
1. Free dynamics on Fock space

We start by introducing the non-interacting dynamics on Fock spaces. Let H be the one particle Hilbert
space and F±(H) the corresponding fermionic/bosonic Fock space. The one-particle dynamics is generated
by a self-adjoint operator H on H, and it can be lifted to a non-interacting dynamics on Fock space generated
by

dΓ(H) �H⊗n= H ⊗ 1 · · · 1 + 1⊗H ⊗ 1 · · · 1 + · · ·+ 1 · · · 1⊗H

which is closeable with a self-adjoint closure. The operator dΓ(H) leaves the symmetric and antisymmetric
subspaces invariant and can therefore be restricted to F±(H). The tensor product structure indicates that
the particles do not interact. Note that with this notation, the number operator is N = dΓ(1). Furthermore,

e−itdΓ(H) = Γ(e−itH)

where

Γ(U) �H⊗n= U ⊗ · · · ⊗ U,

and the Heisenberg dyanmics reads τt(A) = Γ(eitH)AΓ(e−itH). Its action on creation and annihilation
operators is given concretely by

τt(b±(f)) = b±(exp(itH)f), τt(b
∗
±(f)) = b∗±(exp(itH)f),

which is a simple strongly continuous group of Bogoliubov automorphisms. This follows from

τt(b
∗
±(f))Ω = Γ(eitH)(0, f, 0, · · · ) = (0, exp(itH)f, 0, · · · ),

and

‖τt(b−(f))− b−(f)‖ =
∥∥b−((eitH − 1)f

)∥∥ =
∥∥(eitH − 1)f

∥∥ −→ 0, (fermions)∥∥(τt(W+(f))−W+(f)
)
ψ
∥∥ =

∥∥(W+

(
(eitHf

)
−W (f)

)
ψ
∥∥ −→ 0, (bosons)

as t→ 0 by the strong continuity of the one-particle unitary group, and in the bosonic case the fact that the
Fock representation is regular.

2. The ideal Fermi gas

We now consider a gas of non-interacting fermions, first in a finite volume Λ ⊂ Rd, and then in the
thermodynamic limit Λ→ Rd with the density ρΛ → ρ > 0.

Let 0 < β <∞ and µ ∈ R. If

Kµ := dΓ(H − µ1) = dΓ(H)− µN,

is such that exp(−Kµ) is a trace-class operator, then the Gibbs grand canonical equilibrium state is the state
over the CAR algebra A−(H) given by

(2.1) ωβ,µ− (A) =
TrF−(H)(exp(−βKµ)A)

TrF−(H)(exp(−βKµ))

Note the slight notational abuse that A ∈ A−(H) on the l.h.s, while it is it Fock space representation appearing
on the r.h.s. β is the inverse temperature and µ the chemical potential. We denote z := exp(βµ) and call it
the activity. We have

Proposition 2.1. exp(−βH) is trace-class on H iff exp(−βKµ) is trace-class on F−(H) for all µ ∈ R.
1
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Proof. If exp(−βKµ) is trace-class then exp(−βKµ) �H= z exp(−βH) is in particular trace-class. Recipro-
cally, let {En}n∈N be the eigenvalues of H in increasing order. Then

TrF−(H)e
−βKµ =

∑
m≥0

zmTrH(m)
−

e−βH
⊗m

=
∑
m≥0

zm
∑

0≤n1≤...≤nm

e−β
∑m
p=1 Enp =

∏
m≥0

(
1 + ze−βEm

)
≤
∏
m≥0

exp
(
ze−βEm

)
= exp

(
zTr(e−βH)

)
,

concluding the proof. �

Calculations in the grand canonical ensemble are easily carried out using the following pull-through formula:

(2.2) e−βKµb∗−(f) = zb∗−(e−βHf)e−βKµ .

In particular,

Proposition 2.2. Assume that exp(−βH) is trace-class, and let ωβ,µ− denote the grand canonical ensemble
at 0 < β <∞, µ ∈ R. Then

ωβ,µ− (a∗−(f)) = 0 and ωβ,µ− (a∗−(f)a−(g)) =
〈
g, ze−βH(1 + ze−βH)−1f

〉
for any f, g ∈ H.

Proof. By Definition (2.1) and the pull-though formula,

ωβ,µ− (a∗−(f)a−(g)) =
z

TrF−(H)(exp(−βKµ))
TrF−(H)(b

∗
−(e−βHf)e−βKµb−(g)) = zωβ,µ− (a−(g)a∗−(e−βHf))

= −zωβ,µ− (a∗−(e−βHf)a−(g)) + z〈g, e−βHf〉

by the CAR. Hence, ωβ,µ− (a∗−((1 + ze−βH)f)a−(g)) = 〈g, ze−βHf〉. The first statement follows analogously,

with TrF−(H)(b
∗
−(e−βHf)e−βKµ) = 0 since Kµ preserves the particle number. �

With the same strategy, one could prove by induction that the expectation value of a product of n creation

and n annihilation operators can be expressed as a polynomial in the two-point functions ωβ,µ− (a∗−(fi)a−(gj)),
namely

ωβ,µ− (a∗−(fn) · · · a∗−(f1)a−(g1) · · · a−(gn)) = det
[(〈

gi, ze
−βH(1 + ze−βH)−1fj

〉)n
i,j=1

]
and that the expectation value of a product with a different number of creation and annihilation operators

vanish. Hence ωβ,µ− is a gauge-invariant quasi-free state on A−(H).
We also note that the only property we have used is that the map t 7→ τµt (A) = exp(−itKµ)A exp(itKµ)

has an analytic extension to the strip {z ∈ C : 0 ≤ =z < β} which is continuous on its closure and that the

state ωβ,µ− has the property that

ωβ,µ− (a∗−(f)A) = ωβ,µ− (Aτµiβ(a∗−(f)))

which is the so-called KMS condition at inverse temperature β. Note that this condition requires only the
self-adjointness of Kµ, and no trace-class condition. In other words, the Gibbs state is the unique (τµ, β)-KMS
state whenever exp(−βH) is trace-class.

We now concentrate on the special case of H = −∆ defined on H = L2(Rd) with domain D = H2(Rd) ≡
W 2,2(Rd) and action given by

(Hf)(x) =
1

(2π)d/2

∫
Rd
|ξ|2f̂(ξ)eiξxdξ.

This H having purely absolutely continuous spectrum exp(−βH) cannot be trace class, but the equilibrium
state corresponding to the dynamics τt(a(f)) = a(exp(itH)f) can be obtained as a limit of finite volume
Gibbs states. For simplicity, we consider HL = −∆ on L2([−L,L]d) with Dirichlet boundary conditions and
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denote the finite volume dynamics by τLt (a(f)) = a(exp(itHL)f). Note that HL has compact resolvent and
that exp(−βHL) is trace-class.

Theorem 2.3. Let ωβ,µ−,L denote the Gibbs grand canonical ensemble at 0 < β <∞, µ ∈ R associated to HL.

For any A ∈ A−(L2([−L,L]d)),

lim
L→∞

ωβ,µ−,L(A) = ωβ,µ− (A),

where ωβ,µ− is the gauge-invariant quasi-free state over A−(L2(Rd)) with two-point function

ωβ,µ− (a∗−(f)a−(g)) =
1

(2π)d/2

∫
Rd
ĝ(ξ)

ze−β|ξ|
2

1 + ze−β|ξ|2
f̂(ξ)dξ.

Proof. Since x 7→ ze−βx(1 + ze−βx) is bounded function and HL → H in the strong resolvent sense,〈
g, ze−βHL(1 + ze−βHL)−1f

〉
−→

〈
g, ze−βH(1 + ze−βH)−1f

〉
as L → ∞, proving the convergence of ωβ,µ−,L(a∗−(f)a−(g)) to ωβ,µ− (a∗−(f)a−(g)) and thereby the weak-*

convergence of ωβ,µ−,L to ωβ,µ− . �

It is essential to note here that the limit is unique (and the limit is in fact independent on the choice of
self-adjoint realisation of −∆ in finite volumes): the free Fermi gas in the infinite volume limit has a unique
equilibrium state for all 0 < β <∞, µ ∈ R. We also obtain the density of the gas as the limit

ρ(β, µ) = lim
L→∞

(2L)−d
∑
n≥0

ωβ,µ−,L(a∗−(fn)a−(fn)) = (2π)d/2
∫
Rd

ze−β|ξ|
2

1 + ze−β|ξ|2
dξ.

where (fn)n∈N is a basis of L2([−L,L]d). Since ξ is the the quantum mechanical momentum, it is natural to

interpret ze−β|ξ|
2

1+ze−β|ξ|2
as the momentum density distribution. Its zero-temperature limit

lim
β→∞

e−β(|ξ|2−µ)

1 + e−β(|ξ|2−µ)
=

{
1 if |ξ|2 < µ

0 if |ξ|2 > µ

is called the Fermi sea.
Since ωβµ− has a finite density in infinite volume, it cannot be represented on Fock space. It is however

easy to check that the following Araki-Wyss representation is a GNS representation of A−(L2(Rd)) associated

with ωβ,µ− :

Hρ = F−(H)⊗F−(H), Ωρ = Ω⊗ Ω,

πρ(a
∗
−(f)) = b∗−((1− ρ)1/2f)⊗ 1 + (−1)N ⊗ b−(ρ1/2f),

where 0 ≤ ρ = z exp(−β(−∆))(1 + exp(−β(−∆)))−1 ≤ 1 as an operator on H = L2(Rd). This has a natural
interpretation in the case of ρ = ρ2, namely at zero temperature. If f ∈ Kerρ, then πρ(a

∗
−(f)) creates a

particle upon the Fermi sea, while if f ∈ Ranρ, then πρ(a
∗
−(f)) removes one from the Fermi sea — or in other

words creates a hole.

3. The ideal Bose gas

The ideal Bose gas in finite volume is described on the bosonic Fock space F+(H) constructed on a one-
particle Hilbert space H. As in the fermionic case, the dynamics corresponds to a group of Bogoliubov
transformations defined here by

τt(W+(f)) = W+(eitHf)

The Gibbs grand canonical ensemble is again defined in term of the operator Kµ, and it is well-defined
whenever exp(−βKµ) is trace-class. We have:
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Proposition 3.1. Let 0 < β < ∞. Then exp(−βH) is trace-class on H and H − µ > 0 iff exp(−βKµ) is
trace-class on F+(H).

Proof. Let {En}n∈N be the eigenvalues of H in increasing order. Then

(3.1) TrF+(H)e
−βKµ =

∑
m≥0

zmTrH(m)
+

e−βH
⊗m

=
∑
m≥0

zm
∑

n1,...,nm≥0

e−β
∑m
p=1 Enp =

∏
k≥0

∑
n

e−β(Ek−µ)n,

and the series converges for all k since β(H − µ) > 0, so that

TrF+(H)e
−βKµ =

∏
k≥0

(1− ze−βEk)−1 ≤ exp(
∑
k≥0

ze−βEk(1− ze−βEk)−1) ≤ exp(z(1− ze−βE0)−1Tr(e−βH))

where we used that 1 + x ≤ exp(x). Reciprocally, if exp(−βKµ) is trace-class then exp(−βKµ) �H=
exp(−β(H − µ)) is in particular trace-class. But then (3.1) implies that β(Ek − µ) > 0 for all k, concluding
the proof. �

In order to characterise explicitly the state over the CCR algabra

(3.2) ωβ,µ+ (A) =
TrF+(H)(exp(−βKµ)A)

TrF+(H)(exp(−βKµ))
,

it can first be extended to monomials in the unbounded creation and annihilation operators (which are not
in the algebra, but only in the Fock representation).

Lemma 3.2. Let F := (f1, . . . , fn) where fj ∈ H, and let Bβ,µ(F ) := b+(fn) · · · b+(f1) exp(−(β/2)Kµ).
Then Bβ,µ(F ) has a bounded closure and Bβ,µ(F ) ∈ I2(F+(H)).

Proof. The condition H − µ > 0 implies that there is C > 0 such that H − µ · 1 ≥ C · 1 so that Kµ ≥ CN .
Since furthermore

‖b+(fn) · · · b+(f1)Ψ‖ ≤ mn/2‖Ψ‖‖f1‖ · · · ‖fn‖
whenever Ψ ∈ H(m)

+ , we have that

‖Bβ,µ(F )Ψ‖ ≤ mn/2e−(β/2)Cm‖Ψ‖‖f1‖ · · · ‖fn‖,
proving the boundedness of Bβ,µ(F ) on the dense subspace Ffin

+ (H) since m 7→ mn/2e−(β/2)Cm is bounded,

so that Bβ,µ(F ) has a bounded closure.

The creation and annihilation operators being bounded on H(m)
+ , we have

TrH(m)
+

(
Bβ,µ(F )∗Bβ,µ(F )

)
≤ TrH(m)

+
(e−βH

⊗m
)(zmmn)‖f1‖2 · · · ‖fn‖2

which can be summed as in the proof of Proposition 3.1. �

It follows that Tr(Bβ,µ(F )∗Bβ,µ(G)) <∞ and Tr(Bβ,µ(F )Bβ,µ(G)∗) <∞ for any F,G as above, so that
the Gibbs grand canonical state can be extended with the definition

ωβ,µ+ (b∗+(f1) · · · b∗+(fn)b+(gm) · · · b+(g1)) := TrF+(H)(B
β,µ(F )∗Bβ,µ(G)).

This extension is furthermore continuous since∣∣TrF+(H)(B
β,µ(F )∗Bβ,µ(G))

∣∣ ≤ C∏
i

‖fi‖
∏
j

‖gi‖.

Now, the pull-through formula (2.2) remains valid in the bosonic case and yields the following:

Proposition 3.3. Let 0 < β <∞, µ ∈ R. Assume that exp(−βH) is trace-class and that H − µ > 0, and let

ωβ,µ+ denote the Gibbs grand canonical ensemble. Then

ωβ,µ+ (b∗+(f)) = 0 and ωβ,µ+ (b∗+(f)b+(g)) =
〈
g, ze−βH(1− ze−βH)−1f

〉
for any f, g ∈ H.
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Proof. By the definition (2.1), the pull-though formula and its adjoint,

ωβ,µ+ (b∗+(f)b+(g)) =
1

TrF+(H)(exp(−βKµ))
TrF+(H)(b

∗
+(e−β(H−µ)/2f)e−βKµb+(e−β(H−µ)/2g))

= ωβ,µ+ (b+(e−β(H−µ)/2g)b∗+(e−β(H−µ)/2f))

= ωβ,µ+ (b∗+(e−β(H−µ)/2f)b+(e−β(H−µ)/2g)) + 〈g, e−β(H−µ)f〉

by the CCR. This identity can be iterated n times to get

ωβ,µ+ (b∗+(f)b+(g)) = ωβ,µ+ (b∗+(e−nβ(H−µ)/2f)b+(e−nβ(H−µ)/2g)) +

n∑
m=1

〈g, e−mβ(H−µ)f〉

Letting n→∞ with

lim
n→∞

‖e−nβ(H−µ)/2f‖ = 0,

since β(H − µ) > 0, and using the continuity of (f, g) 7→ ωβ,µ+ (b∗+(f)b+(g)), the first term vanishes while
the sum of the geometric series yields the two-point function. The first statement follows as in the fermionic
case. �

Here again, an iteration of the argument would prove that ωβ,µ+ is a bosonic gauge-invariant quasi-free
state, with

(3.3) ωβ,µ+ (W+(f)) = e
− 1

4

〈
f, 1+ze

−βH

1−ze−βH
f
〉
.

Now: the discussion of the thermodynamic limit in the case H − µ > 0 follows closely the fermionic case
with the analogous result of a unique thermal equilibrium state in the infinite volume limit. We consider for
simplicity HL to be the Laplacian with Dirichlet boundary conditions with eigenvalues En(L) = (π2/L2)(n2

1 +

· · ·n2
d) for n ∈ (N)d and a ground state energy E1(L)→ 0 as L→∞. For any µ < 0, namely 0 < z < 1, we

have that HL − µ ≥ −µ > 0 uniformly for all L.

Theorem 3.4. Let 0 < β < ∞, µ < 0 and let ωβ,µ+,L denote the grand canonical ensemble. For any A ∈
A−(L2([−L/2, L/2]d)),

lim
L→∞

ωβ,µ+,L(A) = ωβ,µ+ (A)

where ωβ,µ+ is the gauge-invariant quasi-free state over A+(L2(Rd)) with two-point function

(3.4) ωβ,µ+ (b∗+(f)b+(g)) =
1

(2π)d/2

∫
Rd
ĝ(ξ)

ze−β|ξ|
2

1− ze−β|ξ|2
f̂(ξ)dξ.

Proof. It suffices to prove the convergence of the state on the Weyl operators. For this it suffices to observe
that

0 ≤ 1 + ze−βHL

1− ze−βHL
≤ coth(βµ/2),

which again implies the convergence of the matrix elements of 1+ze−βHL

1−ze−βHL to those of 1+ze−βH

1−ze−βH and thereby the

weak-* convergence of ωβ,µ+ (W+(f)), see (3.3). �

The situation is physically more interesting when the condition H −µ > 0 is violated: this is the phenom-
enon of Bose-Einstein condensation, one of the prime example of a phase transition. As a motivation, let us
consider the density, which is in finite volume

(3.5) ρL(β, z) = L−d
∑
n

ωβ,µ+,L(b∗+(fn)b+(fn)) = L−d
∑
n

ze−βEn(L)

1− ze−βEn(L)
,



6

where we used a basis (fn)n∈Nd of eigenvectors of the Laplacian, corresponding to the eigenvalues En(L).
Note that

lim
µ→0−

ρL(β, z) =∞

at fixed (β, L), as the first term of the series diverges. The map (0, 1) 3 z 7→ ρL(β, z) ∈ (0,∞) being a
bijection, any given density ρ can be obtained at given β, L by adjusting the chemical potential µ.

This is however not true anymore in the thermodynamic limit, where the limit L→∞ is taken first, since
the density given in the above theorem

ρ(β, z) =
1

(2π)d/2

∫
Rd

ze−β|ξ|
2

1− ze−β|ξ|2
dξ,

which is again a monotone increasing unction of z ∈ (0, 1), has a finite limit as z → 1−. If the physical density
is higher that the critical value ρc(β) := ρ(β, 1), the excess particles will all gather in the single ground state
mode n = 1, respectively ξ = 0, yielding an additional δ-contribution to the density: This is the phenomenon
of Bose-Einstein condensation.

Note that the above argument holds only if d ≥ 3. Indeed at z = 1, the integrand is of order |ξ|−2 as
|ξ| → 0, so that the integral is in fact divergent at ξ = 0 in dimensions d = 1, 2. Hence, there is no critical
density and therefore also no Bose-Einstein condensation in low dimensions.

To understand this further, we first note that at fixed activity z < 1, the single mode occupation numbers
are bounded,

ωβ,µ+,L(b∗+(fn)b+(fn)) =
1

z−1eβEn(L) − 1
≤ 1

z−1 − 1

uniformly in L. Let us now consider the particular scaling z = z(L) = 1− 1/(ρ0L
d), with 0 < ρ0 <∞ being

fixed, and we temporarily consider the Laplacian with periodic boundary conditions for simplicity, for which
the ground state energy is exactly E0(L) = 0 for all L ∈ (0,∞). Then

N0,L(β) := ωβ,µ+,L(b∗+(f0)b+(f0)) =
z

1− z
= ρ0L

d + o(Ld),

as L→∞, while if n 6= 0,

Nn,L(β) := ωβ,µ+,L(b∗+(fn)b+(fn)) =
1

z−1eβEn(L) − 1
≤ 1

βEn(L)
≤ const · L2.

In other words, in dimension d = 3, the ground state is the only macroscopically occupied state. It follows
that for any ϕ ∈ C∞c (R3),

L−3
∑
n

Nn,L(β)ϕ(n) −→ (2π)3

∫
R3

Ns(β, ξ)ϕ(ξ)dξ

as L→∞, where
Ns(β, ξ) = N (β, ξ) + ρ0δ(ξ)

and

N (β, ξ) =
1

(2π)3

1

eβ|ξ|2 − 1
.

Indeed, the δ-contribution arises from the ground state term in the sum; For the others, we first note that
Nn,L(β) − (2π)3N (β, n) = (1 − z−1)eβEnNn,L(β)N (β, n). Furthermore, eβEnNn,L(β) ≤ 1 + Nn,L(β) ≤
const · L2, so that

L−3
∑
n 6=0

|Nn,L(β)− (2π)3N (β, n)| ≤
(

const · L2 1

ρ0L3

)(
(2π)3

L3

∑
n 6=0

N (β, n)

)
.

The second bracket is bounded above by
∫
R3 N (β, ξ)dξ which, once again, is finite in three dimensions (or

higher).
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It follows in particular that, in the scaling limit,

ρL(β, z(L)) −→ ρs(β) = ρ(β) + ρ0

where ρ0 denotes the condensate density and

ρ(β) =

∫
R3

N (β, ξ)dξ.

Instead of imposing a scaling of the activity, a more natural analysis can be also be carried out at fixed
density. The following proposition, in which we revert to the Dirichlet Laplacian, shows that the activity
indeed converges to 1 whenever the density is larger than the critical density. For this, we note that both
z 7→ ρL(β, z) and z 7→ ρ(β, z) are strictly increasing, so that the equation ρ(β, z) = ρ̄ has a unique solution z̄
for all 0 < ρ̄ ≤ ρc(β) = ρ(β, 1), and ρL(β, z) = ρ̄ has a unique solution zL for all 0 < ρ̄.

Proposition 3.5. Let d ≥ 3, with ρ̄ > 0 and 0 < β <∞. For any ρ̄ > 0, let zL be the unique solution of

ρL(β, zL) = ρ̄,

and recall that ρc(β) := ρ(β, 1).

i. If ρ̄ ≤ ρc(β) and z̄ is such that ρ(β, z̄) = ρ̄, then limL→∞ zL = z̄
ii. If ρ̄ > ρc(β), then limL→∞ zL = 1.

As can be expected from the discussion above, in case (ii), the surplus density ρ̄− ρc(β) condensates into
the ground state, and indeed

lim
L→∞

L−d
zLe−βE1(L)

1− zLe−βE1(L)
= ρ̄− ρc(β)

where E1(L) is the ground state energy of the Dirichlet Laplacian.

Proof. (i) From the convexity of z 7→ ρL(β, z), we have that

∂ρL
∂z

(β, z2) ≤ ρL(β, z1)− ρL(β, z2)

z1 − z2
≤ ∂ρL

∂z
(β, z1)

whenever z2 < z1. Moreover, the explicit expression (3.5) implies that

ρL(β, z)

z
≤ ∂ρL

∂z
(β, z)

so that

(3.6)
ρL(β, z2)

z2
≤ ρL(β, z1)− ρL(β, z2)

z1 − z2
.

Noting that ρL(β, z) ≤ ρ(β, z) by a Riemann approximation argument, and that both are increasing functions
of z, we have that zL ≥ z̄. By (3.6),

0 ≤ zL − z̄ ≤
z̄(ρ̄− ρL(β, z̄))

ρL(β, z̄))

proving that limL→∞ zL = z̄.
(ii) Assume that zL ≤ 1. Then ρc(β) < ρ̄ = ρL(β, zL) ≤ ρ(β, zL) ≤ ρc(β), which is a contradiction. Hence
zL > 1. But zL < exp(βE1(L)), which converges to 1, so that limL→∞ zL = 1. �

With a little more effort, one can prove the following theorem, completely characterising the Gibbs grand
canonical equilibrium states in the thermodynamic limit.

Theorem 3.6. Let d ≥ 3, with ρ̄ > 0 and 0 < β < ∞. Let ωβ,µL+,L be the Gibbs grand canonical equilibrium

state with µL chosen so that ρL(β, zL) = ρ̄. Then the weak-* limit limL→∞ ωβ,µL+,L = ωβ+ exists and is a
gauge-invariant quasi-free state. Furthermore,
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i. If ρ̄ ≤ ρc(β) then the two-point function of ωβ+ is given by (3.4) where z is the solution of ρ(β, z) = ρ̄

ii. If ρ̄ > ρc(β), then the two-point function of ωβ+ is given by

ωβ+(b∗+(f)b+(g)) = (4π)d(ρ̄− ρc(β))ĝ(0)f̂(0) +
1

(2π)d

∫
Rd
ĝ(ξ)

e−β|ξ|
2

1− e−β|ξ|2
f̂(ξ)dξ.

Note that by rescaling ξ, one obtains ρc(β) = const · β−d/2 showing that the critical density is a strictly
increasing, convex function of the temperature. Hence the condensation regime is reached at fixed density ρ̄
by lowering the temperature below a critical value. In other words, Bose-Einstein condensation occurs in a
low temperature, high density regime.

Summarising the above discussion, the ‘normal regime’ is characterised by a unique equilibrium state for
any β, µ given by Theorem 3.4. In the condensation regime, there are infinitely many equilibrium states,
all having the same temperature and chemical potential, and they are parametrised by the physical density
ρ̄ ∈ [ρc(β),∞). This ‘bifurcation’ from a unique to many equilibrium states is a characteristic property of a
thermal phase transition.

A proof of the existence of Bose-Einstein condensation for an interacting Bose gas is still missing. However,
progress has been made in the so-called Gross-Pitaevskii limit, a regime of very few but very strong interaction
(Lieb-Seiringer-Yngvason, Phys. Rev. A 61, 043602, 2000), or in a toy model of spins on a lattice where the
phenomenon of gauge symmetry breaking is clarified (Lieb-Seiringer-Yngvason, Rep. Math. Phys. 59(3), 389,
2007)
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