϵ→0
−→n (t−

(t,−→q (t)+ϵ−→e ),−→q (t)+ϵ−→e ) =
√

1− v2
⊥(t)
−→e +−→v ⊥(t). (3.23)

This limit is not unique since it depends on the direction used to approach the particle.

The same procedure can be done to compute the limit of the advanced normal vector. As
calculated in the Result 3.5, we can use the coefficient Bϵ and expand the expression in powers of
ϵ. Repeating all steps we obtain

−→n + =
−→e +

−→q (t)−−→q (t+)
ϵ

Bϵ
.
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Here, we recall that t+ = t + ϵBϵ. Again, the Taylor expansion yields

−→n + =
−→e
Bϵ
−−→v − R

ϵBϵ
.

We can notice the similarity of this expression with that of −→n −. Expanding the coefficient Bϵ we
get

−→n + =
−→e
B0
−−→v +O(ϵ).

Result 3.7: Convergence of the advanced normal vector

The advanced normal vector converges at the particle’s position with the limit

lim
ϵ→0
−→n (t+

(t,−→q (t)+ϵ−→e ),−→q (t)+ϵ−→e ) =
−→e

B0(t)
−−→v (t). (3.24)

If we split the velocity in parallel and perpendicular components to −→e , then the limit can
be written as

lim
ϵ→0
−→n (t+

(t,−→q (t)+ϵ−→e ),−→q (t)+ϵ−→e ) =
√

1− v2
⊥(t)
−→e −−→v ⊥(t). (3.25)

3.4 A Particle Moving with Constant Acceleration
In the previous section, we derived general formulas and demonstrated that the normal vectors can
be meaningfully expanded, being well-defined at the particle’s position. With this foundational
understanding, we can now proceed to analyze a particle moving with constant acceleration in
space. Surprisingly, we will obtain an expression for the Coulomb component of the radiation
field that exhibits a divergence. Specifically, we explicitly calculate that the Coulomb part of the
radiation field diverges as 1/ϵ.

3.4.1 The Coulomb Radiation Fields
Since our focus is on studying the electromagnetic fields near the particle, we now address the
question of whether the Coulomb (or near) fields contribute to the emission of radiation, or if they
can be neglected in favor of focusing solely on the far fields.

In this section, we provide an explicit example by analyzing the case of a particle moving along
a straight line with constant acceleration. For this case, we derive the following simple formulas

−→q − = −→q − ϵCϵ
−→v + ϵ2

2 C2
ϵ
−→a ,

−→n − =
−→e
Cϵ

+−→v − ϵ

2Cϵ
−→a ,

−→v − = −→v − ϵCϵ
−→a .

Notice that the coefficients Cϵ theoretically contain an infinite number of terms. However, because
the position does not have more than two derivatives, the expressions become more compact. We
insert these terms in the equation of the retarded Coulomb field

−→
E −

C = (−→n − −−→q −)(1− (−→v −)2)
∥−→x −−→q −∥2

R3(1−−→n − · −→v −)3

and obtain

Result 3.8: The Retarded electric Coulomb Field

⇒
−→
E −

C = 1
ϵ2A3

(
(1− v2)−→e + 2ϵCϵav−→e − ϵ2C2

ϵ a2−→e

+ (1− v2) ϵ

2C2
ϵ
−→a + ϵ2C3

ϵ av−→a − ϵ3

2 C4
ϵ a2−→a

)
,

(3.26)
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where we used the short hand notation

A = (1− v2)Cϵ − v|| + ϵCϵa|| + 3
2ϵC2

ϵ va− ϵ2

2 C3
ϵ a2.

For the advanced Coulomb field we get in a similar way

−→q + = −→q + ϵBϵ
−→v + ϵ2

2 B2
ϵ
−→a

−→n + =
−→e
Bϵ
−−→v − ϵ

2Bϵ
−→a

−→v + = −→v + ϵBϵ
−→a ,

which can be inserted in
−→
E +

C = (−→n + +−→q +)(1− (−→v +)2)
∥−→x −−→q +∥2

R3(1 +−→n + · −→v +)3

and gives us the following expression

Result 3.9: The Advanced Electric Coulomb Field

⇒
−→
E +

C = 1
ϵ2Ã3

(
(1− v2)−→e − 2ϵBϵav−→e − ϵ2B2

ϵ a2−→e

+ (1− v2) ϵ

2B2
ϵ
−→a − ϵ2B3

ϵ av−→a − ϵ3

2 B4
ϵ a2−→a

)
,

(3.27)

again with the notation

Ã = (1− v2)Bϵ + v|| + ϵBϵa|| −
3
2ϵB2

ϵ va− ϵ2

2 B3
ϵ a2.

Computation to ϵ−2th Order

We see from the last two results 3.8 and 3.9 that only the fist term is of order ϵ−2. If we wish to
calculate the first term in the expansion of the radiation electric field, we have to compute

−→
E Rad,C = −→E −

C −
−→
E +

C = 1
ϵ2 (1− v2)−→e

(
1

A3 −
1

Ã3

)
,

with the coefficients 1/A and 1/Ã expanded to the zeroth order. We then have

A = C0(1− v2)− v|| =
√

1− v2
⊥ = B0(1− v2) + v|| = Ã,

which shows that the desired term vanishes.

Main Result 3.10: The Coulomb Part of the Radiation Electric Field
The ϵ−2 term of the Coulomb radiation field is zero

−→
E Rad,C = 0 +O(ϵ−1). (3.28)

Computation to ϵ−1th Order

Now that we know the first term disappears, we may wonder what happens next. For this reason,
we must expand the coefficients A and Ã to the first order and we must take into consideration all
terms in the retarded and advanced coulomb fields up to order ϵ. In this case we obtain

A3 = (1− v2
⊥)3/2 + 3ϵ(1− v2

⊥)
(

C1(1− v2) + C0a|| + 3
2C2

0 va

)
+O(ϵ2),

Ã3 = (1− v2
⊥)3/2 + 3ϵ(1− v2

⊥)
(

B1(1− v2) + B0a|| −
3
2B2

0va

)
+O(ϵ2).

(3.29)
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For the terms of order ϵ−2, we must use these expressions, while for the terms of order ϵ−1 we can
simplify the calculation by using the expressions up to the zeroth order. Combining everything,
we are able to write

−→
E Rad,C = −→E −

C −
−→
E +

C =(1− v2)−→e
ϵ2 ×(

1
(1− v2

⊥)3/2 + 3ϵ(1− v2
⊥)
(
C1(1− v2) + C0a|| + 3

2 C2
0 va
)

+O(ϵ2)
−

1
(1− v2

⊥)3/2 + 3ϵ(1− v2
⊥)
(
B1(1− v2) + B0a|| − 3

2 B2
0va
)

+O(ϵ2)

)
+

2va(C0 + B0)
ϵ(1− v2

⊥)3/2
−→e + (1− v2)(C2

0 −B2
0)

2ϵ(1− v2
⊥)3/2

−→a +O(ϵ0).

The big therm in the parenthesis can be expanded and we get

−→
E −

C −
−→
E +

C = (1− v2)−→e
ϵ2(1− v2

⊥)3/2

[
1− 1−

3ϵ

(1− v2
⊥)1/2

(
C1(1− v2) + C0a|| + 3

2C2
0 va

)
+

3ϵ

(1− v2
⊥)1/2

(
B1(1− v2) + B0a|| −

3
2B2

0va

)]
+

2va(C0 + B0)
ϵ(1− v2

⊥)3/2
−→e + (1− v2)(C2

0 −B2
0)

2ϵ(1− v2
⊥)3/2

−→a +O(ϵ0).

Here we see again that the first term in the expansion cancels out, so that in the worst case this
expression diverges as 1/ϵ. We can simplify the last expression using the formulas of Appendix C.
After a rather tedious calculation, we obtain

−→
E −

C −
−→
E +

C =3(1− v2)−→e
ϵ(1− v2

⊥)2

(
va(1− v2)(B3

0 + C3
0 )

2(1− v2
⊥)1/2 −

3va(1− v2
⊥ + v2

||)
(1− v2)2

)
+

4va

ϵ(1− v2)(1− v2
⊥)
−→e + 2v||

ϵ(1− v2)(1− v2
⊥)
−→a +O(ϵ0)

= −2va

ϵ(1− v2)(1− v2
⊥)
−→e +

2v2
||

ϵ(1− v2)(1− v2
⊥)
−→a +O(ϵ0)

= 2a⊥

ϵ(1− v2)(1− v2
⊥) (v||

−→e⊥ − v⊥
−→e ) +O(ϵ0).

For the magnetic fields we can use −→
B ±

C = ∓−→n ± ×
−→
E ±

C

to compute them. As a result of an extensive calculation we have
−→
B −

C −
−→
B +

C = −2vav⊥

ϵ(1− v2)(1− v2
⊥)
−→e⊥ ×−→e −

2a⊥

ϵ(1− v2
⊥)
−→e⊥ ×−→e +O(ϵ0).

And so we get the important and unexpected result

Main Result 3.11: The Divergence of the Coulomb Radiation Field

The difference between the retarded and advanced Coulomb fields diverges as 1/ϵ for all
points outside of the trajectory. This holds for both the electric and magnetic radiation
fields.

−→
E Rad,C = 2a⊥

ϵ(1− v2)(1− v2
⊥) (v||

−→e⊥ − v⊥
−→e ) +O(ϵ0). (3.30)

−→
B Rad,C = −2vav⊥

ϵ(1− v2)(1− v2
⊥)
−→e⊥ ×−→e −

2a⊥

ϵ(1− v2
⊥)
−→e⊥ ×−→e +O(ϵ0). (3.31)

3.4.2 The Far Radiation Fields
The immediate question is how the far fields behave in the vicinity of the particle. We now show
that they diverge in such a way that they precisely cancel the divergence of the Coulomb fields.
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The defining equation of the far fields were given as

−→
E ±

f =
−→n ± × [(−→n ± ±−→v ±)×−→a ]
∥−→x −−→q ±∥R3(1±−→n ± · −→v ±)3 ,

and −→
B ±

f = ∓−→n ± ×
−→
E ±

f ,

where the acceleration was kept constant. From this equations we can see that the far fields can
in the worst case diverge as 1/ϵ, which makes the computation easier since it is possible to keep
just the zeroth terms of A and Ã. Bringing everything together, we obtain

−→
E Rad,f = −→E −

f −
−→
E +

f = C0a⊥

ϵ(1− v2
⊥)3/2 (v⊥

−→e − v||
−→e⊥ −

1
C0

−→e⊥)−

B0a⊥

ϵ(1− v2
⊥)3/2 (v||e⊥ − v⊥

−→e − 1
B0

−→e⊥) +O(ϵ0),

which after some algebra it reduces to

−→
E Rad,f = −2a⊥

ϵ(1− v2)(1− v2
⊥) (v||

−→e⊥ − v⊥
−→e ) +O(ϵ0). (3.32)

This is exactly the opposite of the expression obtained for the Coulomb fields. For the far magnetic
field we can repeat the whole process and at the end get in the same way the following result

−→
B Rad,f = −→B −

f −
−→
B +

f =v2a⊥(C0 + B0)
ϵ(1− v2

⊥)3/2
−→e⊥ ×−→e −

a⊥

ϵ(1− v2
⊥)3/2

(
1

C0
+ 1

B0

)
−→e ×−→e⊥ +O(ϵ0),

which again can be simplified using the equations given in Appendix C to achieve

−→
B −

f −
−→
B +

f = 2vav⊥

ϵ(1− v2)(1− v2
⊥)
−→e⊥ ×−→e + 2a⊥

ϵ(1− v2
⊥)
−→e⊥ ×−→e +O(ϵ0). (3.33)

These calculations demonstrate that the radiation fields do not contain divergent terms. At this
stage, it is not possible to compute the terms of order ϵ0 since we kept everything to order ϵ−1.
If one wishes to calculate the next order, the computations become exceedingly tedious, as it is
necessary to compute the coefficients C2 and B2 while carefully tracking all terms in the expansion.

While the approach used in this chapter is straightforward and easy to apply, it is not practical
for obtaining more detailed information for general trajectories. From Dirac’s perspective, we are
left with cumbersome expressions, as we are not working in a relativistic framework. The calcula-
tion of the general expression for the radiation field will be the focus of the next chapter, where we
utilize the field tensor rather than the electromagnetic fields. This is the optimal approach, as the
insights gained in this chapter reveal that one must compute with the full fields when discussing
radiation.
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Chapter 4

Dirac’s Paper on Radiation
Reaction

This chapter is again written in mathematical form and it is devoted to the profound study of
Dirac’s original derivation of the radiation field tensor. In contrast to the previous chapter, where
we dealt with separate expressions for the electric and magnetic fields, we will use the formulas for
the field tensors

F µν−
(x) = e

q̇(τ−) · (x− q(τ−))

[
d
dτ

q̇ν
(τ)(xµ − qµ

(τ))− q̇µ
(τ)(xν − qν

(τ))
q̇(τ) · (x− q(τ))

]∣∣∣∣∣
τ=τ−

, (4.1)

and

F µν+
(x) = −e

q̇(τ+) · (x− q(τ+))

[
d
dτ

q̇ν
(τ)(xµ − qµ

(τ))− q̇µ
(τ)(xν − qν

(τ))
q̇(τ) · (x− q(τ))

]∣∣∣∣∣
τ=τ+

. (4.2)

These expressions are derived in Appendix E. We will also need an extension of the radiation
field, which will be studied in this chapter:
Definition 4.1. (Radiation Field) Given a point x in space-time, we define the extension of the
radiation field F µν

Rad : M→ R6 at that point as

F
µν

Rad(x) :=


F µν−

(x) − F µν+
(x) ∀x ∈M \ q(R),

4e

3

( ...
q µ

(τ)q̇
ν
(τ) −

...
q ν

(τ)q̇
µ
(τ)

)
∀x = q(τ) ∈ q(R).

(4.3)

The main goal of this chapter is to show the following result:
Theorem 4.2. (Point-wise Convergence of The Radiation Field) Let q be a world-line
as given in Definition 2.6 and let (xn)n∈N be a sequence of points outside the world-line which
converge to the point q(τ∗) ∈ q(R). Then,

1. outside the world-line it is possible to write

F µν
Rad(xn) = 4e

3

( ...
q µ

(τn)q̇
ν
(τn) −

...
q ν

(τn)q̇
µ
(τn)

)
+Rµν

(xn), (4.4)

Rµν is the error term.

2. For the remainder, there exists a constant C such that for all n ∈ N with ∥xn− q(τ∗)∥R4 < 1,
it holds that ∣∣∣Rµν

(xn)

∣∣∣ ≤ C∥xn − q(τ∗)∥R4 . (4.5)
The constant C depends only on the supremum norm of q and its first five derivatives over
a closed ball of radius r > 0.

Remark. Some facts that are important to notice here:
1. The result is independent of the sequence (xn)n∈N chosen to approach the world-line.

2. We will estimate the convergence rate, explicitly showing that F Rad(xn) converges point-wise
to F Rad(q(τ∗)).

3. This means that F Rad(x) is the continuous extension of FRad(x).
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Summary of this Chapter

As a summary, we would like to provide a sketch of the proof of the Theorem 4.2 stating what
was done by Dirac and what is our contribution. In order to expand the Lienard-Wiechert
field tensors, we need to demonstrate first the following results:

1. Dirac mentioned a point on the world-line at which q̇ · γ = 0 must hold. We provide
a proof of its existence in the Lemma 4.3. This point, which we call ”Dirac’s choice”
and denote as q(τn), simplifies remarkably the expansion of the fields. Thus, we avoid
the large computations made in the previous chapter.

2. We demonstrate that the parameter τn converges to τ∗ in Corollary 4.4.

Then, if we shift the advanced τ+
(xn) = τ(xn) + δ(xn) and retarded τ−

(xn) = τ(xn) − σ(xn)
parameters as Dirac did, it is possible to perform the expansion of the field tensors in the
same way as in [Dir38]. Lemma 4.7 repeats this calculation.
As we are also interested in the rate of convergence, we calculate the remainder of the
expansion and derive some important bounds (equations (4.19), (4.22) and (4.27)), which
will allow us to show that the error term vanishes in the limit xn → q(τ∗). This is done in
the last part of this chapter in which we provide the main result of this work, namely the
convergence of the radiation field (see subsection 4.2.1).

4.1 Rigorous Proof of Dirac’s Formula
We begin this section with an important proof: the existence of a special point along the particle’s
trajectory where the computation of the field tensors becomes significantly simplified. In this
context, we will utilize the formal definitions provided in the second chapter, as well as some of
the results presented there.

Reminder: To ensure clarity for the reader, we will now summarize the definitions provided
in the second chapter:

1. World Line, Definition 2.6: the map

q :


R −→M

τ 7−→ q(τ) :=
(

t̃(τ)−→q (t̃(τ))

)
,

is called a world-line, t̃(τ) is the time at world-line parameter τ ∈ R, −→q (t̃(τ)) is the

position at time t̃(τ) ∈ R and −→v (t̃) := d−→q
dt̃

is the velocity of the particle, if the
following properties are satisfied:

(a) q ∈ C∞
(R,M)

(b) t̃ : R→ R is bijective
(c) The four-velocity is time-like and positive oriented, i.e ∀τ ∈ R : ˙̃t(τ) >

∥−̇→q (t̃(τ))∥R3 ≥ 0.
(d) There exist a maximal velocity smaller than the speed of light, i.e

∀t̃ ∈ R : ∥−→v ∥R3 =
∥∥∥∥d−→q

dt̃

∥∥∥∥
R3
≤ vmax < 1.

for some vmax ∈ [0, 1).

2. The parameter τ , Definition 2.14: we call the maps

τ± :

M→ R
x 7→ τ±

(x) = t̃−1
(t±∥−→x −−→q (t̃(x))∥R3 )

the advanced (with plus sign) and retarded (with minus sign) parameters.
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The main point to notice here is the use of a parameter τs at which the equation

q̇(τs) · (x− q(τs)) = 0

should hold. This four-position will be denoted here as ”Dirac’s choice” and it is very useful because
the term q̇ · (x− q) appears quite often in the Taylor-expansion of the field tensors. Here we give
a full proof of the existence of at least one such points at the world-line since this fact was merely
postulated in the original work [Dir38, p. 164].

Lemma 4.3. (Existence of Dirac’s choice) Let q be a world-line as given in Definition 2.6 and
let x be any point in M \ q(R) in the Minkowski-spacetime. Then, it is always possible to choose
a pair (τs, γ(τs)) where τs ∈ R and γ(τs) ∈M, with the following properties

1. γ(τs) = x− q(τs)

2. γ(τs) · q̇(τs) = 0

3. τs ∈ (τ−, τ+), where τ± are the advanced and retarded parameters as given in Definition
2.14.

Proof. Given the four-vector x ∈M, we define the maps

γ :
{
R −→M
τ 7−→ γ(τ) := x− q(τ)

(4.6)

and

f :
{

R −→ R
τ 7−→ f(τ) := q̇(τ) · γ(τ),

(4.7)

and study the behavior of the function f at different values of τ .
The first point to note is that at τ±, the particle’s position, denoted as q± = q(τ±) for brevity,

belongs to the light cone centered at x, i.e q± ∈ Lx. Right at these two points, the four-vector γ is
light-like by Definition 2.14 and for this reason, f can not be zero. For all τ /∈ [τ−, τ+], the vector
γ must be time like, since the point x lies in the interior of every light cone centered at q(τ).

Because of the third property in Definition 2.6, i.e. ∀τ ∈ R : q̇0 > ∥−̇→q ∥R3 ≥ 0, we have to make
a distinction between two different cases:

1. ∀τ < τ− it holds that
γ0 > ∥−→γ ∥R3 ≥ 0,

and therefore
q̇(τ) · γ(τ) = q̇0γ0 − −̇→q · −→γ ≥ q̇0γ0 − ∥−̇→q ∥R3∥−→γ ∥R3

> q̇0γ0 − q̇0γ0 = 0,

where the last inequality is strictly bigger than zero since γ0 is also bigger than ∥−→γ ∥R3 .
Summarized, we obtain

f(τ) > 0 ∀ τ < τ−.

2. ∀τ > τ+ it holds that
γ0 < 0

with
|γ0| > ∥−→γ ∥R3 ≥ 0

In this case, we get

q̇(τ) · γ(τ) = q̇0γ0 − −̇→q · −→γ = −q̇0|γ0| − −̇→q · −→γ

≤ −q̇0|γ0|+ ∥−̇→q ∥R3∥−→γ ∥R3 < −q̇0|γ0|+ q̇0|γ0| = 0,

where the last inequality follows the same way of thinking as in the last case. Therefore

f(τ) < 0 ∀ τ > τ+.

It follows from the intermediate value theorem and the fact that f(τ) is continuous, that there
exists at least one point τs ∈ (τ−, τ+) such that f(τs) = 0.

35



Corollary 4.4. Let q be a world-line as given in Definition 2.6 and let (xn)n∈N be a sequence with
xn ∈ M \ q(R) for all n ∈ N such that the sequence converges to a point of the trajectory q(τ∗)
with τ∗ ∈ R and let the four-vectors γn ∈M be chosen as in Lemma 4.3, i.e.

xn = q(τn) + γ(τn) ∀n ∈ N,

with the special property
γ(τn) · q̇(τn) = 0 ∀n ∈ N.

Then it follows that
lim

n→∞
τn = τ∗ (4.8)

and
lim

n→∞
γµ

(τn) = 0, (4.9)

i.e. the four-vector γ converges component-wise to zero.

Proof. From Lemma 4.3 we know that

τ−
n ≤ τn ≤ τ+

n ∀n ∈ N,

where we use the notation
τ±

n := t̃−1
(t±

(xn)).

Because of the squeeze theorem we obtain

lim
n→∞

τ−
n ≤ lim

n→∞
τn ≤ lim

n→∞
τ+

n ,

or
τ∗ ≤ lim

n→∞
τn ≤ τ∗ ⇒ lim

n→∞
τn = τ∗.

Then we look back to the definition of the four-vector γ(τn) and take again the limit n→∞

γµ
(τn) = xµ

n − qµ
(τn)

⇒ lim
n→∞

γµ
(τn) = lim

n→∞
xµ

n − lim
n→∞

qµ
(τn)

⇒ lim
n→∞

γµ
(τn) = qµ

(τ∗) − qµ
(limn→∞ τn) = 0,

where in the last step we used the continuity of q.

Now we can repeat the steps made by Dirac but in a rigorous way. We define two new sequences
(σn)n∈N and (δn)n∈N of real numbers as

σn := τn − τ−
n ∈ R and δn := τ+

n − τn ∈ R, (4.10)

where, by Lemma 4.3, we know that σn > 0 and δn > 0 for all n ∈ N. From the Corollaries 2.15
and 4.4 we get

lim
n→∞

σn = lim
n→∞

δn = 0. (4.11)

These new sequences together with Dirac’s choice for the four-vectors γn ∈ M play a central role
in the derivation of the radiation term.

About the Divergence of the Lienard-Wiechert Fields

Before we continue our investigation through the different components of the radiation field, we
will show a result of general sequences of four-vectors.

Lemma 4.5. Let (an)n∈N be a sequence of four-vectors an ∈M with components (a0
n,−→a n) for all

n ∈ N. Let the sequence (a2
n)n∈N, with a2

n = aµ
nanµ, diverge. Then one of the following scenarios

is true

1.
lim

n→∞
a2

n =∞ ⇒ lim
n→∞

a0
n =∞ (4.12)
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2.
lim

n→∞
a2

n = −∞ ⇒ lim
n→∞

∥−→a n∥R3 =∞ (4.13)

Proof. First suppose a2
n →∞ as n→∞. For all n ∈ N it is true that

a2
n = (a0

n)2 − (−→a n)2

Therefore
(a0

n)2 = a2
n + (−→a n)2 ≥ a2

n

So we get
|a0

n| ≥
√

a2
n ∀n ∈ N.

This shows that the components a0
n must tend to infinity in the limit since they are bounded from

below by the divergent four-norm
√

a2
n.

Now suppose a2
n → −∞ as n→∞. For all n ∈ N we now have

(−→a n)2 = (a0
n)2 − a2

n ≥ −a2
n

which, again, diverges to infinity because ∥−→a n∥2
R3 is bounded from below by −a2

n which diverges
to positive infinity.

Lemma 4.6. (Relation between σn and γn) Let q be a world-line as given in Definition 2.6
and let (xn)n∈N be a sequence with xn ∈ M \ q(R) for all n ∈ N. Let this sequence converge to a
point of the trajectory q(τ∗) with τ∗ ∈ R and let the four-vectors γn ∈ M be chosen as in Lemma
4.3, i.e.

xn = q(τn) + γ(τn), γ(τn) · q̇(τn) = 0 ∀n ∈ N,

with
τn ∈ (τ−

n , τ+
n ) ∀n ∈ N.

Further, let the sequences of proper retarded and advanced parameters be described as τ−
n = τn−σn

and τ+
n = τn + δn .Then

lim
n→∞

∥−→γ (τn)∥R3

(σn)k
= lim

n→∞

∥−→γ (τn)∥R3

(δn)k
=∞

if k > 1.

Proof. 1. For the retarded time at the retarded position we have the following equation

(xn − q(τ−
n ))

2 = 0.

Inserting τ−
n = τn−σn and performing a Taylor expansion of the trajectory around τn yields

γ(τn) · γ(τn) + σ2
n − σ2

n(q̈(τn) · γ(τn)) + σ3
n

3 ( ...
q (τn) · γ(τn))−

σ4
n

12 (q̈(τn))2 +O(σ5
n) = 0.

Dividing this equation by σk
n transforms the last formula into

γ(τn) · γ(τn)

σk
n

+ σ2−k
n (1− q̈(τn) · γ(τn)) +O(σ3−k

n ) = 0 (4.14)

If k = 2 we obtain the limit
lim

n→∞

(
γ(τn)

σn

)2
= −1.

For k > 2, equation (4.14) diverges as −1/σk−2
n . Therefore , replacing k/2 with k we get for

k > 1

lim
n→∞

(
γ(τn)

σk
n

·
γ(τn)

σk
n

)2
= −∞.

From the last Lemma we obtain the conjecture.

37



2. For the advanced times we have
(xn − q(τ+

n ))2 = 0.

Setting τ+
n = τn + δn and performing again the Taylor expansion

γ(τn) · γ(τn) + δ2
n − δ2

n(q̈(τn) · γ(τn))−
δ3

n

3 ( ...
q (τn) · γ(τn))−

δ4
n

12(q̈(τn))2 +O(δ5
n) = 0,

which, up to some signs, yields the same conclusion as the equation (4.14).

Lemma 4.7. (Taylor expansion of the field tensors) Let q be a world-line as given in Def-
inition 2.6 and let (xn)n∈N be a sequence with xn ∈ M \ q(R) for all n ∈ N. Let this sequence
converge to a point of the trajectory q(τ∗) with τ∗ ∈ R and let the four-vectors γn ∈ M be chosen
as in Lemma 4.3, i.e.

xn = q(τn) + γ(τn), γ(τn) · q̇(τn) = 0 ∀n ∈ N

with
τn ∈ (τ−

n , τ+
n ) ∀n ∈ N.

Then the sequence of advanced and retarded field tensors induced by (xn)n∈N is in general divergent
in the limit n→∞.

Proof. 1. The Retarded Field Tensor
We are going to perform a Taylor expansion of the following expression

F µν−
(t,−→x ) = e

q̇(τ−) · (x− q(τ−))

[
d

dτ

q̇ν
(τ)(xµ − qµ

(τ))− q̇µ
(τ)(xν − qν

(τ))
q̇(τ) · (x− q(τ))

]∣∣∣∣∣
τ=τ−

(4.15)

For every n ∈ N it is possible to expand the four-position around every τn

qµ
(τn−σn) = qµ

(τn) − σnq̇µ
(τn) + σ2

n

2 q̈µ
(τn) −

σ3
n

6
...
q µ

(τn) +O(σ4
n),

and the four-velocity

q̇µ
(τn−σn) = q̇µ

(τn) − σnq̈µ
(τn) + σ2

n

2
...
q µ

(τn) +O(σ3
n).

Here it is important to notice, that we are not at the retarded positions. From now on,
we will use the short notation qµ

(τn) = qµ
n. The remaining calculations are lengthy, with the

special property γn · q̇n = 0 being used repeatedly. The reader should pay attention
where the Einstein summation convention is used and where not. Greek indices
denote the components of the four-vectors and the letter n denotes the index of
the sequence.
Therefore, we can compute

q̇λ
(τn−σn)

(
xnλ − qλ(τn−σn)

)
= q̇λ

nγnλ + σn − σnq̈λ
nγnλ + σ2

n

2
...
q λ

nγnλ −
σ3

n

6 q̈λ
nq̈nλ +O(σ4

n).

And, we obtain

1
q̇λ

(τn−σn)
(
xnλ − qλ(τn−σn)

) = 1
q̇λ

nγnλ + σn − σnq̈λ
nγnλ + σ2

n

2
...
q λ

nγnλ − σ3
n

6 q̈λ
nq̈nλ +O(σ4

n)

= 1
σn(1− q̈λ

nγnλ)
1

1 + q̇λ
nγnλ

σn(1−q̈λ
nγnλ) + σn

...
q λ

nγnλ

2(1−q̈λ
nγnλ) −

σ2
nq̈λ

nq̈nλ

6(1−q̈λ
nγnλ) +O(σ3

n)
.

Because we are expanding around the point in which q̇n · γn = 0 holds, we finally get

1
q̇(τn−σn) ·

(
xn − q(τn−σn)

) = 1
σn(1− q̈n · γn)

1
1 + σn

...
q n·γn

2(1−q̈n·γn) −
σ2

nq̈2
n

6(1−q̈n·γn) +O(σ3
n)

= 1
σn(1− q̈n · γn)

(
1− σn

...
q n · γn

2(1− q̈n · γn) + σ2
nq̈2

6(1− q̈n · γn) +O(σ3
n)
)
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Now we continue with the next big term in the parenthesis in (4.15) and in order to save
writing, we denote with µ↔ ν the same terms of the written expression but with the indices
exchanged. The result is then

q̇ν
(τn−σn)

(
xµ − qµ

(τn−σn)

)
−
(
µ↔ ν

)
= q̇ν

nγµ
n − σnq̈ν

nγµ
n −

σ2
n

2 q̈ν
nq̇µ

n + σ2
n

2
...
q ν

nγµ
n + σ3

n

3
...
q ν

nq̇µ
n −

(
µ↔ ν

)
+O(σ4

n).

These two results can be multiplied to obtain the following expression

q̇ν
(τn−σn)

(
xµ − qµ

(τn−σn)

)
−
(
µ↔ ν

)
q̇(τn−σn) ·

(
xn − qn(τn−σn)

) = 1
1− q̈n · γn

[
q̇ν

nγµ
n

σn
− q̈ν

nγµ
n −

...
q n · γn

2(1− q̈n · γn) q̇ν
nγµ

n

− σn

2 q̈ν
nq̇µ

n + σn

2
...
q ν

nγµ
n + σn

6
q̈2

n

(1− q̈n · γn) q̇ν
nγµ

n + σ2
n

3
...
q ν

nq̇µ
n −

(
µ↔ ν

)
+O(σ3

n)
]

.

For the next step we have to differentiate this expression with respect to τn. Because we
chose τ = τn − σn with τn fixed, the derivative with respect to τ is equivalent to minus the
derivative with respect to σn. This results in

d
dτ

q̇ν
(τn−σn)

(
xµ

n − qµ
(τn−σn)

)
−
(
µ↔ ν

)
q̇λ

(τn−σn)
(
xλ − qλ(τn−σn)

) = −1
1− q̈n · γn

[
−q̇ν

nγµ
n

σ2
n

− 1
2 q̈ν

nq̇µ
n

+ 1
2

...
q ν

nγµ
n + 1

6
q̈2

n

(1− q̈n · γn) q̇ν
nγµ

n + 2σn

3
...
q ν

nq̇µ
n −

(
µ↔ ν

)
+O(σ2

n)
]

.

For the last part, we multiply this expression with
e

q̇(τ−) · (x− q(τ−))
,

which can be expanded in the same way as we did before. The equation of the retarded field
tensor becomes

F µν−
n = e

(1− q̈λ
nγnλ)2

(
q̇ν

nγµ
n

σ3
n

+ q̈ν
nq̇µ

n

2σn
−

...
q ν

nγµ
n

2σn
−

...
q λ

nγnλ

2
q̇ν

nγµ
n

σ2
n

− 2
3

...
q ν

nq̇µ
n −

(
µ↔ ν

)
+O(σn)

)
.

(4.16)

Because of Lemma 4.6 we conclude that at least the spatial components of F µν−
n in the last

expression diverge when n→∞.

2. The Advanced Field Tensor
In this case, the expression reads

F µν+
(t,−→x ) = −e

q̇γ

(t̃(τ+))(xγ − qγ(t̃(τ+)))

[
d
dτ

q̇ν
(t̃(τ))(x

µ − qµ

(t̃(τ)))− q̇µ

(t̃(τ))(x
ν − qν

(t̃(τ)))
q̇γ

(t̃(τ))(xγ − qγ(t̃(τ)))

]∣∣∣∣∣
τ=τ+

. (4.17)

Here we see that the computations are almost the same as those for the retarded fields. The
only difference relays in the fact that we set τ = τn + δn. The final expression reads

F µν+
n = e

(1− q̈λ
nγnλ)2

(
q̇ν

nγµ
n

δ3
n

+ q̈ν
nq̇µ

n

2δn
−

...
q ν

nγµ
n

2δn
+

...
q λ

nγnλ

2
q̇ν

nγµ
n

δ2
n

+ 2
3

...
q ν

nq̇µ
n −

(
µ↔ ν

)
+O(δn)

)
,

(4.18)

This expression is also divergent by virtue of Lemma 4.6.
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Remark. It is important to notice that we mixed up two different parameters in one notation,
namely τ from the big term in the parenthesis in the equation of F µν before the derivative and τ−

n

outside the parenthesis. In that sense, the expressions for the fields above are not complete, since
they do not have any details on the relationship between σn, δn and the four-vector γn. Only when
we use the equation of the light-cone (as in Lemma 4.6), we are able to get additional information.
The last part of this chapter is devoted to these relations.

4.2 Estimation of the Remainder and Main Theorem
We are ready to study the radiation field around a particle. We will first show how can we rewrite
σn and δn in terms of γn. Then, we will calculate the radiation field around a particle.
Remark. Instead of demanding the world-line to be globally differentiable, we can take our argu-
ments locally. Let Br(q(τ∗)) be a ball of radius r centered at q(τ∗). Then, the following facts are
true:

1. Because we study the sequence (xn)n∈N that is convergent, we know

∀r > 0 ∃N ∈ N : ∀n > N ⇒ xn ∈ Br(q(τ∗)).

2. Because Br(q(τ∗)) is a compact set and t± are continuous, we are sure that

∃ T + := sup
x∈Br(q(τ∗))

t+
(x) <∞

and
∃ T − := inf

x∈Br(q(τ∗))
t−
(x) <∞.

3. Therefore, all continuous functions that take values in [T −, T +] or [τ(T −), τ(T +)] take also
maxima and minima in this interval. For the next derivations, we will not need more than
the fifth derivative of the world-line and we assume that they are defined in the compact set
Br(q(τ∗)).

Lemma 4.8. Let q be a world-line as given in Definition 2.6 and let (xn)n∈N be a sequence with
xn ∈ M \ q(R) for all n ∈ N. Let this sequence converge to a point of the trajectory q(τ∗) with
τ∗ ∈ R and let the four-vectors γn ∈M be chosen as in Lemma 4.3. Then

|σn| ≤
4

1− vmax
sup

t∈[T −,T +]

(
dτ

dt

)
· ∥xn − q(t∗)∥R4 . (4.19)

The same inequality is true for δn.

Proof. Per definition we have
σn = τn − τ−

n .

Therefore
|σn| = |τn − τ−

n | ≤ |τ+
n − τ−

n | =
∣∣∣τ(t+

(xn)) − τ(t−
(xn))

∣∣∣
≤ sup

t∈[T −,T +]

(
dτ

dt

) ∣∣∣t+
(xn) − t−

(xn)

∣∣∣ ≤ sup
t∈[T −,T +]

(
dτ

dt

)(∣∣∣t+
(xn) − t∗

∣∣∣+
∣∣∣t∗ − t−

(xn)

∣∣∣)
and, if we use the results given in (2.11), we get

|σn| ≤
2

1− vmax
sup

t∈[T −,T +]

(
dτ

dt

)
·
(
|tn − t∗|+ ∥−→x n −−→q (t∗)∥R3

)
.

If we notice that |tn− t∗| ≤ ∥xn− q(τ∗)∥R4 and ∥−→x n−−→q (t∗)∥R3 ≤ ∥xn− q(τ∗)∥R4 we obtain finally

|σn| ≤
4

1− vmax
sup

t∈[T −,T +]

(
dτ

dt

)
· ∥xn − q(τ∗)∥R4 .

This inequality is also valid for δn because |δn| = |τ+
n − τn| ≤ |τ+

n − τ−
n |.
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Remark. Because γ2
n is space-like and is given by the Minkowski-metric, we also have the inequality

ϵn :=
√
−γ2

n =
√
−(γ0

n)2 +−→γ 2
n ≤

√
(γ0

n)2 +−→γ 2
n = ∥γn∥R4 = ∥xn − q(τn)∥R4

≤ ∥xn − q(τ∗)∥R4 + ∥q(τn) − q(τ∗)∥R4 ≤ ∥xn − q(τ∗)∥R4 +
(

sup
τ∈[τ(T −),τ(T +)]

q̇(τ)

)
|τn − τ∗|

≤ ∥xn − q(τ∗)∥R4 +
(

sup
τ∈[τ(T −),τ(T +)]

q̇(τ)

)
|τ+ − τ−|

≤ ∥xn − q(τ∗)∥R4 +
(

sup
τ∈[τ(T −),τ(T +)]

q̇(τ)

)
4

1− vmax
sup

t∈[T −,T +]

(
dτ

dt

)
· ∥xn − q(τ∗)∥R4

So we are able to obtain the following estimation

ϵn ≤

(
1 + 4

1− vmax
sup

t∈[T −,T +]

(
dτ

dt

)(
sup

τ∈[τ(T −),τ(T +)]
q̇(τ)

))
∥xn − q(τ∗)∥R4 =: C1∥xn − q(τ∗)∥R4 .

(4.20)
Remark. We can also get a very important lower bound for ϵn. At the point of Dirac’s choice,
γn · q̇n = 0, we have

γn · q̇n = γ0
nq̇0

n −−→γ n · (q̇0
n
−→v ) = 0

⇒ |γ0
n| ≤ vmax∥−→γ n∥R3 .

This holds under the assumption q̇0
n ̸= 0, which is valid if one chooses the parameter τ for example

as the proper time. From this last inequality we obtain

ϵ2
n = −→γ 2

n − (γ0
n)2 ≥ (1− v2

max)∥−→γ n∥2
R3 = 1

2(1− v2
max)(∥−→γ n∥2

R3 + ∥−→γ n∥2
R3)

⇒ ϵ2
n ≥

1
2(1− v2

max)(∥−→γ n∥2
R3 + (γ0

n)2) = 1
2(1− v2

max)∥γn∥2
R4 .

So we end up with the following inequality

1√
2
√

1− v2
max∥γn∥R4 ≤ ϵn ≤ ∥γn∥R4 . (4.21)

This also means, that we can estimate an upper boundary of each component of γn because

|γµ
n | ≤ ∥γn∥R4 ≤

√
2√

1− v2
max

ϵn. (4.22)

Lemma 4.9. (Relation between σn and
√
−γ2

n) Let q be a world-line as given in Definition
2.6 and let (xn)n∈N be a sequence with xn ∈M \ q(R) for all n ∈ N. Let this sequence converge to
a point of the trajectory q(τ∗) with τ∗ ∈ R and let the four-vectors γn ∈M be chosen as in Lemma
4.3. Then, as a first approximation, we have

σn = O(
√
−γ2

n) (4.23)

and
δn = O(

√
−γ2

n). (4.24)

Proof. We perform a Taylor-expansion of the retarded position up to the third order and obtain

q(τ−
n ) = q(τn−σn) = qn − σnq̇n + σ2

n

2 q̈n + Rn,

where we have used the notation qn := q(τn) and Rn is the remainder of the expansion which is of
order O(σ3

n). Inserting this in the equation of the light-cone yields

(xn − q(τ−
n ))

2 = 0⇒ (qn + γn − qn + σnq̇n −
σ2

n

2 q̈n −Rn)2 = 0.

Expanding the last equation and using the property that γn · q̇n = 0 results in

γ2
n + σ2

n − σ2
nγn · q̈n − 2γn ·Rn − 2σnq̇n ·Rn + σ4

n

4 q̈2
n + σ2

nq̈n ·Rn + R2
n = 0.
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We rename the last five terms as

R̃n := −2γn ·Rn − 2σnq̇n ·Rn + σ4
n

4 q̈2
n + σ2

nq̈n ·Rn + R2
n,

which is again a remainder of order O(σ3
n). So we obtain

γ2
n + σ2

n − σ2
nγn · q̈n + R̃n = 0.

After a rearrange of this equation we get

σn =
√
−γ2

n√
1− γn · q̈n + R̃n

σ2
n

.

From this last equation, we see that

lim
n→∞

σn√
−γ2

n

= 1 <∞,

which implies σn = O(
√
−γ2

n). The proof for δn follows the same path. Here we notice just a
change in some signs because

q(τ+
n ) = q(τn+δn) = qn + δnq̇n + δ2

n

2 q̈n + Rn.

The last lemma shows that, as a fist approximation, we can write σn = δn =
√
−γ2

n. It is
important to improve this last equation since in general σn is not equal to δn. In order to do so,
we are going to make a clever use of our first approximation. The next lemma resembles Dirac’s
expansion made in the original paper [Dir38, p. 166] but we are going to take care of the remainder
explicitly. This will show that, if we want to compute the error term in the expansion, we need at
least the fifth derivative of the world-line to be locally defined.

Lemma 4.10. (Dirac’s approximation of σn and δn) In the situation as given in the previous
lemma, there exists a n ∈ N such that we can approximate both σn and δn as

σn = ϵn√
1− γn · q̈n

·

(
1− γn ·

...
q n

6
ϵn

(1− γn · q̈n)3/2 + q̈2
n

24
ϵ2

n

(1− γn · q̈n)2

)
+Σn (4.25)

and

δn = ϵn√
1− γn · q̈n

·

(
1 + γn ·

...
q n

6
ϵn

(1− γn · q̈n)3/2 + q̈2
n

24
ϵ2

n

(1− γn · q̈n)2

)
+∆n, (4.26)

where we used the definition ϵn :=
√
−γ2

n. Here Σn and ∆n are remainder of order grater than
O(ϵ3

n).

Proof. The proof of this lemma is very similar as the last one. The main point is that we are
going to solve the equation of the light cone by iterations making the degree of accuracy better.
We begin by choosing a k1 ∈ N such that for all τ ∈ R with q(τ) ∈ B(∥q(τ∗) − xk1∥R4), we assume
q(τ) ∈ C5

(R,M). In particular, this assumption gives us local maxima of the first five derivatives in
B(∥q(τ∗) − xk1∥R4). Now we are going to iterate over the light-cone equation to develop higher
accuracy in each step.

1. Approximation of σn until second order:
Here we perform the Taylor-expansion of the retarded position until the third order and
obtain

q(τ−
n ) = q(τn−σn) = qn − σnq̇n + σ2

n

2 q̈n −
σ3

n

6
...
q n + Rn.

Now the remainder is of order O(σ4
n). Inserting this expression in the equation of the light-

cone and simplifying everything we finally get

γ2
n + σ2

n − σ2
nγn · q̈n + σ3

n

3 γn ·
...
q n + R̃n = 0,
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where, as in the previous calculation, R̃n is a well defined remainder but now of order
O(σ4

n). We recall at this point that in the last lemma we showed the following equality (with
ϵn :=

√
−γ2

n)
σn = ϵn√

1− γn · q̈n + Σn
= ϵn√

1− γn · q̈n
+O(ϵ2

n),

where from the last lemma we had that Σn is a remainder of order O(σn) = O(ϵn). We can
use this expression to calculate σ3

n and insert it in our last result, achiving in this way

σ3
n =

(
ϵn√

1− γn · q̈n
+O(ϵ2

n)
)3

= ϵ3
n

(1− γn · q̈n)3/2 +O(ϵ4
n)

and
−ϵ2

n + σ2
n − σ2

nγn · q̈n + γn ·
...
q n

3
ϵ3

n

(1− γn · q̈n)3/2 + R̃n = 0.

This step is possible since the leading term of σn is ϵn and therefore any higher power will
lead to higher orders of magnitude in the expansion. We can now solve the last equation for
σn and get

σn = ϵn√
1− γn · q̈n

√
1− γn ·

...
q n

3
ϵn

(1− γn · q̈n)3/2 −
R̃n

ϵ2
n

.

Since we already showed that ϵn :=
√
−γ2

n ≤ Cϵn∥xn − q(τ∗)∥R4 , we can choose a k2 ∈ N,
such that for all n ≥ k2 we can expand the square root on the right side and obtain

σn = ϵn√
1− γn · q̈n

(
1− γn ·

...
q n

6
ϵn

(1− γn · q̈n)3/2

)
+O(ϵ3

n).

2. Expansion until the fourth order:
Because later we are going to need a higher accuracy, we derive one order more

q(τ−
n ) = q(τn−σn) = qn − σnq̇n + σ2

n

2 q̈n −
σ3

n

6
...
q n + σ4

n

24
....
q n + Rn.

Now the remainder is of order O(σ5
n). Inserting this expression in the equation of the light-

cone and multiplying everything we finally get

γ2
n + σ2

n − σ2
nγn · q̈n + σ3

n

3 γn ·
...
q n −

σ4
n

12 q̈2
n −

σ4
n

12 γn ·
....
q n + R̃n = 0.

Then we use our last, more accurate, result instead of σ3
n and σ4

n. From the last equation we
compute

σ3
n = ϵ3

n

(1− γn · q̈n)3/2 −
γn ·

...
q n

2
ϵ4

n

(1− γn · q̈n)3 +O(ϵ5
n)

and
σ4

n = ϵ4
n

(1− γn · q̈n)2 +O(ϵ5
n).

Combining everything together we attain

0 =− ϵ2
n + σ2

n(1− γn · q̈n) + γn ·
...
q n

3
ϵ3

n

(1− γn · q̈n)3/2 −
(γn ·

...
q n)2

6
ϵ4

n

(1− γn · q̈n)3−

q̈2
n

12
ϵ4

n

(1− γn · q̈n)2 −
γn ·

....
q n

12
ϵ4

n

(1− γn · q̈n)2 + R̃n.

And if we rearrange the terms, we obtain

σn = ϵn√
1− γn · q̈n

·

[
1− γn ·

...
q n

3
ϵn

(1− γn · q̈n)3/2 + (γn ·
...
q n)2

6
ϵ2

n

(1− γn · q̈n)3 +

q̈2
n

12
ϵ2

n

(1− γn · q̈n)2 + γn ·
....
q n

12
ϵ2

n

(1− γn · q̈n)2 −
R̃n

ϵ2
n

]1/2
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This expression can be Taylor-expanded again for all n ≥ k2 to get

σn = ϵn√
1− γn · q̈n

·

(
1− γn ·

...
q n

6
ϵn

(1− γn · q̈n)3/2 + (γn ·
...
q n)2

12
ϵ2

n

(1− γn · q̈n)3 +

q̈2
n

24
ϵ2

n

(1− γn · q̈n)2 + γn ·
....
q n

24
ϵ2

n

(1− γn · q̈n)2−

(γn ·
...
q n)2

24
ϵ2

n

(1− γn · q̈n)3

)
+O(ϵ4

n).

The last thing we want to mention is that we also showed that for the components of γn

satisfy

|γµ
n | ≤

√
2√

1− v2
max

ϵn.

This means that for an i and l ∈ {0, ..., 5} it is true that∣∣∣∣(γn ·
dlq

dτ l

)
ϵi

n

∣∣∣∣≤ sup
τ(T −),τ(T −)

∥∥∥∥dlq

dτ l

∥∥∥∥
max

· ∥γn∥max ϵi
n ≤ sup

τ(T −),τ(T −)

∥∥∥∥dlq

dτ l

∥∥∥∥
max

√
2√

1− v2
max

ϵi+1
n ,

or in other words, this expressions are of an order less or equal to O(ϵi+1
n ). Because γn tends

component-wise to zero, it is also true that at some k3 ∈ N, this last expression will be
smaller than ϵi

n. The exact order of these expressions is unknown but we define a remainder

Σn := ϵn√
1− γn · q̈n

(
(γn ·

...
q n)2

12
ϵ2

n

(1− γn · q̈n)3 + γn ·
....
q n

24
ϵ2

n

(1− γn · q̈n)2

− (γn ·
...
q n)2

24
ϵ2

n

(1− γn · q̈n)3

)
+O(ϵ4

n)

which for all n ≥ max{k1, k2, k3} is of order superior as ϵ3
n and rewriting our result we have

σn = ϵn√
1− γn · q̈n

·

(
1− γn ·

...
q n

6
ϵn

(1− γn · q̈n)3/2 + q̈2
n

24
ϵ2

n

(1− γn · q̈n)2

)
+Σn.

The computations for δn are identical, the final result is then

δn = ϵn√
1− γn · q̈n

·

(
1 + γn ·

...
q n

6
ϵn

(1− γn · q̈n)3/2 + q̈2
n

24
ϵ2

n

(1− γn · q̈n)2

)
+∆n,

where the remainder ∆n is defined in the same way as Σn.

Remark. We emphasize here the need of the first five derivatives of q. Now we are less restrictive
and do not need to impose q ∈ C∞ as we demand that q ∈ C5 in a compact ball of radius r centered
at q(τ∗).

Corollary 4.11. As a consequence of the last result, we obtain

lim
n→∞

(
1

σn
− 1

δn

)
= 0

Proof. We use a subtle change of notation and rewrite

σn = ϵn√
1− γn · q̈n

·

(
1− γn ·

...
q n

6
ϵn

(1− γn · q̈n)3/2 + q̈2
n

24
ϵ2

n

(1− γn · q̈n)2 + Σn

)

and

δn = ϵn√
1− γn · q̈n

·

(
1 + γn ·

...
q n

6
ϵn

(1− γn · q̈n)3/2 + q̈2
n

24
ϵ2

n

(1− γn · q̈n)2 + ∆n

)
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where now Σn and ∆n are of an order greater than ϵ2
n. We compute then

1
σn
− 1

δn
=
√

1− γn · q̈n

ϵn

(
1

1− γn· ...
q n

6
ϵn

(1−γn·q̈n)3/2 + q̈2
n

24
ϵ2

n

(1−γn·q̈n)2 + Σn

−

1
1 + γn· ...

q n

6
ϵn

(1−γn·q̈n)3/2 + q̈2
n

24
ϵ2

n

(1−γn·q̈n)2 + ∆n

)

=
√

1− γn · q̈n

ϵn

( γn· ...
q n

3
ϵn

(1−γn·q̈n)3/2 + ∆n − Σn

1 + q̈2
n

12
ϵ2

n

(1−γn·q̈n)2 + Rn

)

⇒ 1
σn
− 1

δn
=

√
1− γn · q̈n

1 + q̈2
n

12
ϵ2

n

(1−γn·q̈n)2 + Rn

(
γn ·

...
q n

3(1− γn · q̈n)3/2 + ∆n − Σn

ϵn

)
,

where in the last expression Rn is a remainder of order greater that ϵ2
n and ∆n−Σn

ϵn
is a remainder

of order greater than ϵn. By choosing n big enough, we can make the following estimation∣∣∣∣∣∣
√

1− γn · q̈n

1 + q̈2
n

12
ϵ2

n

(1−γn·q̈n)2 + Rn

∣∣∣∣∣∣ ≤ 2
√

2

and therefore ∣∣∣∣ 1
σn
− 1

δn

∣∣∣∣ ≤ 2
√

2
(

23/2

3 |γn ·
...
q n|+

∣∣∣∣∆n − Σn

ϵn

∣∣∣∣
)

.

This expression can also be bounded from above. To see this we notice first that∣∣∣∣∆n − Σn

ϵn

∣∣∣∣ ≤ ϵn

and
|γn ·

...
q n| = |γ0

n
...
q 0

n −−→γ n ·
...−→q n|

≤ |γ0
n

...
q 0

n|+ ∥−→γ n ·
...−→q n∥R3 ≤ ∥ ...

q ∥max(|γ0
n|+ ∥−→γ n∥R3) ≤ 2∥ ...

q ∥max∥γn∥R4 , (4.27)

where ∥ ...
q ∥max denotes the maximum norm of ...

q taken in from the map of the interval [T −, T +]
as given in equation (4.20). Taking this into account we get∣∣∣∣ 1

σn
− 1

δn

∣∣∣∣ ≤ 2
√

2
(

25/2

3 ∥
...
q ∥max∥γn∥R4 + ϵn

)
≤ 2
√

2
(

25/2

3 ∥
...
q ∥max + 1

)
C1∥xn − q(τ∗)∥R4 .

The last expression tends to zero in the limit n→∞.

Before presenting the main result of this section, we derive a somewhat surprising finding that
reveals a fundamental characteristic of the radiation field: the necessity of considering the Coulomb
fields when discussing radiation.

Corollary 4.12. In contrast to our previous result, i.e. the convergence of 1
σn
− 1

δn
, the expression

1
σ3

n

− 1
δ3

n

(4.28)

is divergent if γn ·
...
q n ̸= 0.

Proof. In order to show this important fact, we take our expansions of σn and δn and compute

σ3
n = ϵ3

n

(1− γn · q̈n)3/2

(
1− γn ·

...
q n

2
ϵn

(1− γn · q̈n)3/2 + q̈2
n

8
ϵ2

n

(1− γn · q̈n)2 + Σn

)
and

δ3
n = ϵ3

n

(1− γn · q̈n)3/2

(
1 + γn ·

...
q n

2
ϵn

(1− γn · q̈n)3/2 + q̈2
n

8
ϵ2

n

(1− γn · q̈n)2 + ∆n

)
,
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where Σn and ∆n are again remainder of order grater than ϵ3
n. Now we can compute

1
σ3

n

− 1
δ3

n

= (1− γn · q̈n)3/2

ϵ3
n

(
1

1− γn· ...
q n

2
ϵn

(1−γn·q̈n)3/2 + q̈2
n

8
ϵ2

n

(1−γn·q̈n)2 + Σn

−

1
1 + γn· ...

q n

2
ϵn

(1−γn·q̈n)3/2 + q̈2
n

8
ϵ2

n

(1−γn·q̈n)2 + ∆n

)
.

After simplifying the last expression we obtain

1
σ3

n

− 1
δ3

n

= (1− γn · q̈n)3/2

ϵ3
n(1 + q̈2

n

4
ϵ2

n

(1−γn·q̈n)2 + Rn)

(
γn ·

...
q n

(1− γn · q̈n)3/2 ϵn + ∆n − Σn

)
.

Here we see the appearance of the term
γn ·

...
q n

ϵ2
n

,

which can not be controlled by any result obtained since the components of γn are of order ϵn.

4.2.1 Proof of Theorem 4.2
We are now ready to present our main result:

Proof. Outside the world-line, F µν
Rad is well-defined, continuous and even differentiable. This comes

from the fact that the Lienard-Wiechert fields are differentiable outside the world-line. We just
have to take care about the limit of q(R).

Let (xn)n∈N be a sequence of points outside the world-line and let this sequence converge to the
four-position q(τ∗) with τ∗ ∈ R. Furthermore, we choose to represent the points xn as in Lemma
4.3, such that all our previous results hold and before giving the retarded and advanced fields, we
calculate the inverse of some powers of σn and δn. Using again a Taylor expansion, we obtain the
following results

1.
1

σn
=
√

1− q̈n · γn

ϵn

(
1 +

...
q n · γn

6 ϵn −
q̈2

n

24ϵ2
n + Σn

)
2.

1
σ2

n

= 1− q̈n · γn

ϵ2
n

(
1 +

...
q n · γn

3 ϵn −
q̈2

n

12ϵ2
n + Σn

)
3.

1
σ3

n

= (1− q̈n · γn)3/2

ϵ3
n

(
1 +

...
q n · γn

2 ϵn −
q̈2

n

8 ϵ2
n + Σn

)
4.

1
δn

=
√

1− q̈n · γn

ϵn

(
1−

...
q n · γn

6 ϵn −
q̈2

n

24ϵ2
n + ∆n

)
5.

1
δ2

n

= 1− q̈n · γn

ϵ2
n

(
1−

...
q n · γn

3 ϵn −
q̈2

n

12ϵ2
n + ∆n

)
6.

1
δ3

n

= (1− q̈n · γn)3/2

ϵ3
n

(
1−

...
q n · γn

2 ϵn −
q̈2

n

8 ϵ2
n + ∆n

)
The reader should be aware of the abuse of notation made here. All remainder are called the same
but in fact they are very different. We chose not to distinguish between them since all are going
to be later packed in a new remainder. Inserting these results in the formula of the retarded field
tensor, namely

F µν−
n = e

(1− q̈n · γn)2

(
q̇ν

nγµ
n

σ3
n

+ q̈ν
nq̇µ

n

2σn
−

...
q ν

nγµ
n

2σn
−

...
q λ

nγnλ

2
q̇ν

nγµ
n

σ2
n

− 2
3

...
q ν

nq̇µ
n −

(
µ↔ ν

)
+O(σn)

)
,
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we obtain

F µν−
n = e

(1− q̈n · γn)2

(
q̇ν

nγµ
n

(1− q̈n · γn)3/2

ϵ3
n

+ q̇ν
nγµ

n

(1− q̈n · γn)3/2

ϵ2
n

...
q n · γn

2 −

q̇ν
nγµ

n

(1− q̈n · γn)3/2

ϵn

q̈2
n

8 + (q̈ν
nq̇µ

n −
...
q ν

nγµ
n)

2 · 1
σn
− q̇ν

nγµ
n

γn ·
...
q n

2
1− q̈n · γn

ϵ2
n

−

q̇ν
nγµ

n

(γn ·
...
q n)2

6
1− q̈n · γn

ϵn
+ q̇ν

nγµ
n

γn ·
...
q n

2 (1− q̈n · γn) q̈2
n

12 −
2
3

...
q ν

nq̇µ
n −

(
µ↔ ν

)
+Rµν

n

)
.

Here the remainder comes from various terms of order ϵn or higher, such that we can estimate
it from above and write Rµν

n ≤ C2ϵn. The same can be done for the advanced field. Its Taylor-
expansion is given by

F µν+
n = e

(1− q̈n · γn)2

(
q̇ν

nγµ
n

δ3
n

+ q̈ν
nq̇µ

n

2δn
−

...
q ν

nγµ
n

2δn
+ ( ...

q n · γn)
2

q̇ν
nγµ

n

δ2
n

+ 2
3

...
q ν

nq̇µ
n −

(
µ↔ ν

)
+O(δn)

)
,

and therefore we get in this case

F µν+
n = e

(1− q̈n · γn)2

(
q̇ν

nγµ
n

(1− q̈n · γn)3/2

ϵ3
n

− q̇ν
nγµ

n

(1− q̈n · γn)3/2

ϵ2
n

...
q n · γn

2 −

q̇ν
nγµ

n

(1− q̈n · γn)3/2

ϵn

q̈2
n

8 + (q̈ν
nq̇µ

n −
...
q ν

nγµ
n)

2 · 1
δn

+ q̇ν
nγµ

n

γn ·
...
q n

2
1− q̈n · γn

ϵ2
n

−

q̇ν
nγµ

n

(γn ·
...
q n)2

6
1− q̈n · γn

ϵn
− q̇ν

nγµ
n

γn ·
...
q n

2 (1− q̈n · γn) q̈2
n

12 + 2
3

...
q ν

nq̇µ
n −

(
µ↔ ν

)
+R

′µν
n

)
,

where in this case R
′µν
n ≤ C3ϵn. Now we subtract both expressions and obtain

F µν−
n − F µν+

n = e

(1− q̈n · γn)2

(
q̇ν

nγµ
n

(1− q̈n · γn)3/2

ϵ2
n

( ...
q n · γn) + (q̈ν

nq̇µ
n −

...
q ν

nγµ
n)

2

(
1

σn
− 1

δn

)
−

q̇ν
nγµ

n(γn ·
...
q n)1− q̈n · γn

ϵ2
n

+ q̇ν
nγµ

n(γn ·
...
q n)(1− q̈n · γn) q̈2

n

12−

4
3

...
q ν

nq̇µ
n −

(
µ↔ ν

)
+Rµν

n −R
′µν
n

)
.

We can simplify this expression and rewrite it as

F µν−
n − F µν+

n = e

(1− q̈n · γn)2

(
q̇ν

nγµ
n

(1− q̈n · γn)( ...
q n · γn)

ϵ2
n

(√
1− q̈n · γn − 1

)
− 4

3
...
q ν

nq̇µ
n −

(
µ↔ ν

)
+Rµν

n

)
,

(4.29)

where we have set

Rµν
n := (q̈ν

nq̇µ
n −

...
q ν

nγµ
n)

2

(
1

σn
− 1

δn

)
+ q̇ν

nγµ
n(γn ·

...
q n)(1− q̈n · γn) q̈2

n

12 + Rµν
n −R

′µν
n .

Notice that, thanks to the corollary 4.11, Rµν
n is a well defined remainder since every single term

tends to zero in the limit n→∞. In order to get an upper boundary of the remainder, we follow
the same path as at the beginning of this section (see section 4.2), we choose a ball of radius r
centered at q(τ∗), defining then the interval [T −, T +] (or [τ(T −), τ(T +)]) over which we can take the
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supremum of q and its derivatives. The estimate is given by the following long inequality

|Rµν
n | ≤

1
2(|q̈ν

n||q̇µ
n|+ |

...
q ν

n||γµ
n |)
∣∣∣∣ 1
σn
− 1

δn

∣∣∣∣+ |q̇ν
n||γµ

n ||γn ·
...
q n||1− q̈n · γn|

|q̈2
n|

12 + |Rµν
n |+ |R

′µν
n |

≤1
2

(
sup

τ∈[τ(T −),τ(T +)]
|q̈ν

(τ)| sup
τ∈[τ(T −),τ(T +)]

|q̇µ
(τ)|+ sup

τ∈[τ(T −),τ(T +)]
| ...q ν

(τ)|
√

2√
1− v2

max

ϵn

)
2
√

2C1×(
1 + 25/2

3 sup
τ∈[τ(T −),τ(T +)]

∥ ...
q (τ)∥max

)
∥xn − q(τ∗)∥R4+

sup
τ∈[τ(T −),τ(T +)]

|q̇ν
(τ)|

√
2√

1− v2
max

ϵn · 2 sup
τ∈[τ(T −),τ(T +)]

∥ ...
q (τ)∥max∥γn∥R4×(

1 + 2 sup
τ∈[τ(T −),τ(T +)]

∥q̈(τ)∥max∥γn∥R4

)
supτ∈[τ(T −),τ(T +)] |q̈2

(τ)|
12 + C2ϵn + C3ϵn,

where we have use in various instances the inequalities derived in this section (equations (4.19),
(4.22) and (4.27)). If we use the fact that ϵn ≤ C1∥xn − q(τ∗)∥R4 and choose n big enough such
that ϵn ≤ 1, then we can group all the terms in the last inequality as a single constant times the
euclidean distance, i.e

|Rµν
n | ≤ Cµν∥xn − q(τ∗)∥R4 ,

where the coefficients Cµν are independent of n. Taking the maximum over (µ, ν) ∈ {0, ..., 3}2, we
can also define a global constant

C := max
(µ,ν)∈{0,...,3}2

Cµν

and state
|Rµν

n | ≤ C∥xn − q(τ∗)∥R4 .

The only question that remains open is what happens with the fist term in equation (4.29) since
it goes as 1/ϵ2

n. We notice, that choosing n big enough, we can expand the square root and obtain√
1− q̈n · γn − 1 = −1

2 q̈n · γn +O((q̈n · γn)2).

This allows us to show that the fist term in our expression is in fact convergent (recall equation
(4.22)) and we get∣∣∣∣q̇ν

nγµ
n

(1− q̈n · γn)( ...
q n · γn)

ϵ2
n

(√
1− q̈n · γn − 1

) ∣∣∣∣
≤ (2)5/2

(1− v2
max)3/2 sup

τ∈[τ(T −),τ(T +)]
∥q̇(τ)∥max sup

τ∈[τ(T −),τ(T +)]
∥q̈(τ)∥max×

sup
τ∈[τ(T −),τ(T +)]

∥ ...
q (τ)∥max

(
1 + 2 sup

τ∈[τ(T −),τ(T +)]
∥q̈(τ)∥max

√
2√

1− v2
max

ϵn

)
ϵn

≤ C̃∥xn − q(τ∗)∥R4 .

With this last inequality, we have shown that it is in fact possible to control every term in the
expansion of the radiation field. This allows us to compute the desired result∣∣∣∣F µν

Rad(q(τ∗)) − F µν
Rad(xn)

∣∣∣∣=
∣∣∣∣∣4e

3

( ...
q µ

(τ)q̇
ν
(τ) −

...
q ν

(τ)q̇
µ
(τ)

)
−

e

(1− q̈n · γn)2

(
q̇ν

nγµ
n

(1− q̈n · γn)( ...
q n · γn)

ϵ2
n

(√
1− q̈n · γn − 1

)
− 4

3
...
q ν

nq̇µ
n −

(
µ↔ ν

)
+Rµν

n

)∣∣∣∣∣
≤4e

3

∣∣∣∣( ...
q µ

(τ)q̇
ν
(τ) −

...
q ν

(τ)q̇
µ
(τ)

)
− 1

(1− q̈(τn) · γ(τn))2

( ...
q µ

(τn)q̇
ν
(τn) −

...
q ν

(τn)q̇
µ
(τn)

)∣∣∣∣+ C̃ϵn + |Rµν
n |

≤4e

3

∣∣∣∣( ...
q µ

(τ)q̇
ν
(τ) −

...
q ν

(τ)q̇
µ
(τ)

)
− 1

(1− q̈(τn) · γ(τn))2

( ...
q µ

(τn)q̇
ν
(τn) −

...
q ν

(τn)q̇
µ
(τn)

)∣∣∣∣+
(C̃ + C)∥xn − q(τ∗)∥R4

n→∞−−−−→ 0

where in the last step we used the explicit estimation of the remainder.
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Chapter 5

Conclusions

We have taken an initial step in the careful treatment of radiation reaction, where we proved that
F

µν

Rad, as given in Definition 4.1, is the continuous extension of the radiation field and supplied an
upper bound of the error term (4.5).

The next step is to study the system of equations

mq̈µ
(τ) = q̇ν

(τ)F
µ
(q(τ))ν , (5.1)

□Aµ
(x) = 0, (5.2)

F µν
(x) = ∂µAν

(x) − ∂νAµ
(x), (5.3)

for an initial value F µν
(x0) = F

µν

Rad(x0). The understanding of F
µν

Rad(x) is a prerequisite if one wishes
to study in detail the equations above. A solution of this system will also be a solution of Dirac’s
original formula (G.1) but the approach proposed here needs as initial values q(τ0), q̇(τ0) and Aµ

(x0)
instead of q(τ0), q̇(τ0) and q̈(τ0) as Dirac needed. In this sense, the research in this topic may provide
new light about the dynamics with radiation reaction.
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Appendix A

Computations for the Radiation
Fields at Constant Velocity

A.1 Proof that the Two ”Big Terms” are Equal
We begin by calculating the following subtraction(√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2)) + vα− v2
√

1− v2(β2 + γ2)
)3
−(√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))− vα− v2
√

1− v2(β2 + γ2)
)3 (A.1)

=2α3v3 + 3α2v2
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))−

3α2v2
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))− 6αβ2v7 − 12αβ2v5−
12αβ2v3 − 6αγ2v7 − 12αγ2v5 − 12αγ2v3 + 6αv5−

6αv3
√

1− v2(β2 + γ2)
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))−

6αv3
√

1− v2(β2 + γ2)
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2)) + 18αv3−

2αv
√

1− v2(β2 + γ2)
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))−

2αv
√

1− v2(β2 + γ2)
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2)) + 6αv−

3β2v6
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))+

3β2v6
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))−

2β2v2
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))+

2β2v2
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))−

3γ2v6
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))+

3γ2v6
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))−

2γ2v2
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))+

2γ2v2
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))+

3v4
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))−

3v4
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))+
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+ v2
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))−

v2
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))+√
1− 2vα

√
1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))−√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))

Now we rename the big square roots

D :=
√

1− 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))

J :=
√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))
(A.2)

and get the following equation(
D + vα− v2

√
1− v2(β2 + γ2)

)3
−
(

J − vα− v2
√

1− v2(β2 + γ2)
)3

= 2α3v3 + 3α2v2(D − J)− 6αβ2v7 − 12αβ2v5 − 12αβ2v3 − 6αγ2v7

− 12αγ2v5 − 12αγ2v3 + 6αv5 − 6αv3
√

1− v2(β2 + γ2)(D + J)
− 2αv

√
1− v2(β2 + γ2)(D + J) + 18αv3 + 6αv − 3β2v6(D − J)

− 2β2v2(D − J)− 3γ2v6(D − J)− 2γ2v2(D − J) + 3v4(D − J)
+ v2(D − J) + (D − J).

(A.3)

In order to simplify this expression, we need to compute D ± J and a trick may help us here

(D ± J)2 = 1− 2αv
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))

±2
√

(1 − 2vα
√

1 − v2(β2 + γ2) + v2(1 − 2(β2 + γ2)))(1 + 2vα
√

1 − v2(β2 + γ2) + v2(1 − 2(β2 + γ2)))

+1 + 2αv
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))

= 2 + 2v2(1− 2(β2 + γ2))

±2
√

1 + 2v2 − 4(α2 + β2 + γ2)v2 + v4 + 4v4(β2 + γ2)(α2 − 1) + 4v4(β2 + γ2)2

= 2 + 2v2 − 4v2(β2 + γ2)± 2
√

1− 2v2 + v4

= 2 + 2v2 − 4v2(β2 + γ2)± 2(1− v2),

where for this calculation we have use the fact that α2 + β2 + γ2 = 1. Simplifying yields

(D + J)2 = 4(1− v2(β2 + γ2))⇒ D + J = 2
√

1− v2(β2 + γ2) (A.4)

with + as the only possible solution since the sum of two square roots is always positive. We also
get

(D − J)2 = 4v2(1− β2 + γ2) = 4α2v2 ⇒ D − J = ±2αv (A.5)

To decide which sign is the right one, we look at the definitions of D and J and notice that J > D
so that we can state that the minus sign is to be chosen. Putting everything together we obtain(

D + vα− v2
√

1− v2(β2 + γ2)
)3
−
(

J − vα− v2
√

1− v2(β2 + γ2)
)3

=2α3v3 − 6α3v3 − 6αβ2v7 − 12αβ2v5 − 12αβ2v3 − 6αγ2v7

− 12αγ2v5 − 12αγ2v3 + 6αv5 − 12αv3 + 12αβ2v5 + 12αγ2v5

− 4αv + 4αβ2v3 + 4αγ2v3 + 18αv3 + 6αv + 6αβ2v7 + 4αβ2v3

+ 6αγ2v7 + 4αγ2v3 − 6αv5 − 2αv3 − 2αv = 0

(A.6)

We summarize this appendix as
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Main Result A.1: The Two ”Big Terms” are Equal

(√
1− 2vα

√
1− v2(β2 + γ2) + v2(1− 2(β2 + γ2)) + vα− v2

√
1− v2(β2 + γ2)

)3

−
(√

1 + 2vα
√

1− v2(β2 + γ2) + v2(1− 2(β2 + γ2))− vα− v2
√

1− v2(β2 + γ2)
)3

= 0
(A.7)
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Appendix B

Proofs for the General Taylor
Expansion

B.1 Missing computation of the expansion of Cϵ

To show that the error Rϵ is small we begin with equation (3.18) and use the fact that

Cϵ = C0 + ϵC1 + Rϵ,

where C0 is given as

C0 = v|| +
√

1− v2
⊥

1− v2 (B.1)

and C1 is
C1 = −C2

0
2

−→v · −→a C0 + a||

(1− v2)C0 − v||
(B.2)

Now we insert Cϵ in the expression (3.18) and obtain

(1− v2)C2
ϵ − 2v||Cϵ − 1 + ϵ

(
a||C

2
ϵ +−→v · −→a C3

ϵ −
ϵ

4
−→a 2C4

ϵ

)
= (1− v2)(C0 + ϵC1 + Rϵ)2 − 2v||(C0 + ϵC1 + Rϵ)− 1

+ ϵ
(

a||(C0 + ϵC1 + Rϵ)2 +−→v · −→a (C0 + ϵC1 + Rϵ)3 − ϵ

4
−→a 2(C0 + ϵC1 + Rϵ)4

)
=
[
(1− v2)C2

0 − 2v||C0 − 1
]

+ (1− v2)(2C0(ϵC1 + Rϵ) + (ϵC1 + Rϵ)2)− 2v||(ϵC1 + Rϵ)

+ ϵ

(
a||(C2

0 + 2C0(ϵC1 + Rϵ) + (ϵC1 + Rϵ)2)

+−→v · −→a (C3
0 + 3C2

0 (ϵC1 + Rϵ) + 3C0(ϵC1 + Rϵ)2 + (ϵC1 + Rϵ)3)

− ϵ

4a2(C4
0 + 4C3

0 (ϵC1 + Rϵ) + 6C2
0 (ϵC1 + Rϵ)2 + 4C0(ϵC1 + Rϵ)3 + (ϵC1 + Rϵ)4)

)
.

(B.3)

The first term in square brackets of the last equation becomes zero when we insert equation (B.1).
If we rearrange further we get

= ϵ
[
2(1− v2)C0C1 − 2v||C1 + a||C

2
0 +−→v · −→a C3

0
]

+ 2(1− v2)C0Rϵ + (1− v2)(ϵC1 + Rϵ)2

+ ϵ

(
a||(2C0(ϵC1 + Rϵ) + (ϵC1 + Rϵ)2) +−→v · −→a (3C2

0 (ϵC1 + Rϵ) + 3C0(ϵC1 + Rϵ)2 + (ϵC1 + Rϵ)3)

− ϵ

4a2(C4
0 + 4C3

0 (ϵC1 + Rϵ) + 6C2
0 (ϵC1 + Rϵ)2 + 4C0(ϵC1 + Rϵ)3 + (ϵC1 + Rϵ)4)

)
.

(B.4)

Here we see again that the first term in square brackets is zero if we insert equation (B.2). At the
end we obtain the desired result.
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Appendix C

Useful Identities of the
Coefficients Ci and Bi

In this appendix we list a number of useful relations between the coefficients C0, B0, C1, B1, C2
and B2. These equations are widely used when studying the fields of a particle moving with a
given trajectory. The coefficients are

C0 = v∥ +
√

1− v2
⊥

1− v2 , B0 = −v∥ +
√

1− v2
⊥

1− v2 ,

C1 = −C2
0

2

−→v · −→a C0 + a∥√
1− v2

⊥

, B1 = B2
0

2

−→v · −→a B0 − a∥√
1− v2

⊥

,

C2 =
a2

4 C4
0 − 3−→v · −→a C2

0 C1 − 2a∥C0C1 − (1− v2)C2
1

2
√

1− v2
⊥

,

B2 =
a2

4 B4
0 + 3−→v · −→a B2

0B1 − 2a∥B0B1 − (1− v2)B2
1

2
√

1− v2
⊥

.

Therefore we obtain

1.
C0 + B0 = 2

√
1− v2

⊥

1− v2

2.
C0 −B0 = 2v∥

1− v2

3.
C2

0 + B2
0 =

2
(
1 + v2

∥ − v2
⊥

)
(1− v2)2

4.
C2

0 −B2
0 = 4v∥

√
1− v2

⊥

(1− v2)2

5.

C3
0 + B3

0 =
2
(
1− v2

⊥

)3/2 + 6v2
∥

√
1− v2

⊥

(1− v2)3

6.
C3

0 −B3
0 =

2v3
∥ + 6v∥(1− v2

⊥)
(1− v2)3

7.
C4

0 + B4
0 =

2v4
∥ + 12v2

∥ (1− v2
⊥) + 2(1− v2

⊥)2

(1− v2)4
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8.
C4

0 −B4
0 =

8v3
∥ (1− v2

⊥)1/2 + 8v∥(1− v2
⊥)3/2

(1− v2)4

9.
C1 + B1 =

−→v · −→a (B3
0 − C3

0 )− a∥(C2
0 + B2

0)
2
√

1− v2
⊥

10.
C1 −B1 = −

−→v · −→a (B3
0 + C3

0 ) + a∥(B2
0 − C2

0 )
2
√

1− v2
⊥

11.

C2−B2 =
a2

4 (C4
0 −B4

0)− 3−→v · −→a (C2
0 C1 + B2

0B1) + 2a∥(B0B1 − C0C1) + (1− v2)(B2
1 − C2

1 )
2
√

1− v2
⊥
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Appendix D

About the Differentiability of the
Retarded/Advanced Times

The goal of this appendix is to study the behavior of the remainder term in equation (2.15).Using
the error term formula given by Lagrange we can write for a λ in x and x + ϵ

R = 1
2

[(
t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)2
 ∂2

∂s2

∥∥∥∥∥∥
x

y
z

−−→q (s)

∥∥∥∥∥∥
R3

∣∣∣∣∣
s=λ

+(x + ϵ− x)
(

t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

) ∂2

∂s∂s′

∥∥∥∥∥∥
s′

y
z

−−→q (s)

∥∥∥∥∥∥
R3

∣∣∣∣∣
(t±,s′)=(λ,λ′)

(D.1)

+(x + ϵ− x)2

 ∂2

∂s′2

∥∥∥∥∥∥
s′

y
z

−−→q (t±
(x))

∥∥∥∥∥∥
R3

∣∣∣∣∣
s′=λ′

]
.

The partial derivatives can be computed explicitly, so we obtain

C1
ϵ := ∂2

∂s2

∥∥∥∥∥∥
x

y
z

−−→q (s)

∥∥∥∥∥∥
R3

= −−→a (s) · −→n (s,−→x ) +
−→v 2

(s) − (−→v (s) · −→n (s,−→x ))2

∥−→x −−→q (s)∥R3
,

C2
ϵ := ∂2

∂s∂s′

∥∥∥∥∥∥
s′

y
z

−−→q (s)

∥∥∥∥∥∥
R3

=
−v1

(s) + (−→v (s) · −→n (s,−→x ))n1
(s,−→x )

∥−→x −−→q (s)∥R3

and

C3
ϵ := ∂2

∂s′2

∥∥∥∥∥∥
s′

y
z

−−→q (t±
(x))

∥∥∥∥∥∥
R3

=
1− (n1

(s,−→x ))
2

∥−→x −−→q (s)∥R3
.

All these three derivatives can be bounded from above, namely

|C1
ϵ | ≤ amax + 2v2

max

min
s∈
(

t±
(t,−→x ),t±

(t+ϵ,−→x )

) ∥−→x −−→q (s)∥R3
,

|C2
ϵ | ≤

2vmax

min
s∈
(

t±
(t,−→x ),t±

(t+ϵ,−→x )

) ∥−→x −−→q (s)∥R3

and
|C3

ϵ | ≤
2

min
s∈
(

t±
(t,−→x ),t±

(t+ϵ,−→x )

) ∥−→x −−→q (s)∥R3
.

We rewrite now the remainder as

R = 1
2

[(
t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)2
C1

ϵ + ϵ
(

t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)
C2

ϵ + ϵ2C3
ϵ

]
.
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Now we can divide this expression by ϵ and use the equation (2.15) to solve for R/ϵ. We get

R

ϵ
= 1

2

[(
t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)
C1

ϵ

(
t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)
ϵ

+
(

t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)
C2

ϵ + ϵC3
ϵ

]
.

Therefore we are able to state

R

ϵ

2∓
C1

ϵ

(
t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)
1±−→v (t±

(t,−→x )) ·
−→n (t±

(t,−→x ),−→x )

 =

±n1
(t±

(t,−→x ),−→x )

(
t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)
C1

ϵ

1±−→v (t±
(t,−→x )) ·

−→n (t±
(t,−→x ),−→x )

+
(

t±
(t,x+ϵ,y,z) − t±

(t,x,y,z)

)
C2

ϵ + ϵC3
ϵ .

Taking the limit in both sides of the equation yields

lim
ϵ→0

2R

ϵ
= 0. (D.2)
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Appendix E

Deriving the Formulas of the Field
Tensor

In this Appendix we want to derive the formulas (4.1) and (4.2). First, we show that it is possible
to rewrite the four-potential in a very useful form and for this purpose, we recall the explicit
computation made in the example of the first chapter, see example 1.1. We derived there the
following formulas for the four-potentials of a point particle

Aµ−
(t,−→x ) = µ0e

4π

1
∥−→x −−→q −∥R3

(
1− −→v −·−→n −

c

) ( c
−→v −

)
, (E.1)

and

Aµ+
(t,−→x ) = µ0e

4π

1
∥−→x −−→q +∥R3

(
1 + −→v +·−→n +

c

) ( c
−→v +

)
. (E.2)

Given a point particle and a point outside the world-line x ̸= q(R), it is possible to formulate
the four-vector potentials as

Aµ−
(x) = 2e

∫ λ

−∞
q̇µ

(τ)δ
(
(x− q(τ))2) dτ for every λ ∈ (τ−, τ+) (E.3)

and
Aµ+

(x) = 2e

∫ ∞

λ

q̇µ
(τ)δ

(
(x− q(τ))2) dτ for every λ ∈ (τ−, τ+). (E.4)

We can prove that the last equations are actually true if we compute them explicitly and show
that they are equal to the four-potentials derived in the example 1.1. We first notice that the
Dirac’s delta function in the integral has two zeros, namely where

|t− t̃(τ)| = ±∥−→x −−→q (t̃(τ))∥R3

holds. But as we are not integrating over the whole real numbers, we artificially exclude one of
the zeros of the delta function in each case. So for example, for the first integral we have

Aµ−
(x) = 2e

∫ λ

−∞
q̇µ

(τ)δ
(
(x− q(τ))2) dτ

= e

∫ λ

−∞
q̇µ

(τ)
δ(τ − τ−)

q̇(τ−) · (x− q(τ−))
dτ =

eq̇µ
(τ−)

q̇(τ−) · (x− q(τ−))
,

where the existence of the zero τ− is given thanks to the Lemma 2.9 and the bijectivity of t̃(τ). The
last equation is the exact same result as the potential calculated in the example of the first chapter
upon the constants that determine the units. The computation of the advanced four-potential is
exactly the same but with an extra minus sign, because

q̇(τ+) · (x− q(τ+)) = q̇0
(τ+)

(
t− t+

(x)

)
− −̇→q (τ+) ·

(−→x −−→q (τ+)
)

= q̇0
(τ+)

[
(t− t+

(x))−
−→v (t+

(x)) ·
(−→x −−→q (t+

(x))

)]
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= −q̇0
(τ+)

∥∥∥−→x −−→q (t+
(x))

∥∥∥
R3

[
1 +−→v (t+

(x)) ·
−→n (t+

(x),−→x )

]
,

which is negative, meaning that the following equality holds in our domain of integration

δ
(
(x− q(τ))2) = δ(τ − τ+)

2|q̇(τ+) · (x− q(τ+))|
= −δ(τ − τ+)

2q̇(τ+) · (x− q(τ+))
. (E.5)

These equations allow us to get the useful formulas for the field tensors and in order to provide
them, we follow the same path as in [Jac14, p. 765] and compute the partial derivatives of the
four-potential written as integrals over the parameter τ . For the retarded four-potential we get

∂µAν−
(x) = 2e

∫ λ

−∞
q̇ν

(τ)∂
µδ
(
(x− q(τ))2) dτ

= 2e

∫ λ

−∞
q̇ν

(τ)η
µβ∂βδ

(
(xω − qω

(τ))(xω − qω(τ))
)

dτ.

Using the chain rule we can rewrite the partial derivative of the Dirac’s delta function as

∂βδ
(

(xω − qω
(τ))(xω − qω(τ))

)
=

xβ − qβ(τ)

q̇(τ) · (x− q(τ))
d

dτ
δ
(
(x− q(τ))2) .

Hence we attain

= 2e

∫ λ

−∞
q̇ν

(τ)η
µβ xβ − qβ(τ)

q̇(τ) · (x− q(τ))
d

dτ
δ
(
(x− q(τ))2) dτ,

where the last equation can be reformulated with partial integration in the form

∂µAν−
(x) = 2e

∫ λ

−∞

d
dτ

[
q̇ν

(τ)
xµ − qµ

(τ)

q̇(τ) · (x− q(τ))

]
δ
(
(x− q(τ))2) dτ,

and therefore

∂µAν−
(x) = e

∫ λ

−∞

d
dτ

[
q̇ν

(τ)
xµ − qν

(τ)

q̇(τ) · (x− q(τ))

]
δ(τ − τ−)

q̇(τ−) · (x− q(τ−))
dτ

= e

q̇(τ−) · (x− q(τ−))

[
d
dτ

q̇ν
(τ)(xµ − qµ

(τ))
q̇(τ) · (x− q(τ))

]∣∣∣∣∣
τ=τ−

.

Finally, using the linearity of the derivative, we get

Result E.1: Retarded Electromagnetic Field Tensor

For a point outside the world-line of a particle, i.e. x /∈ q(R), it is possible to write the
retarded electromagnetic field tensor as

F µν−
(x) = e

q̇(τ−) · (x− q(τ−))

[
d
dτ

q̇ν
(τ)(xµ − qµ

(τ))− q̇µ
(τ)(xν − qν

(τ))
q̇(τ) · (x− q(τ))

]∣∣∣∣∣
τ=τ−

(E.6)

where τ− is the retarded proper parameter at which the time coordinate of the particle
fulfills the equation

t−
(x) = t− ∥−→x −−→q (t−

(x))∥R3 .

The computations for ∂µAν+ are exactly the same, we just have to remember that the limits
of the integral are from λ̃ to ∞ and the minus sign comes from the Dirac’s delta function as in
(E.5). So we obtain
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Result E.2: Advanced Electromagnetic Field Tensor

For a point outside the world-line of a particle, i.e. x /∈ q(R), it is possible to write the
advanced electromagnetic field tensor as

F µν+
(x) = −e

q̇(τ+) · (x− q(τ+))

[
d
dτ

q̇ν
(τ)(xµ − qµ

(τ))− q̇µ
(τ)(xν − qν

(τ))
q̇(τ) · (x− q(τ))

]∣∣∣∣∣
τ=τ+

(E.7)

where τ+ is the advanced proper parameter at which the time coordinate of the particle
fulfills the equation

t+
(x) = t + ∥−→x −−→q (t+

(x))∥R3 .
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Appendix F

Derivation of Larmor’s Formula

A definition of the power given by a radiating source is found in [FR60, p. 9]. Adapted to a modern
type of writing it reads

P(t−) = lim
r→∞

∫
r̂ ·
−→
S (−→r ,t−)r

2dΩ by fixed t−, (F.1)

where dΩ denotes the solid angle differential, the integral is done over the surface of a sphere of
radius r which tends to infinity and −→S denotes the Poynting vector given as

−→
S (t,−→x ) = 1

µ0

−→
E (t,−→x ) ×

−→
B (t,−→x ).

If we insert equation (1.3) in the definition of power, we can perform a dipole expansion on the
current density and obtain the following result in SI units for a point charge

P(t−) = 1
4πϵ0

2e2∥−→a (t−)∥2
R3

3c3 , (F.2)

which is known as the Larmor’s formula. This formula has experimental backup, e.g. in the case
of cyclotron radiation.
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Appendix G

Problems with the
Dirac-Lorentz-Abraham Force

What happens after one shows the correctness of equation (1.10) and how it is derived from
equation (1.8)? Then, it is possible to compute the Lorentz force and introduce it in Newton’s
second law as an extra term to study the movement of the charged particle. In this section we
provide an outlook in Dirac’s equations of motion [Dir38, p. 156], namely

mq̈µ − 2e2

3
...
q µ − 2e2

3 q̈ν q̈ν q̇µ = eq̇νF µν
ext. (G.1)

It is interesting that we gained a new extra term that has the third derivative of the position,
sometimes called the ”jerk”.1 These equations can be solved exactly for some simple scenarios,
creating the following troubles [Dir38, p. 156] :

1. If the external field vanishes, then the solution of these equations is given by

ẋ = sinh(eaτ + b)

and
ṫ = cosh(eaτ + b),

with a = 3m/2e2 and b some constant. As the proper time increases from −∞, the particle’s
velocity approaches the speed of light extremely fast. This is called the ”runaway solutions”,
which appear quite often in the theory.

2. If the interaction is a ”pulse” or in other words, a term of the form δ(t− x), the solution to
these equations of motion for the position is given by

ẋ =


ceaτ ∀τ < 0,

c ∀τ > 0.

In other words, the particle must accelerate prior to the interaction and then attain a state
of constant velocity. This phenomenon is referred to as the ”pre-acceleration problem”,
presenting a challenge to our conventional understanding of causality.

For all these reasons, it is of outmost importance to understand the theory of charged particles and
how they lose energy through radiation. We will not address the problems given by the differential
equation, but rather we focus in the expansion of the radiation field.

1Here we are ignoring two important facts that are not relevant for the present discussion. First, we do not
mention anything about the term F − + F + which was also studied by Dirac and led to the ”mass renormalization”
of the particle. Second, we also ignore a factor of 1/2 that was introduced by Dirac, when splitting the actual field
of the particle.
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Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen 5,
T.2, GDML Books, (1904), p. 145, 1903.

[Max10] James Clerk Maxwell. A Treatise on Electricity and Magnetism. Cambridge Library
Collection - Physical Sciences. Cambridge University Press, 2010.

[Spo04] Herbert Spohn. Dynamics of charged particles and their radiation field. Cambridge
university press, 2004.

[WF45] John Archibald Wheeler and Richard Phillips Feynman. Interaction with the absorber as
the mechanism of radiation. Reviews of modern physics, 17(2-3):157, 1945.

[Zan13] Andrew Zangwill. Modern electrodynamics. Cambridge University Press, 2013.

63



Declaration

I hereby declare that this thesis is my own work, and that I have not used any sources and aids
other than those stated in the thesis.

München, date of submission

Jose Antonio Lucero Contreras

64


	Radiation in Classical Electrodynamics
	Electrodynamics
	Models of the Radiation Phenomena

	Mathematical Structure of Minkowski Space-Time
	Definition of Minkowski Space-Time
	Physical Objects in Space-Time

	Radiation Fields Under a Simple Expansion
	The Lienard-Wiechert Fields
	Important Remarks

	The Case of Constant Velocity
	Special Relativity
	Explicit Calculation

	General Formulas for the Expansion
	Expansion of the Retarded and Advanced Times
	Convergence of the Normal Vectors

	A Particle Moving with Constant Acceleration
	The Coulomb Radiation Fields
	The Far Radiation Fields


	Dirac's Paper on Radiation Reaction
	Rigorous Proof of Dirac's Formula
	Estimation of the Remainder and Main Theorem
	Proof of Theorem 4.2


	Conclusions
	Computations for the Radiation Fields at Constant Velocity
	Proof that the Two "Big Terms" are Equal

	Proofs for the General Taylor Expansion
	Missing computation of the expansion of Lg 

	Useful Identities of the Coefficients Lg and Lg
	About the Differentiability of the Retarded/Advanced Times
	Deriving the Formulas of the Field Tensor
	Derivation of Larmor's Formula
	Problems with the Dirac-Lorentz-Abraham Force

